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Abstract

A kinetic energy functional Ee
kin was developed within the framework of the density-

functional theory (DFT) based on the energy electron density for the purpose of real-
izing the orbital-free DFT. The functional includes the nonlocal term described with
the linear-response function (LRF) of a reference system. As a notable feature of the
present approach, the LRF is represented on the energy coordinate ϵ defined for each
system of interest. In addition, an atomic system is taken as a reference system for the
construction of the LRF, which shows a clear difference from the conventional approach
based on the homogeneous electron gas. The explicit form of the functional Ee

kin was
formulated by means of the coupling-parameter integration scheme. The functional
Ee

kin was applied to the calculations of the kinetic energies of the pseudo atoms that
mimics H, He, Ne, and Ar. Explicitly, the kinetic energy of each atom was computed
using the functional Ee

kin with respect to the variation of the valence charge Zv of
each atom. In these calculations, the electron density n optimized by the Kohn-Sham
DFT was adopted as an argument of the functional. It was found that the results are
in excellent agreements with those given by the Kohn-Sham DFT. We also devised
a method to perform the self-consistent field calculation utilizing the functional Ee

kin.
The method was applied to the computation of the radial distribution functions of
the electrons in the pseudo Ne and Ar atoms. It was demonstrated that the results
reasonably agree with those yielded by the Kohn-Sham DFT.
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1 Introduction

Density-functional theory (DFT) for electrons[1] is one of the principal subjects in modern

physics and chemistry. It offers an efficient and robust theoretical framework to study

electronic structures of materials and molecules[2]. Vast amounts of effort have been devoted

to the developments of functionals and to the foundation of the theoretical basis of DFT[3].

Nowadays, DFT is an indispensable tool in the computational approach to the material

design and molecular synthesis because of its efficiency and reliability. In the early study of

DFT it was proved in formulation[1, 4] that there exists an exact universal functional E[n]

that describes the total energy E in terms of the N -representable[1, 4] electron density n.

However, the Kohn-Sham (KS) method[1, 5], which has so far been the only workhorse in the

DFT, utilizes one-electron orbitals as the variables in the variational search. The introduction

of the wave functions in KS-DFT is necessitated to ensure the accurate evaluation of the

kinetic energy of the electrons. However, it gives rise to the computational cost associated

with the orthogonalization among the orbitals, which roughly scales as O(N3) with the

system size N . If the construction of an effective kinetic energy functional is made possible,

the one-electron orbitals become no longer necessary, and consequently, the computational

cost scales linearly with the system size (‘Order-N ’) since the orthogonalization can be

completely bypassed in the variational calculations. Thus, it is a matter of great significance

in physics and chemistry to develop the efficacious orbital-free DFT (OF-DFT) to extend

the frontier of the applications of DFT[6].

Development of an accurate kinetic energy density functional Ekin[n] is, however, known

as the toughest subject. A primitive approximation to Ekin[n] was first given in 1928 by

Thomas and Fermi (TF)[7, 8] using the homogeneous electron gas (HEG)[1] as a reference

system. For the total electron density n, the TF functional ETF[n] has the form

ETF[n] = CTF

∫
dr n(r)

5
3 (1)

where CTF = 3
10
(3π2)

2
3 and r is the position vector of the electrons. In 1935 a gradient

correction EvW[n]

EvW[n] = −1

2

∫
dr n(r)1/2∇2n(r)1/2 (2)
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was made by von Weizsäcker.[9] It is readily recognized that Eq. (2) by itself is an exact

Ekin[n] for one or two electrons systems. Inclusion of EvW[n] with a prefactor λ (λvW)

ETFW[n] = ETF[n] + λEvW[n] (3)

makes a substantial contribution to reduce errors. The behavior of the linear response

function(LRF) of ETFW[n] in the momentum space was analyzed, for instance, in Ref. [10].

It shows that LRF of ETFW[n] with λ = 1 reproduces the asymptotic behavior of the HEG in

the large k limit, while setting λ = 1/9 realizes that in the small k region. As demonstrated

in Ref. [11], λ = 1/5 gives the best results when it is applied to atoms. Unfortunately,

higher order corrections to ETFW[n] offers quite minor improvements at the most. It has

long been considered that the deficiency of these local and semilocal kinetic operators is that

they would not be able to realize the shell structures of electron densities in atoms. This

motivated the introduction of the nonlocal term in the functional Ekin[n].

The nonlocal effect was first incorporated into the kinetic functional ECAT by Chacón,

Alvarellos, and Tarazona[12] through the weighted average n(r) of the electron density n.

The weight function was constructed so that the functional realizes the linear response of

the HEG. Another type of the nonlocal kinetic functional EWT[n] was proposed by Wang

and Teter[13], which also refers to the LRF of the HEG to formulate the integral kernel in

the functional. Explicitly, the nonlocal term Enloc
WT [n] in the WT functional is in the form

Enloc
WT [n] = Cnloc

WT

∫
drdr′n(r)αω0 (kF |r − r′|)n (r′)

α
(4)

where kF is the Fermi momentum of the HEG with density n0 and is given by kF = (3π2n0)
1/3

.

α in Eq. (4) was taken as 5/6 in the original development. For the bulk system, the average

electron density in the unit cell can be adopted to n0. The function ω0 is related to the LRF

of the HEG and it has an oscillatory behavior in real space. It is, thus, plausible that the

functional is capable of producing the quantum oscillations responsible for the creation of the

shell structures in atoms. Actually, Figs. 8 and 9 in Ref. [13] show that the EWT[n] functional

yields weak, but apparent shell structures in the density profiles of atoms. Motivated by

this work, Wang, Govind, and Carter made an improvement on the WT functional in Ref.

[14] and, further, developed a density-dependent kernel in Ref. [15]. However, adapting
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the LRF of the HEG to atomic or molecular systems might be problematic since it is not

straightforward to specify the corresponding Fermi momentum kF for the given different

positions r and r′ since the average electron density n0 is not well defined in contrast to the

bulk systems. Along this line, Huang and Carter devised a method which incorporates the

gradient of the density into the kernel for the applications to semiconductors[16]. However,

even when kF is determined somehow, there is no good reason that LRF for the HEG will

be successfully applied to the systems with large inhomogeneities. It is desirable to build

a novel LRF based on another reference system to construct the nonlocal kinetic energy

functional suitable for the applications to atoms and molecules. Actually, there have been a

lot of works besides the developments noted above to extend the applicability of OF-DFT,

e.g. Mi, Genova, and Pavanello provided a sophisticated nonlocal functional by imposing

some exact conditions on the kernel[17, 18]; and Constantin, Fabiano, and Sala constructed

a band-gap energy dependent nonlocal term[19]. One can also find concise reviews of the

recent developments in OF-DFT, for instance, in Refs. [6, 20].

In a recent work[21], a new DFT for electrons was developed on the basis of the electron

distribution ne(ϵ) on the energy coordinate ϵ. The distribution ne(ϵ), referred to as energy

electron density, is given by the projection of the density n(r) onto the coordinate ϵ, thus,

ne(ϵ) =

∫
dr n(r)δ(ϵ− υdef(r)) (5)

where υdef(r) is the potential introduced to define the energy coordinate and the external

potential υext(r) of interest is adopted usually. Explicitly, the coordinate ϵ is given by

υdef (r) =
∑
A

ZA

|r −RA|
(6)

where RA and ZA are the position vector and the charge of the nucleus A, respectively.

Importantly, it can be proved in parallel to the Hohenberg-Kohn theorem[22] that there

exists one-to-one correspondence between certain subsets of the energy electron densities and

the external potentials[21]. Furthermore, the Levy’s constraint search method[4] can also be

formulated within the DFT based on the energy electron density[21]. The introduction of

the energy electron density ne(ϵ) is motivated by the fact that it offers a natural framework

to incorporate the nonlocal electron correlations which are crucial in describing the chemical
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bond dissociations. The correlation is often referred to as static correlation(SC) or left-right

correlation. In Ref. [21] a prototype of the SC energy functional was constructed utilizing

ne(ϵ) and a more sophisticated functional was developed in a subsequent paper[23].

In the present work, a prototype of the kinetic energy functional is developed for the

applications to atoms, where a nonlocal kinetic potential is constructed on the energy co-

ordinate. It should also be noted that the LRF of the individual atomic system instead of

HEG is utilized to build the nonlocal term in contrast to the previous works. At this stage,

our kinetic energy functional is only applicable to atoms. The performance is examined

by computing the energies of the atoms with shifted nuclear charges. The radial electron

distributions around the nucleus for the atom are also computed. The results are compared

with those obtained by using the functional ETFW[n] in Eq. (3) and those by the KS-DFT

calculation.

The organization of the paper is as follows. In Section 2, we provide the theoretical

details for the construction of the nonlocal kinetic energy functional of the energy electron

density, where a brief review of the LRF of the HEG is presented at first. Section 3 is devoted

to describe the details of the numerical implementations and calculations. The results and

discussion are presented in Section 4. The summary and the perspective are given in the

last section.

2 Theory and Method

In this section, theoretical and methodological details are provided for the construction of the

kinetic energy functional. In subsection 2.1, we briefly review the relation of the functional

derivative of the kinetic potential with the linear-response function of the system. Then,

we illustrate the projection of the nonlocal term in the kinetic energy functional onto the

energy coordinate with a focus placed on its justification. In the third subsection, the explicit

form of the kinetic energy functional is developed on the basis of the coupling-parameter

integration. The methodology to realize the self-consistent field calculation (SCF) with the

present approach is given in the last subsection.
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2.1 Linear-Response Function

We first review the relationship between the kinetic potential and the linear response func-

tion(LRF) of the system of interest for later reference. We assume that an energy functional

E[n] of the density n(r) is given. In the density functional framework, E[n] can be further

decomposed into the contributions

E[n] = Ekin[n] + EH[n] + Exc[n] + Eext[n] (7)

In Eq. (7), EH[n] is the Hartree energy due to the classical Coulomb repulsion among elec-

trons, Exc[n] is the exchange-correlation energy, and Eext is the interaction energy between

the density n and the external potential υext(r). At the equilibrium of the electronic state,

the functional derivative of the energy with respect to the density becomes the chemical

potential µ of the electron,

δE[n]

δn(r)
=

δEkin[n]

δn(r)
+

δ

δn(r)
(EH[n] + Exc[n] + Eext [n])

= υkin[n](r) + υeff[n](r) = µ (8)

where υeff[n](r) is the effective potential due to the electron correlations and the external

potential. Since it is assumed the system is in the stationary state, the second derivative of

the left hand side of Eq. (8) leads to zero,

δ2E[n]

δn(r)δn (r′)
=

δυkin[n](r)

δn (r′)
+

δυeff[n](r)

δn (r′)
= 0 (9)

It should be noticed that the second term of the right hand side of the first equality in Eq. (9)

represents the inverse of the response function χ(r, r′) of the system. Thus, the functional

derivative of the kinetic potential is directly related to the response function of the system,

δυkin[n](r)

δn (r′)
= −δυeff[n](r)

δn (r′)
= −χ−1 (r, r′) (10)

This equation constitutes the basis of the constructions of the nonlocal kinetic functionals

ECAT[12], EWT[13], and their modifications. Importantly, all of these studies refer to the

Lindhard function[24], that is, the linear-response function χ0(kF ; |r − r′|) of the homoge-

neous electron gas (HEG) for the sake of numerical convenience. In the construction of the
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nonlocal energy in the WT functional[13], for instance, the integral kernel ω in Eq. (4) is

obtained by excluding the terms corresponding to the local and semi-local energies ETF and

EvW from −χ−1
0 . Although the average density n0 is well defined in bulk system, it cannot

be determined for atoms and molecules at least in a natural manner. Moreover, the appli-

cability of the LRF of the HEG to atoms and molecules that have extreme inhomogeneity

is not yet well examined. It is, thus, desirable to devise a new approach using the LRF

for some inhomogeneous reference system to construct the kinetic energy density functional

applicable to the systems with large inhomogeneities.

2.2 Projection of Nonlocal Kinetic Energy Functional onto the

Energy Coordinate

As mentioned in Introduction, a novel framework of the DFT was developed[21] in 2018 on

the basis of the energy electron density ne(ϵ) defined in Eq. (5). The construction of this

theory was, in part, motivated by a hypothesis by Parr et al. in Ref. [25]. They advocated

that the contours of the electron densities of molecules are more or less parallel to those of

the bare nuclear potentials, that is, Eq. (6) itself. Actually, this is valid for the densities

in atomic systems. In the molecular systems, however, the parallelism is established only

approximately unless the atoms in the molecule are placed with infinite distances. The

success of the local-density approximation (LDA), which constitutes the backbone of DFT,

suggests the fact that the electrons at the different places with the same electron density feel

roughly the same exchange and correlation energy density Uxc. Provided that the electron

density is nearly constant on the contour surface of the energy coordinate ϵ, it is possible to

consider that Uxc is almost constant on the surface with the coordinate ϵ. Hence, the electron

density can be safely compiled into the distribution on the energy coordinate without the loss

of the information contents of the electron density. Importantly, spatially nonlocal quantity

can be incorporated into the functional by virtue of the projection as demonstrated in Refs.

[21, 23]. With these in mind, we reformulate the nonlocal term Enloc
WT [n] in Eq. (4) with the

method of the energy representation. First, we consider the general form Enloc
gWT[n] of the
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nonlocal term of the WT functional, which may be written as

Enloc
gWT[n] = Cnloc

gWT

∫
drdr′n(r)αω (r, r′)n (r′)

α
(11)

Note that the integral kernel ω0 built for the HEG is replaced by some general function ω in

Eq. (11).

Let Rϵ be the spatial region having the the energy coordinate ϵ, i.e. Rϵ = {r ∈ R3 :

υdef(r) = ϵ}. In other words, Rϵ constitutes a hypersurface with the energy coordinate ϵ.

Obviously, it is possible for an arbitrarily given r to uniquely specify the spatial region Rϵ(r)

to which r belongs. We assume at least approximately that the electron density n(r) is

constant on each region Rϵ, that is, n(r)|r∈Rϵ
= const. (∀ϵ : 0 ≤ ϵ ≤ ∞). This is just

the mathematical representation of the hypothesis by Parr and Berk [25]. Note that this

condition is strictly satisfied for the atomic systems. It is then possible to define the function

Oe(ϵ) on the energy coordinate ϵ, thus,

Oe(ϵ) := n(r)|r∈Rϵ
(12)

In Eq. (12), it is supposed that the density n(r) is being constant on the region Rϵ specified

by ϵ = υdef(r). n(r) can be regarded as a composite function, i.e., n(r) = Oe(υdef(r)). Eq.

(11) can then be cast into the form of the energy representation,

Enloc
gWT[n] = Cnloc

gWT

∫
drdr′n(r)αω (r, r′)n (r′)

α

= Cnloc
gWT

∫
dϵdϵ′

∫
drdr′δ(ϵ− υdef(r))

× δ (ϵ′ − υdef (r
′))n(r)αω (r, r′)n (r′)

α

= Cnloc
gWT

∫
dϵdϵ′ Oe(ϵ)α Oe (ϵ′)

α∫
drdr′δ(ϵ− υdef(r))δ (ϵ

′ − υdef (r
′))ω (r, r′)

= Cnloc
gWT

∫
dϵdϵ′ Oe(ϵ)αωe (ϵ, ϵ′)Oe (ϵ′)

α
(13)

The last equality in Eq. (13) defines the WT integral kernel ωe(ϵ, ϵ′) on the energy coordi-

nate. Note that the integral kernel ω(r, r′) in the generalized WT functional is represented

with the energy coordinate in Eq. (13). It is readily recognized that the transformation from
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Eq. (11) to Eq. (13) can be performed without approximations as long as the constancy of

n(r) on each Rϵ is guaranteed. In practice, however, Oe(ϵ) in Eq. (13) can be taken, for

instance, as the average electron density ñe(ϵ) of the region Rϵ, thus,

Oe(ϵ) = ñe(ϵ) = Ω(ϵ)−1ne(ϵ) (14)

where Ω(ϵ) is the volume of the region Rϵ and is given by

Ω(ϵ) =

∫
dr δ(ϵ− υdef(r)) (15)

Note that the quantity Ω(ϵ) is independent of the density n(r) and ñe(ϵ) can be regarded as

a functional of ne(ϵ). The dimension of the quantity ñe(ϵ) in Eq. (14) is the same as that of

the electron density n(r). Thus, the dimension of n(r)α is not changed by the replacement

of n(r) with ñe(ϵ). It is readily recognized that adopting Oe(ϵ) given by Eq. (14) does not

ruin the equality of Eq. (13) as long as n(r) is constant on each Rϵ. When the constancy

is not fully satisfied, however, the third equality of Eq. (13) holds only approximately at

least. The validity of projecting the kernel ω(r, r′) and the density n(r) onto the energy

coordinate is guaranteed by the framework of the DFT using the distribution ne(ϵ) where the

one-to-one correspondence is established[21] between a certain subset of ne(ϵ) and a subset

of the external potential υe(ϵ) defined with Eq. (6). The discussion noted above is provided

to interpret the present approach within the framework of the WT functional, and we note

that the actual implementation in this work is based on a different theory.

It is also worth discussing the numerical advantage of taking the projection of the kernel

ω. In a numerical implementation, the LRF for some reference system should be somehow

inverted to obtain the kinetic potential. However, it is probably infeasible in practice to

make the inversion of the response function χ(r, r′) represented on the real space since it

has six variables at each matrix element. A possible way to overcome the problem is to

introduce some basis functions to represent the response function so that one can reduce the

size of the matrix. However, the basis functions suitable for the expansion of χ is not known

to the best of our knowledge.

We close this subsection with a brief summary. Provided that the nonlocal functional

model in Eq. (11) is adequate for some applications, the functional projected onto the energy
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coordinate (Eq. (13)) will also be applicable since the electron density is reasonably supposed

to be nearly constant on the isosurfaces of energy coordinates. In the next subsection,

we provide an explicit form of a kinetic energy functional represented on the coordinate ϵ

although it cannot be used for general purposes.

2.3 Nonlocal Kinetic Energy in the Energy Representation

In this subsection we develop a kinetic energy functional represented on the energy coordi-

nate. We note that the functional will refer to the linear-response function(LRF) of some

inhomogeneous electron density. In the previous works, the nonlocal term Enloc
WT [n] defined

in Eq. (4) and its sophisticated forms were tested through several applications and their

efficiencies were demonstrated to a certain extent. However, it is not known whether the

same form will be as effective a functional as the functional that utilizes the LRF of an

inhomogeneous system. We, thus, propose a prototype of the kinetic energy functional with

another form although the applicability to general systems might be lost.

In the construction of the functional it is presumed that the corresponding kinetic po-

tential υkin[n0](r) and the energy Ekin[n0] for the given density n0 are somehow provided

from the outset. This is the major drawback of the present approach since the prepara-

tion of the reasonable υkin[n0](r) and Ekin[n0] can be a difficult problem by itself. However,

there have been a lot of functionals that yield better kinetic potentials and energies for the

non-selfconsistent densities. The choice of the functional suitable for our functional is not

a subject in the present work and it will be examined in a forthcoming issue. Anyway,

for a given kinetic potential υkin[n0](r) for the reference density n0, it is possible to get an

approximate kinetic potential υkin[n](r) for some density n around n0, thus,

υkin [n] (r) = υkin [n0] (r) +

∫
dr′ δυkin[n](r)

δn(r′)

∣∣∣∣
n=n0

(n(r′)− n0(r
′))

= υkin [n0] (r)−
∫

dr′χ−1
0 (r, r′) δn (r′) (16)

where δn(r) is defined as δn(r) = n(r) − n0(r). In deriving the second equality of Eq. 16

we use the relation of Eq. (10). Similarly, the kinetic energy Ekin [n] can be obtained up to
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the second order of δn,

Ekin [n] = Ekin [n0] +

∫
dr

δEkin[n]

δn(r)

∣∣∣∣
n=n0

δn(r)

+
1

2

∫
drdr′ δ2Ekin[n]

δn(r)δn(r′)

∣∣∣∣
n=n0

δn(r)δn(r′)

= Ekin [n0] +

∫
drυkin [n0] (r)δn(r)

− 1

2

∫
drdr′χ0 (r, r

′)
−1

δn(r)δn (r′) (17)

As a major issue in the present development, we represent the nonlocal term in Eq. (16)

on the energy coordinate,

υe
kin [n1] (r) = υkin [n0] (r)

−
∫

dϵ′χe
0 (ϵ, ϵ

′)
−1

(ne
1 (ϵ

′)− ne
0 (ϵ

′)) (18)

χe
0 (ϵ, ϵ

′) in Eq. (18) can be obtained by projecting the LRF in the real space onto the energy

coordinate,

χe
0 (ϵ, ϵ

′) =

∫
drdr′χ0 (r, r

′) δ(ϵ− v(r))δ (ϵ′ − v (r′)) (19)

Note that χe
0 (ϵ, ϵ

′)−1 represents an element of the inverse matrix of χe
0. Accordingly, the

kinetic energy functional Ekin [n] in Eq. (17) is transformed to

Ee
kin [n1] = Ekin [n0] +

∫
drυkin [n0] (r)δn(r)

− 1

2

∫
dϵdϵ′χe

0 (ϵ, ϵ
′)
−1

δne(ϵ)δne (ϵ′) (20)

As described in Appendix A, it is possible to prove that χe
0 (ϵ, ϵ

′) is positive semi-definite and

hence, invertible through the Moore-Penrose pseudo-inverse method. The detailed discussion

on the eigenvector with the null eigenvalue of the matrix is shown in Ref. [26]. Thus, only

the nonlocal term in the kinetic potential is described with the energy representation. In

Eq. (18) it should be noticed that the first term in the right hand side is the function of

r, while the second term depends on the energy coordinate ϵ. It doesn’t matter, however,

because the kinetic potential on a spatial coordinate r can be readily obtained through the

transformation ϵ = υdef(r) using Eq. (6).

11



2.4 Self-consistent Field Calculation for Orbital-free

Density-functional Theory

There have been a lot of works devoted to expedite the self-consistent field (SCF) calculations

in OF-DFT. However, in the present development we are not interested in the implementation

of efficient SCF techniques. Here, we devise a minimal procedure to achieve SCF convergence

in our approach. A possible improvement of the algorithm will be the subject of a forthcoming

issue. We start the discussion with the variational principle for the energy functional E[n].

As shown in Eq. (8), the minimization of the energy E[n] with respect to n(r) under the

constraint that the total number of electrons is fixed at N gives the chemical potential µ for

the electrons at the stationary state. That is, the potential υ[n](r) defined by υ[n](r) = δE[n]
δn(r)

is constant irrespective of r at the energy minimum. Provided that the chemical potential µ

is set at 0, minimization of the functional E[n] is equivalent to the solution of the nonlinear

equation,

υ[n](r) = 0 (21)

Numerically the total number of electrons in a system is merely constrained through nor-

malization at each SCF step. Within the first-order variation of n, the solution n of the

equation satisfies the following approximation

υ [n] (r) ∼= υ[n](r) +

∫
dr′ δυ[n](r)

δn (r′)
(n (r′)− n (r′)) = 0 (22)

where n is an arbitrary density reasonably close to n. Then, the formal solution for the

above equation is given by

n(r) ∼= n(r)−
∫

dr′ δn(r)

δυ[n] (r′)
υ[n] (r′) (23)

Thus, the electron density ni at the ith SCF step can be updated as

ni+1(r) = ni(r)−
∫

dr′ δni(r)

δυ[ni] (r′)
υ[ni] (r

′) (24)

Unfortunately, the SCF iteration through Eq. (24) is practically infeasible because the

functional derivative of the density with respect to the potential υ[n](r)(= υkin+υeff) cannot

be readily obtained. A simple but inefficient way to bypass the calculation of the integral
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kernel in Eq. (24) is to replace the kernel with a unit matrix multiplied by a small positive

factor η. In our preliminary calculations, however, it was found that such an approach gives

rise to quite slow convergence in the density. In the present implementation, we replace the

kernel with the derivative of the density with respect to the kinetic potential, thus,

ni+1(r) = ni(r)− η

∫
dr′ δni(r)

δυkin[ni] (r′)
υ[ni] (r

′) (25)

It is important to note that the replacement of the kernel doesn’t change the stationary

condition. Actually, at the convergence of the density, that is, ni+1(r)− ni(r) ∼= 0, we have,∫
dr′ δni(r)

δυkin[ni] (r′)
υ[ni] (r

′) ∼= 0 (26)

Then, υ[ni] (r
′) ∼= 0 is guaranteed since the kernel δni(r)

δυkin[ni](r′)
is always positive semidefinite

and invertible. Further, we assume that the kernel in Eq. (25) is evaluated for the reference

system and represented on the energy coordinate,

ni+1(r) = ni(r) + η

∫
dϵ′χe

0 (ϵ, ϵ
′) υ [ni] (ϵ

′) (27)

where the potential υ[n](ϵ) is defined as

υ[n](ϵ) =

∫
drδ(ϵ− υdef(r))υ[n](r) (28)

In Eq. (27) it is possible that the kernel χe
0 (ϵ, ϵ

′) plays as a nonlocal weight function acting on

the potential to expedite the SCF. The choice of the value η will affect more or less the rate

of the SCF convergence and accuracy of the results. In the present work, the appropriate

value of η is determined empirically as η = 0.05, and it is used in the SCF calculations

throughout.

Finally, we describe a minor issue for the density in the SCF iteration. It is common to

employ the variable φ(r), that is, the square root of the density n(r),

φ(r) = n(r)
1
2 (29)

to avoid the situation that n(r) becomes negative during the SCF. Then, the SCF iteration

using Eq. (25) should be modified as

φi+1(r) = φi(r)− η

∫
dr′

{
δφ(r)

δn(r)

δn(r)

δυkin[n] (r′)

}
ni

υ[ni] (r
′) (30)
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Accordingly, Eq. (27) is rewritten as

φi+1(r) = φi(r) + η

∫
dϵ′χ̃e

0 (ϵ, ϵ
′) υ [ni] (ϵ

′) (31)

where χ̃e
0 is defined as

χ̃e
0 (ϵ, ϵ

′) =

∫
drdr′

{
δφ(r)

δn(r)

δn(r)

δυkin (r′)

}
n0

× δ (ϵ− υdef(r)) δ (ϵ
′ − υdef (r

′)) (32)

In Eq. (32), n0 is the density of the reference system.

3 Computational Details

As a benchmark test we apply the kinetic energy functional of Eq. (20) to pseudo atomic

systems(H, He, Ne, and Ar), where the core charge Zυ of each atom is shifted by q within the

range of −0.2 ≤ q ≤ +0.2 in the unit of the elementary charge. Throughout the calculations,

the system with q = 0 is taken as the reference system to build the response function χe
0(ϵ, ϵ

′)

as well as the density ne
0(ϵ) on the energy coordinate. Then, the variation of the kinetic

energy of each atom is compared with that given by the Kohn-Sham DFT calculation. We

also employ other OF-DFT functionals, that is, ETF[n] in Eq. (1) and ETFW[n] in Eq. (3)

for comparisons. In these calculations the electron density n(r) is individually optimized

beforehand in the separate Kohn-Sham DFT calculation.

Next, we perform the variational calculation using the kinetic potential vekin [n] (r) in

Eq. (18) to obtain the self-consistent electron density, where the reference density n0(r) is

employed as an initial guess. Then, we compute the radial distribution functions 4πr2n(r)

of the Ne and Ar systems with q = 0.2 through OF-DFT SCF calculations using Eq. (31).

The first subsection provides the details of the base program to perform numerical OF-

DFT calculations using the real-space grids. In the second subsection, we introduce the

construction of the pseudo atoms that mimic H, He, Ne, and Ar, where the bare Coulomb

potentials are replaced by some local pseudopotentials to realize the smooth behaviors of the

densities near the atomic cores although the properties of the corresponding atoms are no

longer maintained. The numerical details for the construction of the response function and
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the energy electron density on the energy coordinate is described in the third subsection. A

numerical issue, which arises in the inversion of the response function, will be addressed in

the fourth subsection. The last subsection provides the numerical recipes for the extension

of the present approach to a system with a covalent bond.

3.1 Real-space Grid Approach

The program module for the present OF-DFT is newly developed and embedded in the Kohn-

Sham DFT program ‘Vmol’[27–32] based on the real-space grid approach[33, 34]. Thus, the

electron density n(r) is represented on the real-space grids uniformly placed within a cubic

box. Throughout the present calculations, the size of the real-space cell is set at L = 18.354

a.u. and each axis is discretized by equally spaced 64 grids, which leads the grid width

h = 0.2868 a.u. The exchange-correlation energy Exc[n] in Eq. (7) is evaluated with the

BLYP functional[35, 36]. To make comparisons among the kinetic energy functionals, we

also employ the functionals ETF[n] and EvW[n] given in Eqs. (1) and (2), respectively. The

Laplacian in Eq. (2) is represented with the fourth-order finite difference method[33, 34].

3.2 Construction of Pseudo Atoms

To achieve the OF-DFT calculation within the plane-wave or real-space grid approach, it is

also a subject of critical importance to develop local pseudopotentials for atoms. Unfortu-

nately, to the best of our knowledge, there have not been sufficient amount of works along

this line. In the present study, however, we are not interested in the applications to realistic

atoms. We, thus, consider ‘pseudo’ atoms which stem from Hydrogen, Helium, Neon, and

Argon atoms. The sole purpose of the pseudization is to realize the smooth variation of

the density so that the real-space grid approach can adequately describe it. To this end we

merely adopt the local term Vloc(r) in an existing pseudopotential set as a function of the

distance r between the electron and the nucleus. As a specific treatment for pseudo Ne and

Ar atoms, we additionally embed the potential ∆Vs(r) assigned as the S component in the

nonlocal term to mimic the repulsive potential due to the core electrons. Actually, we found

that the valence electrons in Ne and Ar erroneously penetrate into the core region without
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the term ∆Vs(r). In the present calculation, we use the terms in the BHS pseudopotential[37]

as components to build the potential. We summarize the form of the local pseudopotential

V A
ps (r) for atom A(= H, He, Ne, or Ar) used in our calculations,

V A
ps (r) = V A

loc(r) (A = H, He)

V A
ps (r) = V A

loc(r) + ∆V A
s (r) (A = Ne, Ar)

(33)

where V A
loc(r) and ∆V A

s (r) are, respectively, given in the forms,

Vloc(r) = −Zv

r

[
2∑

i=1

ci erf
[
(αi)

1/2 r
]]

(34)

and

∆Vs(r) =
3∑

i=1

(
Pi + r2Pi+3

)
exp(−αir

2) (35)

In Eqs. (34) and (35) we omit the superscript A for simplicity. In Eq. (34) Zv is the cor-

responding valence charge for atom A. Zv are 1.0 and 2.0 for H and He atoms, respectively,

while Zv = 8.0 for Ne and Ar. The coefficients ci and αi in Eq. (34) are tabulated in Ref.

[37] for various atoms. The two sets of coefficients Pi and Pi+3 in Eq. (35) correspond to

the exponents αi (i = 1, 2, 3). The set of Pi can be obtained by the numerical reconstruction

of the data in Table IV in Ref. [37]. We refer the readers to the paper for the detail of the

algorithm. The local pseudopotentials employed in the present calculations are displayed in

Fig. 1. In the graphs for Ne and Ar atoms, it is shown that each Vps(r) rises notably near the

core region due to the repulsive potential ∆Vs(r). It should be stressed that the pseudopo-

tentials given in Eq. (33) are not optimized to reproduce the properties of the corresponding

realistic atoms. Hence, the eigenvalues provided by the Kohn-Sham DFT calculation are

not coincident with those constructed by the full set of pseudopotential that includes the

nonlocal terms. However, it makes complete sense to compare the result given by OF-DFT

with that given by the KS-DFT calculation. The time-saving double-grid technique[38] is

employed to describe adequately the steep variation of the local pseudopotentials in the core

region, where the width of the dense grid is set at h/5 throughout the calculations.
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Figure 1: The local pseudopotentials constructed using Eq. (33) for H, He, Ne, and Ar

pseudo atoms. The broken lines are the corresponding Coulomb potentials of the valence

charges Zv.

3.3 Energy Coordinate and Linear-response Function

As shown in Eq. (6) the bare Coulomb potential is usually employed as the defining potential

υdef(r) for the energy coordinate ϵ. However, another potential υ′
def(r) can also be adopted

as a defining potential as long as the relation υ′
def(rA) = υ′

def(rB) holds for any points rA

and rB satisfying υdef(rA) = υdef(rB)[21]. In the present development, in contrast to the

previous works[21, 23], we employ the opposite sign of the BHS local potential V BHS
loc (r) as

the defining potential, i.e., υdef(r) = −V BHS
loc (r).

The log-scaled energy coordinate with the range of (log ϵmin, log ϵmax) is uniformly dis-

cretized by N e
grid grid points. Then, the energy electron density ne(ϵ) in Eq. (5) and the

response function χe
0(ϵ, ϵ

′) in Eq. (19) are numerically constructed on the discrete energy

coordinates. The parameters N e
grid and (ϵmin, ϵmax) are individually determined for each atom

and the values are summarized in the ‘Supplementary Material’.

The linear-response function(LRF) χ0(r, r
′) in Eq. (19) for a reference system is obtained

by the 2nd-order perturbation theory. To do this, we first solve a Kohn-Sham equation for

the reference system(i.e., q = 0.0),(
−1

2
∇2 + υeff [n0] (r)

)
φ0
i (r) = ϵ0iφ

0
i (r) (36)

where n0 is the electron density constructed from the self-consistent solutions {φ0
i }, and {ϵ0i }
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is the corresponding eigenvalues. Then, the LRF is evaluated as

χ0(r, r
′) =

occ∑
i

vir∑
a

1

ε0a − ε0i
φ0∗
i (r)φ0

a(r)× φ0∗
a (r′)φ0

i (r
′) (37)

where the indices i and a are for the occupied and virtual orbitals, respectively. The LRF

χe
0(ϵ, ϵ

′) defined on the energy coordinate is merely obtained by the projection,

χe
0(ϵ, ϵ

′) =

∫
drdr′ δ(ϵ− υdef(r))δ(ϵ

′ − υdef(r
′))χ0(r, r

′) (38)

Explicitly, the numbers of the virtual orbitals included in Eq. (37) are 23 for H and He,

20 for Ne, and 22 for Ar. It is found that the LRF is rather insensitive to the number of

the virtual orbitals. However, attention should be paid to the upper limit since the virtual

orbitals with larger eigenvalues can not be adequately accommodated in the real-space cell.

Note that the kinetic potential υkin[n0](r) in Eq. (18) as well as Ekin[n0] in Eq. (20) for

the reference system can also be obtained from the solution of Eq. (36). Specifically for

υkin[n0](r), we use the relation,

υkin[n0](r) = −υeff [n0] (r) (39)

Although the response function χ0(r, r
′) can be easily computed, the projection onto the

energy coordinate through Eq. (19) is rather time-consuming. This could be a serious

problem when we consider its applications to larger systems in a later development. In our

perspective, however, the LRF of a composite system might be adequately constructed from

the overlap of the LRF of the constituent systems on the energy coordinate.

3.4 Inverse of Linear-response Function

We also make a remark on the inversion of the LRF defined on the energy coordinate.

As shown in Appendix A, the matrix χe
0(ϵ, ϵ

′) is positive semi-definite, and hence can be

inverted using the pseudo-inverse method. Here, we discuss another issue associated with

the inversion. Suppose that the matrix is given in the form of the spectral decomposition,

χe
0(ϵ, ϵ

′) =

Ne
grid∑
i

⟨ϵ | γi⟩ gi ⟨γi | ϵ′⟩ (40)
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where γi(ϵ) is the eigenvector of the matrix χe
0, and gi is the corresponding eigenvalue. The

matrix includes at least one null eigenvector with the 0 eigenvalue due to the condition that

the number of electrons is being fixed. However, it is found unexpectedly that there exists a

lot of eigenvectors with substantially zero eigenvalues for the atomic systems studied in the

present work. In addition, it is also revealed that the eigenvector with the largest eigenvalue

dominates the construction of the matrix. Shown in Fig. 2(a) is the eigenvalues {gi} plotted
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Figure 2: (a) The plot of the eigenvalues {gi} in descending order for the pseudo Ar atom.

The linear-response function χe
0(ϵ, ϵ

′) of the Ar atom is superposed. (b), (c), and (d) show

the functions giγi(ϵ)γi(ϵ
′) (see Eq. (40)) for the indices i = 1, 2, and 3, respectively. Units

of the energy coordinate ϵ is a.u., while that of χe
0(ϵ, ϵ

′) is a.u.−2.

for the pseudo Ar atom in descending order, where the three-dimensional graph for the LRF

χe
0(ϵ, ϵ

′) is also superposed. The notations (b), (c), and (d) in the plot denote the three largest

eigenvalues, for which the corresponding LRF components giγi(ϵ)γi(ϵ
′) are drawn in Figs.

2(b), 2(c) and 2(d), respectively. By consulting Figs. 2(a) and 2(b), it is recognized that
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the eigenvector γ1 with the lowest frequency is dominant in the decomposition of the total

LRF in Eq. (40). It seems that higher frequency mode γi gives much smaller contribution

to the LRF as observed in the sequence of Figs. 2(b), 2(c) and 2(d). It is remarkable that

the response function generated by the lowest frequency mode γ1 faithfully realizes the total

LRF shown in Fig. 2(a). It is found that this trend is common to all the atoms treated in

the present work. In the pseudo-inverse approach, the inverse of the LRF of Eq. (40) can

be obtained by

χe
0(ϵ, ϵ

′)−1 =

Ne
grid−1∑
i

⟨ϵ | γi⟩ g−1
i ⟨γi | ϵ′⟩ (41)

Note that the eigenvector with 0 eigenvalue is to be excluded from the summation in the

right hand side of Eq. (41). In a practical calculation, however, the smallest eigenvalue may

not become exactly zero due to the numerical error. Thus, the eigenvector with the smallest

eigenvalue should be excluded from the construction of the inverse matrix. However, it is

found in the preliminary calculations that the faithful execution of Eq. (41) gives rise to the

unphysical oscillations in the matrix χe
0(ϵ, ϵ

′)−1 due to the high frequency modes multiplied

by the huge values g−1
i . Actually, as demonstrated in Appendix B, the magnitude of the

component of the response function χe
0(ϵ, ϵ

′) with a small eigenvalue is found to be within the

grid error due to the use of the real-space grids in representing the function χ0(r, r
′). Thus,

the summation in Eq. (41) should be truncated after the first few leading terms in practice.

Throughout this work, we only consider the eigenvector γ1 with the largest eigenvalue g1 to

construct the inverse of the LRF. The effect of the inclusion of the residual contributions

will be examined later.

3.5 Extension to Molecular System

As a pilot test, we apply the present approach to the calculation of the potential energy curve

of the covalent bond of an H2 molecule. For this purpose, the LRF for the molecule has to be

constructed. To make the computational cost to increase linearly with the system size, it is

necessary to build the LRF using those for the constituent atoms as building blocks. In the

following, we provide an instantaneous and straightforward approximation as a prototype to

realize such a construction. We stress that other elaborate approaches might be potentially
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developed to improve the nonlocal functional. Anyway, we suppose that a hydrogen molecule

comprises hydrogen atoms HA and HB placed at RA and RB, respectively, with a certain

distance R = |RA − RB|. Then it is assumed that two LRFs χA
0 (r, r

′) and χB
0 (r, r

′) are

obtained through Eq. (37) for the isolated hydrogen atoms HA and HB, respectively. Here

we approximate that the LRF of the whole system is merely given by the sum of these atomic

LRFs, thus,

χ0(r, r
′) = χA

0 (r, r
′) + χB

0 (r, r
′) (42)

Accordingly, the corresponding LRF χe
0(ϵ, ϵ) of the molecule defined on the energy coordinate

is provided by the sum of the projections of the LRFs of the individual atoms,

χe
0(ϵ, ϵ

′) = χA
0 (ϵ, ϵ

′) + χB
0 (ϵ, ϵ

′) (43)

It is readily recognized that the LRF χe
0(ϵ, ϵ) is also positive semi-definite and invertible.

The projection of each atomic LRF can be, of course, performed through Eq. (38), where

the defining potential υdef is constructed for the molecular system with the given interatomic

distance R. The method to project the individual LRFs onto those defined on the energy

coordinate is the same as noted in subsection 3.3. The detailed assessment of the accuracy

and property of Eq. (43) will be an issue in the future works.

The reference electron density n0(r) is also provided by the sum of the individual electron

densities nA
0 (r) and nB

0 (r), respectively, for HA and HB, thus,

n0(r) = nA
0 (r) + nB

0 (r) (44)

Lastly, we have to determine the corresponding reference kinetic energy Ekin[n0] in Eq.

(17) and potential υkin[n0](r) in Eq. (18). Since H2 is a closed two electrons system, the

exact kinetic energy and potential can be provided for an arbitrarily given electron density.

Explicitly, for the density n0 they are merely given by

Ekin[n0] =

∫
dr n0(r)

1
2

(
−1

2
∇2

)
n0(r)

1
2 (45)

υkin[n0](r) = n0(r)
− 1

2

(
−1

2
∇2

)
n0(r)

1
2 (46)

It will also be helpful to make a brief comment on the method applicable to the systems

with many electrons for future implementations although not used in the present work.
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Suppose that a system consists of two subsystems A and B of which electronic structures

are individually obtained. When these subsystems are infinitely separated, Ekin[n0] and

υkin[n0](r) are exactly given by the sum of the kinetic energies and potentials of the individual

subsystems. At the finite separation, however, one should introduce the bifunctionals, that

is, the non-additive kinetic energy Enad
kin [n

A
0 , n

B
0 ] and the potential υnad

kin [n
A
0 , n

B
0 ](r), which are,

respectively, defined as

Enad
kin [n

A
0 , n

B
0 ] = Ekin[n0]− (Ekin[n

A
0 ] + Ekin[n

B
0 ]) (47)

υnad
kin [n

A
0 , n

B
0 ](r) = υkin[n0](r)− (υkin[n

A
0 ](r) + υkin[n

B
0 ](r)) (48)

Then, the summation of the kinetic energies or potentials of the subsystems are corrected by

adding these non-additive terms. In practice, one has to evaluate Eqs. (47) and (48) approx-

imately by means of some kinetic GGA functional. Originally, the non-additive term has a

major relevance to the implementation of the frozen-density embedding theory (FDET)[39].

Actually, there has been a lot of developments and discussions in this context[6, 39–42]. In

the present study, however, we focus our interest on the performance of our nonlocal kinetic

energy functional on the energy coordinate, and we do not consider the application of Eqs.

(47) and (48).

In the computation of the potential energy curve for H2 molecule, the electron density of

the molecule as well as the reference system are optimized by the Kohn-Sham DFT with the

method shown in subsection 3.1. For the electron-nuclear potential of the H2 molecule, the

nonlocal part in the pseudopotential is also included in contrast to the calculation of the H

atom in order to ensure the formation of the sound chemical bond. Explicitly, the nonlocal

pseudopotential in the form developed by Kleinman and Bylander[43] is included besides the

local term in Eq. (33).

We also perform an additional interesting calculation to examine the effect of the variation

of the LRF χe
0(ϵ, ϵ

′) on the potential energy curve of H2. To do this, the LRF is constructed

from the wave functions of an electron bound to a 3-dimensional harmonic potential UHP(r) =

1
2
kr2 where k is the spring constant and r is the radial distance of the electron from the center.

The center of the harmonic potential is placed at each nucleus. Thus, the component LRFs

in Eq. (42) are each constructed from the wave functions for the harmonic potential UHP(r)
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instead of the pseudopotential of the H atom. The spring constant k is chosen so that the

Gaussian obtained as the ground state wave function for UHP maximally fits the 1s orbital

of H atom. The exponent of the normalized Gaussian can be obtained as 0.270950 through

least-square fitting as provided in Ref. [44]. The corresponding value of k is evaluated as

0.294 a.u. The wave function Rn,l(r) dependent on the principal quantum number n and the

momentum quantum number l along the radial direction is analytically given as a solution

for the Kummer’s differential equation[45]. Explicitly, we consider up to 4s orbital with l = 0

and px orbital with (n, l) = (0, 1) in the construction of the LRF. The radial wave function

Rn,l(r) is then multiplied by the spherical harmonics to provide the total wave function.

The LRF for the electron in the harmonic potential is constructed through the perturbation

theory.

4 Results and Discussion

First, we apply our kinetic energy functional Ee
kin[n] to the pseudo atoms (H, He, Ne, and

Ar) to compute the variation of the kinetic energy for each atom when the valence charge Zv

is shifted by q within the range of −0.2 ≤ q ≤ 0.2 in the unit of the elementary charge. The

density n(r) optimized by Kohn-Sham DFT (KS-DFT) is adopted as the argument of the

functional. Next, the self-consistent densities for the Ne and Ar atoms are computed through

the present OF-DFT approach. The radial distributions of the electrons are compared with

those obtained by the KS-DFT calculations. To examine the applicability to a molecular

system, the method is applied to the computation of the covalent bond in a hydrogen molecule

chosen as a pilot system, where the validity of the representation of the response function

on the energy coordinate is also discussed.

4.1 Kinetic Energy Calculation Using Non-self-consistent Density

Figure 3 shows the profile of the kinetic energy Ee
kin[n] (Eq. (20)) with respect to the

variation of the valence charge Zv (0.8 ≤ Zv ≤ 1.2) of the pseudo H atom. To make

comparisons we also employ the Thomas-Fermi (TF) functional ETF in Eq. (1) and ETF

combined with the Weizsäcker correction, that is, the TFW functional ETFW in Eq. (3). The
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electron density n(r) adopted as the argument is that optimized through the self-consistent

field (SCF) calculation of the KS-DFT method. In every plot, the kinetic energy increases

monotonically with respect to the increase in the valence charge Zv. The increase in Zv

causes the stabilization of the potential energy of the system, which leads to the increase in

the kinetic energy. As observed in the figure, the functional Ee
kin[n] developed in the present

work shows excellent agreement with the result of KS-DFT except for the region around

Zv = 0.80. Although the kinetic energy at Zv = 0.80 varies by ∼ 0.13 a.u. from that of the

reference system with Zv = 1.0, the deviation of the present work from the KS-DFT value

stays ∼ 0.01 a.u. It is notable that the present work perfectly realizes the KS-DFT values

around another end of the valence charge, i.e., Zv = 1.2. It is observed in the figure that
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Figure 3: Plots of the kinetic energies computed by various kinetic functionals for the

variation of the valence charge Zv of the pseudo H atom. The atom with Zv = 1.0 is taken

as the reference system. The value of the ‘Present Work’ is provided using Eq. (20). The

GGA functional is that given in Eq. (49) or equivalently Eq. (12) in Ref. [46]. ‘TF + 1/5W’

and ‘TF + 1/9W’ are obtained by Eq. (3) with λ = 1/5 and 1/9, respectively. ‘TF’ is

evaluated by Eq. (1).

the energy of the TF functional is always lower than that of KS-DFT, where the difference

between the TF and the KS-DFT energy is ∼ 0.03 a.u. at the most. Unfortunately, it

is found that the inclusion of the Weizsäcker term with the factor λ = 1
5
overcorrects the

underestimation of the TF functional. Adopting the factor λ = 1
9
, which correctly reproduces

the LRF of the homogeneous electron gas in the small k region, provides much better result.
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The fact that TFW functional with λ = 1
9
is superior to λ = 1

5
is somewhat surprising

because it was demonstrated in Ref. [11] that the choice of λ = 1
5
gives the smallest errors in

the evaluation of the total energies of various atoms. It is possible that the result is affected

by the smooth behavior of the density due to the pseudization of the atom. We also examine

the performance of a sophisticated GGA (generalized gradient approximation) functional

for the kinetic energy. Explicitly, we employ Eq. (12) in Ref. [46], which was heuristically

developed by integrating the several types of the GGA functionals to minimize the error for

the kinetic energies of the 77 molecules. The explicit form of the functional for a spin is

given by

EGGA
kin [n] = 2

2
3CTF

∫
dr n(r)

5
3

×
(
1 +

A1x
2

1 + A2x sinh
−1 x

− A3x

1 + A4x

)
(49)

where x represents the inhomogeneity of the density of the spin and defined by |∇n(r)|/n(r) 4
3 .

The parameters {Ai} in Eq. (49) are specified as A1 = 0.0055, A2 = 0.0253, A3 = 0.072,

and A4 = 2
5
3 . Despite the sophistication of the GGA functional, it offers quite minor im-

provement on the TFW functional with λ = 1
9
as shown in the figure.

Here, we discuss the contribution of the nonlocal term in Eq. (20). As shown in the

equation, the nonlocal energy is the quantity proportional to the 2nd order of the deviation

of the energy electron density δne(ϵ) = ne(ϵ) − ne
0(ϵ). Thus, the contribution is zero at

Zv = 1.0 in principle and considered to be larger at the both ends of the plot. Actually, the

third term in Eq. (20) amounts to 0.024 a.u. and 0.013 a.u., respectively, at Zv = 0.8 and

1.2, although the contributions are much smaller as compared with those of the local term.

For the calculation of Fig. 3, the energy coordinate ϵ (0.05 ≤ ϵ ≤ 5.0) in the unit of a.u.

is discretized by N e
grid = 25 grids as listed in the ‘Supplemental Material’. We examine the

numerical robustness by setting N e
grid = 15 in an additional calculation. It is demonstrated

that the nonlocal terms become 0.025 a.u. at Zv = 0.8, and 0.014 a.u. at Zv = 1.2, which

shows the numerical stability of the functional with respect to the choice of the width of the

grid.

We also examine the effect of the inclusion of the higher frequency modes in the decom-

position of Eq. (40). As was described at the end of Subsec. 3.4., only the term with the

25



largest eigenvalue (g1 = 0.103) is incorporated in the calculation of Fig. 3. It is found that

considering up to the term with the secondary largest eigenvalue(g2 = 0.016) leads to the

deviation of the kinetic energy upward by 0.01 a.u. at Zv = 1.2. Furthermore, it is also

revealed that including up to the third term (g3 = 0.00062) worsens the kinetic energy by

0.052 a.u. Thus, the inclusion of the residual modes besides the leading term in Eq. (40) is

found to degrade the functional Ee
kin[n]. This trend also applies to the other end of the Zv

axis. At this stage, unfortunately, we have no good reason to justify the truncation in the

decomposition. However, it is speculated that some statistical noise is present in the numer-

ical construction of the LRF due to the lack of samplings, which may cause the creation of

unphysical high frequency modes in χe
0 (ϵ, ϵ

′). Actually, in our real-space grid approach, the

construction of the LRF on the energy coordinate is numerically performed by projecting the

data on the 643 grid points in the real-space cell onto the 25 grids for the energy coordinate.

Seemingly, the amount of the data assigned to an energy coordinate ϵ is not sufficient when

the coordinate corresponds to the atomic core region in particular. To increase the sampling

points, one may consider to apply the double-grid technique[38] to the core region. We found,

however, that the straightforward implementation of the method leads to the destruction of

the crucial condition that the matrix χe
0 (ϵ, ϵ

′) is positive semi-definite. In the following, we

provide the results for the remaining pseudo atoms, i.e., He, Ne, and Ar.

In Fig. 4 the profiles of the kinetic energies for the pseudo He atom are presented. The

energy range of the plots is extended by about 3 times as compared with that for H atom

because the depth of the local pseudopotential for He is much deeper than that for H as

shown in Fig. 1 and the number of electrons is twice that of H. It is clearly recognized in the

figure that the plots have quite similar trend as those for the pseudo H atom. It is striking

that the kinetic energy given by Eq. (20) excellently agrees with that by KS-DFT over the

whole range of Zv. Actually, the two plots are almost indistinguishable in the graph. We

note, however, that absolute difference in the kinetic energy at Zv = 2.2 between the present

work and the KS-DFT is evaluated as 0.006 a.u., and this is found to be about the half of

the difference between them for the pseudo H atom at Zv = 0.8.

In Fig. 5 the results for the pseudo Ne atom are plotted. The range of the energy

variation is 1.5 times as large as that of the He atom. This is attributed to the fact that the
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Figure 4: Plots of the kinetic energies computed by various kinetic functionals for the

variation of the valence charge Zv of the pseudo He atom. The atom with Zv = 2.0 is taken

as the reference system. The plots for ‘Kohn-Sham DFT’ and ‘Present Work’ are almost

indiscernible in the figure. The other notations are the same as in Fig. 3.

number of the valence electrons for Ne is 4 times as many as that for He. Note, however,

that the valence electrons in Ne reside outside the core region due to the repulsive potential

∆Vs(r) augmented in the local pseudopotential drawn in Fig. 1. Again, it is found that the

coincidence between the present work and the KS-DFT is quite excellent. The maximum

absolute deviation from the KS-DFT value is 0.006 a.u. that occurs at Zv = 7.8. As a

notable feature specific to the results for Ne, the Thomas-Fermi functional corrected with

1/9Weizsäcker term shows good agreements with the KS-DFT in the range of 8.0 ≤ Zv ≤ 8.2.

Lastly, we provide the results for the pseudo Ar atom in Fig. 6. In the figure, it is shown

that the range of the kinetic energy variation is reduced to about the half of the energy

range for Ne. This can be attributed to the facts that the local pseudopotential of Ar (see

Fig. 1) is much shallower than that of Ne, and the potential valley of Ar is located farther

from the atomic core than that of Ne. It is worthy of noting that the present work shows the

best agreements with the KS-DFT values in the application to Ar among the other atoms.

Actually, the maximum deviation in the energy from the KS-DFT values is found to be only

∼0.001 a.u. However, this is simply because the nonlocal energy gives the minor contribution

to the kinetic energy in the Ar system. Explicitly, the nonlocal energy in the functional Ee
kin
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Figure 5: Plots of the kinetic energies computed by various kinetic functionals for the

variation of the valence charge Zv of the pseudo Ne atom. The atom with Zv = 8.0 is taken

as the reference system. The plots for ‘Kohn-Sham DFT’ and ‘Present Work’ are almost

indiscernible in the figure. The other notations are the same as in Fig. 3.

of Eq. (20) is evaluated to be 0.007 a.u. at Zv = 8.2.

We close this subsection by making a brief remark on the kinetic energy functional Ee
kin

using a non self-consistent density. First, it was demonstrated that the functional is able to

compute the kinetic energies with reasonable accuracies as compared with those obtained

by the Kohn-Sham DFT. Second, it was found that the nonlocal term, represented with

a functional of the energy electron density ne(ϵ), certainly improves the description of the

kinetic energy although the contribution to Ee
kin is proportional to the second order with

respect to δne. In the next subsection, we provide the self-consistent densities obtained

through the present OF-DFT approach.

4.2 Self-consistent Field Calculations with the OF-DFT Method

In this subsection, the radial distribution functions (RDFs) for electrons in the pseudo Ne

and Ar atoms with Zv = 8.2 are presented, where the corresponding electron densities are

optimized through the self-consistent field (SCF) calculations utilizing Eqs. (31) and (32).

The parameter η in Eq. (31) is set at 0.05. The convergence thresholds are 5.0× 10−7 a.u.

for the total energy, and 5.0×10−9 a.u.−3 for the density. The initial guess for the density for
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Figure 6: Plots of the kinetic energies computed by various kinetic functionals for the

variation of the valence charge Zv of the pseudo Ar atom. The atom with Zv = 8.0 is taken

as the reference system. The plots for ‘Kohn-Sham DFT’ and ‘Present Work’ are almost

indiscernible in the figure. The other notations are the same as in Fig. 3.

each system is the electron density n0 of the system with Zv = 8.0. The 4-points polynomial

interpolation method is utilized to increase the sampling points for the construction of the

smooth RDFs. Explicitly, (100, 200, 400) grid points are yielded for the spherical coordinates

(r, θ, ϕ) and the density on each grid is evaluated by the polynomial interpolation of the

rectangular grids, where the range of the radial distance r is 0 ≤ r ≤ 8.604 a.u. The results

are plotted in Fig. 7. We found in the both plots that the RDFs optimized by the OF-DFT

reasonably agree with those given by KS-DFT. We note, however, that the kinetic energies

Ekin by the OF-DFT are somewhat different from those by KS-DFT calculations. Explicitly,

Ekin for the Ne atom is evaluated as 14.685 a.u. by the OF-DFT, while the KS-DFT gives

Ekin = 14.709 a.u. For the Ar atom, Ekin are computed as 7.344 and 7.355 a.u., by the

OF-DFT and KS-DFT methods, respectively. Thus, it was found the kinetic energy as well

as the density are degraded through the SCF procedure in the OF-DFT calculation. We

note that the extreme agreements between the present works and the KS-DFT calculations

in Figs. 5 and 6 can be attributed to the fact that the densities used for these calculations

are obtained by the corresponding KS-DFT calculations.

We should make additional remarks on the construction of the RDF for the Ne atom.
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Figure 7: Plots of the radial distribution functions (RDFs) for the electrons in the pseudo

Ne and Ar atoms. Superposed in the figure is the corresponding density profiles along the

radial distance r. The electron densities are obtained through the SCF calculations. The

valence charges Zv of these systems are set at Zv = 8.2 in the unit of the elementary charge.

Specifically in the SCF calculation for the Ne atom, we actually adopt the BHS local potential

V BHS
loc (r) of the Ar atom[37] as the potential υdef(r) to create the energy coordinate ϵ. The

use of V BHS
loc (r) for Ne as υdef(r) necessitates the wide energy range for the energy coordinate

because the Ne potential is very steep around the atomic core. Therefore, in the construction

of the response function using such a defining potential, a lot of bins become null in the

region with large energy coordinate due to the low resolution of the real-space grids around

the core. This might give rise to a numerical instability in the SCF calculation. In principle,

the potential of any atomic core can be indeed used as a defining potential for another atom

within the framework of the DFT based on the energy electron density[21] since the potential

due to the nucleus is always spherically symmetric. Actually, the use of the Ar potential

rather than the Ne potential in computing the plot in Fig. 5 makes a difference of only ∼ 0.5

kcal/mol (∼ 8× 10−4 a.u.) in the kinetic energy at Zv = 8.2.

We also note an unfavorable phenomenon found in the SCF calculation for the Ne atom.

That is, the electron population on the atomic core increases gradually through the SCF

iterations, which seriously affects the density convergence. This suggests that the nonlocal

term in the kinetic potential does not work appropriately on the atomic core region since only
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the nonlocal potential is dependent on the electron density as seen in Eq. (18). The drawback

might be attributed to the poor resolution of the grids around the core. The problem also

emerges when V BHS
loc (r) for Ne is used as υdef(r) because it also makes no contribution to

increase the resolution around the core. Here, we apply an ad hoc approach to compensate

for the error. Explicitly, we mix the kinetic potential with the Thomas-Fermi (TF) potential

only on the core region using a Gaussian weight function F (r). The explicit form of the

kinetic potential υe
kin with the patch on the core is given by

υe
kin [n](r) =υkin [n0] (r) + F (r)υTF

kin [n](r)

+ (1− F (r))υnloc
kin [ne] (ϵ) (50)

where the potential υnloc
kin is the second term of the right hand side of Eq. (18) and the weight

function F (r) is defined as

F (r) = exp(−ζr2) (ζ > 0) (51)

In Eq. (50), the potential υTF
kin [n](r) is expressed in terms of the TF potential, thus,

υTF
kin [n](r) =

δυTF[n](r)

δn(r)

∣∣∣∣
n0

(n(r)− n0(r)) (52)

where the potential υTF is given by the functional derivative of Eq. (1), that is, δETF[n]/δn(r).

Notice that the potential υTF
kin [n](r) is designed so that it becomes zero when the density n(r)

coincides with n0(r). The parameter ζ in Eq. (51) specifies the width of the Gaussian and

it is set at ζ = 5.0 a.u.−2 in the present calculation. With this choice of ζ, the weight F (r)

is reduced to less than 0.2 within the distance r = 2h for the grid width of h = 0.2868 a.u.

Thus, the potential υTF
kin in Eq. (50) applies only to the limited region around the core. It

was demonstrated that the treatment improves the SCF convergence in the electron density.

It was also found in the calculation of Zv = 8.2 that the contribution of the TF energy to

the kinetic energy amounts to 5.2 kcal/mol after the SCF convergence.

4.3 Covalent Bond in Hydrogen Molecule

As mentioned in subsection 3.5, the present method is also applied to the description of the

covalent bond in a hydrogen molecule as a pilot test. The potential energy curve of the
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Figure 8: Plots of the potential energies of H2 molecule computed by the present OF-

DFT approach in comparisons with the one obtained by Kohn-Sham DFT with the BLYP

functional. The notation ‘HP’ indicates that the component linear-response functions in

Eq. (43) are each provided for the electron bound to harmonic potential, of which details

are presented in subsection 3.5. The notation ‘Nvec’ indicates the number of eigenvectors

included in the expansion of Eq. (41). The red broken line shows the potential energy curve

obtained by Eq. (20) where the nonlocal term is excluded. The right axis is for the values

of OF-DFT and shifted so that the bottoms of the curves almost match that of KS-DFT.

molecule around its equilibrium interatomic distance is provided in Fig. 8. The figure shows

that the present OF-DFT calculation is able to describe the covalent bond of H2 molecule

although the equilibrium bond distance is shorter than that given by KS-DFT by 0.1 a.u.

and the potential is deepened by ∼ 0.035 a.u. The contribution of the nonlocal term in Eq.

(20) to the potential energy is shown as the difference between the curves for ‘OF-DFT’

and ‘OF-DFT(0th + 1st terms)’ in the figure. The contribution gradually decreases as the

interatomic distance R becomes larger as expected. It is also worthy of note in the figure

that the use of the LRFs for the harmonic potential instead of the original electron-nuclear

potential causes only a minor effect on the production of the curve. Since the LRF for the

harmonic potential is built from the analytical functions as mentioned in subsection 3.5, the

grid error due to the lack of the samplings does not exist at least. By taking advantage

of this, we carry out the calculation including the eigenvector with the secondary largest
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eigenvalue besides the largest one. However, it is found in the figure that the incorporation

hardly affects the potential energy.

The remaining of this subsection is devoted to the discussion on the validity of the

projection of the LRF onto the energy coordinate. As was demonstrated in Ref. [13], the

formation of the shell structures in atomic densities was first realized in OF-DFT by the

introduction of the nonlocal term to the kinetic energy functional besides the local and

semi-local terms. Actually, the semi-local term (gradient or the second derivative) tends to

reduce the density undulation since its operation relieves the distortion energy associated

with the curvatures in the density. Thus, it seems that the nonlocal term is the critical

component whereby the physically meaningful oscillations in the density can be reproduced.
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Figure 9: Superposition of the contour lines of the υdef(r) and the vector filed representation

of the normalized gradient vectors ∇n(r) for (a) H atom, and (b) H2 molecule. The contours

are plotted for the values log(υdef(r)+1.0) with υdef evaluated by Eq. (33) and the normalized

gradient vectors are provided on the real-space grids for the densities n(r) optimized by

Kohn-Sham DFT. The H atoms are placed at x = −0.7 and 0.7 a.u. on the x axis for the

hydrogen molecule, while that is placed at x = 0.7 a.u. for the atomic system. The H atom

is placed at x = 0.7 a.u. on the x axis for (a), while those are placed at x = −0.7 and 0.7

a.u. for (b).
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The electron density oscillations, formed as a result of the equilibrium of the chemical

potential of the electrons, will be induced along the direction parallel to the density gradient

∇n(r) of which absolute divided by n(r)4/3 is often regarded as a measure of the electron

density inhomogeneity. That is, the density wave emerges in the direction that causes the

variation in the inhomogeneity of electrons. In the case of the atomic systems, where the

density is spherically symmetric, the gradient vectors n(r)4/3 are strictly parallel to the radial

directions that are normal to the contour surface Rϵ(r) of the potential υdef. Therefore, the

nonlocal operator can be represented on the radial coordinate r, or equivalently on the

energy coordinate ϵ without loss of accuracy. To see this in more details, let us examine

what happens when LRF χ0(r, r
′) of Eq. (37) is reduced to χ0(ϵ, ϵ

′) by means of Eq. (38).

We consider the one-electron system, i.e. hydrogenic atom for the sake of simplicity. In

the construction of χ0(r, r
′) of H atom, p, d, f, … type orbitals besides the s orbital are

to be included in the summation of the excited states in Eq. (37). However, the products

φ∗
i (r)φa(r) except for the terms due to 1s → ns type transitions completely vanish when

they are integrated over the contour surface Rϵ(r) due to the orthogonality of the spherical

harmonic functions. The same is true for the products φ∗
i (r′)φa(r′) on the region Rϵ′(r′). It

is thus revealed that only the 1s → ns transitions contribute to the construction of χ0(ϵ, ϵ
′).

However, this does not mean that the LRF is degraded due to the projection because the

polarization created by the transition e.g. from s to p orbital should be excluded in the

formation of the spherically symmetric density. The polarizations due to 1s → ns type

transitions are thus suffice to describe the density oscillation in the atom.

The above discussion can be generalized to molecular systems. Figure 9(a) shows the

contours of the potential υdef(r) for an isolated hydrogen atom, on which the vector field for

the gradient ∇n(r) of the atom is also superposed. Each gradient vector on a contour line is,

of course, strictly normal to the line. Figure 9(b), on the other hand, shows its counterpart

of the molecular system, i.e. hydrogen molecule with the interatomic distance R = 1.4 a.u.

It is also seen in the figure that the gradient vectors on the contours are almost normal

to the lines. This is indicative of the fact that the contours of the electron density of H2

are almost parallel to those of the potential υdef(r) as suggested by Parr and Berk[25]. As

was mentioned for the atomic system the density oscillation is induced along the gradient
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of the density, or equivalently along the direction normal to the contour surfaces of the

potential υdef(r). Then, it is quite reasonable to anticipate that the density oscillations in

the molecular system also arises along the direction that corresponds to the variation in the

energy coordinate. Therefore, the LRF χ0(r, r
′) for the molecular system can be reasonably

reduced to χe
0(ϵ, ϵ

′) through the projection onto the energy coordinate.

In closing this subsection we make a comment on the advantage of the LRF represented

on the energy coordinate in comparison with that on the real space. First of all, the LRF

χ0(r, r
′) is the 6-dimensional matrix and may be handled numerically. Even when the LRF

is given, the inversion of it is seemingly infeasible. A remedy to solve the problem is to

introduce a certain basis set to represent the matrix although any proper choice of it is not

known. We also note that the numerical cost scales as O(N2) with the number N included

in the system. In contrast, the cost associated with the handling of χe
0(ϵ, ϵ

′) stays constant

with respect to the system size as long as the energy range is not changed. Anyway, the

computational cost as well as the accuracy of the molecular LRF are deeply dependent on

the method to build it. The assessment of these issues will be carried out in the future works.

5 Conclusion and Perspective

In this article, we developed a kinetic energy functional Ee
kin[n] within the framework of the

density-functional theory based on the energy electron density ne(ϵ)[21] for the purpose of

realizing the orbital-free DFT(OF-DFT) calculations. The functional includes the nonlocal

term described with a linear-response function(LRF) of a reference system as was introduced

in the Wang-Teter functional[13]. As a notable feature, the LRF, which constitutes the

integral kernel of the nonlocal term, is represented on the energy coordinate ϵ, thus, χe
0(ϵ, ϵ

′).

In addition, an atomic system is taken as a reference system in contrast to the conventional

approach that utilizes LRF of the homogeneous electron gas. The kinetic functional Ee
kin[n]

was formulated by means of the coupling-parameter integration scheme. The functional was

applied to the calculation of the kinetic energies of the pseudo atoms which stem from H, He,

Ne, and Ar atoms. Explicitly, the kinetic energy of each atom was computed with respect to

the variation of the valence charge Zv, where the atom with its original charge Zv was adopted
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as the reference system to construct χe
0(ϵ, ϵ

′). It was demonstrated that the functional Ee
kin[n]

is able to provide the kinetic energies in good agreements with those obtained by the Kohn-

Sham DFT(KS-DFT) for the given non self-consistent electron densities n.

We also devised a scheme to perform the self-consistent field (SCF) calculation using

Ee
kin[n] although the sophistications to expedite the convergence were not made. The radial

distribution functions (RDFs) of the electrons in the pseudo Ne and Ar with Zv = 8.2 were

obtained through the SCF calculations. The RDFs by the OF-DFT calculations showed

reasonable agreements with those given by KS-DFT calculations. Thus, the reliability of the

method was demonstrated.

The present method is also applied to the calculation of a covalent bond in H2 molecule as

a pilot system. To ensure that OF-DFTmakes sense, it is essential to make the computational

cost to increase linearly with the system size. Our strategy to solve the problem is to compute

and store beforehand the LRFs of the constituent atoms. Then, we make the overlap of the

component LRFs on the energy coordinate to construct the total LRF of the molecule.

This is, of course, an instantaneous and straightforward approach to model the LRF of

the molecular systems. The reference electron density n0 will also be constructed from the

overlap of the electron densities of the individual atoms. It was found that the potential

energy curve of H2 molecule is reasonably reproduced by such a crude model. The analyses

of the property of the LRF or its improvements will be the subject of the forthcoming issues.

We note that the construction of the molecular LRF on the energy coordinate is justified

by the DFT based on the energy electron density[21]. Although the projection of the LRF

onto the energy coordinate itself is time consuming, the computational cost is proportional

to the system size.
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Appendix

A Linear-response Function

Here, we prove that the linear-response function (LRF) χe
0(ϵ, ϵ

′) in Eq. (19) defined on the

energy coordinate is positive semi-definite. We start the discussion with the LRF χ0 (r, r
′)

in Eq. (37) defined on the spatial coordinate. First, we provide the proof that χ0 (r, r
′) is

positive semi-definite. To this end, we consider a quantity Q with respect to an arbitrary

function q(r),

Q =

∫
drdr′q(r)χ0 (r, r

′) q∗ (r′) (53)

For our purpose, it is sufficient to prove that the relation Q ≥ 0 always holds. By substituting

Eq. (37) into Eq. (53), one readily obtains,

Q =

∫
drdr′

occ∑
i

vir∑
a

1

ε0a − ε0i
q(r)φ0∗

i (r)φ0
a(r)× φ0∗

a (r′)φ0
i (r

′)q∗(r′)

=
occ∑
i

vir∑
a

1

ϵ0a − ϵ0i

∫
drdr′Φia(r)Φ

∗
ia (r

′)

=
occ∑
i

vir∑
a

1

ϵ0a − ϵ0i
|Sia|2 (54)

where the function Φia(r) in the right hand side of the second equality is defined as Φia(r) =

q(r)φ0∗
i (r)φ0

a(r) and Sia in the last equality is given by Sia =
∫
drΦia(r). Note that the

quantity Q becomes zero when the function q(r) is constant. Thus, it is proved that χ0 (r, r
′)

is positive semi-definite. Then, the it is rather straightforward to prove that χe
0(ϵ, ϵ

′) is also
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positive semi-definite. For an arbitrary function qe(ϵ), it reads,∫
dϵdϵ′qe(ϵ)χe

0 (ϵ, ϵ
′) qe (ϵ′)

=

∫
dϵdϵ′qe(ϵ)qe (ϵ′)

×
∫

drdr′χ0 (r, r
′) δ(ϵ− v(r))δ (ϵ′ − v (r′))

=

∫
drdr′χ0 (r, r

′)

∫
dϵ qe(ϵ)δ(ϵ− v(r))

∫
dϵ′qe (ϵ′) δ (ϵ′ − v (r′))

=

∫
drdr′ θ(r)χ0 (r, r

′) θ(r′) ≥ 0 (55)

where θ(r) is defined as
∫
dϵqe(ϵ)δ(ϵ − v(r)). Thus, χe

0(ϵ, ϵ
′) is also positive semi-definite.

Hence, χe
0(ϵ, ϵ

′) can be inverted through a manipulation such as a pseudo inverse method.

B Grid Error in Response Function

Since we utilize the real-space grid (RSG) approach in representing the response function

χ0(r, r
′), its projection χe

0(ϵ, ϵ
′) onto the energy energy coordinate ϵ (Eq. (19)) is affected by

the grid error inherent in χ0(r, r
′). In this Appendix, we demonstrate that the terms with

small eigenvalues in the spectral decomposition in Eq. (40) are comparable in magnitude to

the grid error in χe
0(ϵ, ϵ

′). To this end, we employ the double-grid technique. Explicitly, the

values χ0(r, r
′) at the double grids (DGs) are evaluated through numerical interpolations of

the original coarse grids (CGs) to save the computer resources. In the next paragraph, a

concise explanation is provided for the DG method applied to the response function of the

Ar atom.

Hereafter, it is assumed that the origin of the position vectors is set at the atomic center.

Since χ0(r, r
′) as a function of r has a cylindrical symmetry around the axis Z being ori-

ented to the vector r′, the original data χ0(r, r
′) at CGs, which serve to evaluate the response

function at DGs, can be reduced to three-dimensional data χ̃0 without losing the informa-

tion contents. Explicitly, the reference response function χ̃0 has the three arguments, thus

χ̃0(d;Y, Z), where d represents the length of the vector r′, and the coordinates (Y, Z) specify

the position r on the plane which includes r and the axis Z. We, thus evaluate χ̃0(d;Y, Z)

beforehand at CGs with the grid width h given in subsection 3.1. The DGs are then placed
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within each CG at the interval of h/NDG along each axis (1 ≤ NDG ≤ 4, NDG ∈ Z). Let ri

and rj be the position vectors of the DGs with indices i and j, respectively, the correspond-

ing response function χ0(ri, rj) is to be obtained through the following procedure. Based

on the above discussion, the six-dimensional coordinate (ri, rj) can be readily cast into the

reduced variables (d;Y, Z), thus 
d = |rj|

Y = |ri| sin θ

Z = |ri| cos θ

(56)

where θ represents the angle between the vectors ri and rj, and defined by cos θ =
ri·rj

|ri|·|rj | . We

note that the indices i and j in Eq. (56) are interchangeable because of the symmetry of the

function χ0(ri, rj). In this work, the response function χ0(ri, rj) between the coordinates

ri and rj at the DGs is evaluated through the 4th-order polynomial interpolation of the

function χ̃0(d;Y, Z) defined at CGs. The DGs are placed within the CGs of which distances

from the atomic core are less than 5.0 a.u. The numerical detail of the interpolation is

presented in Ref. [28].

In Fig. 10 the diagonal elements of the response functions χe
0(ϵ, ϵ

′) as functions of the

index for the discrete energy coordinate ϵ are presented for the various NDG. It is seen in

the figure that all the graphs are characterized by two distinct peaks although they differ

slightly each other due to the difference in the width of the DG. It is also recognized that the

graphs reasonably converge as the grid interval decreases, which shows that the calculation

with NDG = 4 offers the smallest grid error among the plots as expected. We subtract the

result for NDG = 4 from that for other NDG to estimate the effect of the grid width on the

response function. Since the result for NDG = 1 is equivalent in principle to the calculation

done in the main text, the graph ‘NDG(1)−NDG(4)’ approximately exhibits the grid error

in representing χe
0(ϵ, ϵ

′) in the present work. The three horizontal broken lines in the figure

approximately show maximum values of the plots shown in Figs. 2(b), (c), and (d). It is

observed that the grid error is comparable or even larger in magnitude than the response

functions with g2 and g3. Therefore, the high-frequency modes γi in the response function

are seriously contaminated by artifacts due to the grid errors. These contributions should

be excluded from the summation of Eq. (41) because the contamination is erroneously
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amplified by the multiplication of g−1
i . Seemingly, it is quite difficult to extract the grid

errors from the eigenvectors. One might consider that the DG method will alleviate the

problem. We found, however, that the introduction of the DGs destroys unfortunately the

crucial condition that χe
0(ϵ, ϵ

′) is positive semi definite. This problem could be attributed to

the error in the polynomial interpolation utilized in the DG method.
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Figure 10: The diagonal elements of the linear-response function χe
0(ϵ, ϵ

′) for the pseudo

Ar atom as functions of the grid index for the energy coordinate ϵ. The real lines are the

plots for the calculations with NDG. The plots with the broken lines are the results for

NDG = 1, 2, and 3 subtracted by that for NDG = 4. The three horizontal broken lines

represent the values, 0.04, 0.004, and 0.0005, which are approximately the maximum values

of the component response functions giγi(ϵ)γi(ϵ
′) with the eigenvalues g1, g2, and g3 shown

in Figs. 2(b), (c), and (d), respectively.

Although the truncation in the expansion of Eq. (40) within a few terms would not

seriously affect the accuracy of the kinetic energy, it is desirable to make some devices in the

future work to alleviate the problem. First, some approximate method should be developed

to estimate the error in the response function in terms of the grid size in the real-space cell,

which will offer a method of rational truncations. Second, a new numerical device for the

DG approach should be made to maintain the positive semi definiteness in the construction

of the matrix χe
0(ϵ, ϵ

′). These subjects will be addressed in the forthcoming issues.
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