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1 Introduction

Although fractional calculus is an classical mathematical topic, a focal point of renewed interest on

its applications to physics and engineering is dramatically increased during the past decades (see,

e.g., [1, 3, 7, 17] and the references therein). It was found that many systems in interdisciplinary

fields can be elegantly described with the help of fractional derivatives. Many systems are known

to display fractional-order dynamics, such as electrode-electrolyte polarization [9], quantum evolu-

tion of complex systems [10] and so on. It is well known that chaos cannot occur in autonomous

continuous-time systems of integer-order less than three according to the Poincare-Bendixon theo-

rem [18]. However, in autonomous fractional-order systems, it is not the case (see, e.g. [11, 28] and

the references therein). On the other hand, the fractional Brownian motion (fBm) appears natu-

rally in the modeling of many complex phenomena in applications when the systems are subject

to “rough” external forcing, as a centered Gaussian process, which differs significantly from the

standard Brownian motion and semi-martingales [2]. Recently, Zeng and Yang [25] investigated
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the dynamics of stochastic Lorentz systems with fractional noise, and [22] proved the ergodicity of

stochastic chaotic Robinovich system with fBm, we refer it to [22, 25] and the reference therein.

In the current paper, we investigate the Caputo-type fractional stochastic FitzHugh-Nagumo

(FHN) equations driven by fBm of the form
Dβ
t u = [u− u3

3 − v + I]dt+ dBH
1 (t),

Dβ
t v = [r(u+ a− bv)]dt+ dBH

2 (t),

u(0) = u0, v(0) = v0,

(1.1)

where u is the activity of the membrane potential and v is the recovery current that restores the

resting state of the model. The parameter I is a constant bias current which can be considered as

the effective external input current. r > 0 denotes a small singular perturbation parameter, a and b

are parameters. The operator Dβ
t denotes the Caputo-type fractional derivative, which can be used

to denote the memory effects on past responses. BH
1 (t) and BH

2 (t) are independent fBms with Hurst

parameter H ∈ (0, 1). For the absence of stochastic terms and β = 1 in (1.1), the systems reduces

to the classical FHN model, which was firstly introduced by FitzHugh [6] to study the nonlinear

oscillations of the neuron by using phase diagrams. The FHN model is mathematically simple and

produces a rich dynamical behavior that makes it possible to visualize the solution and to explain

in geometric terms important phenomena, which related to the excitability and action potential

generation mechanisms observed in biological neurons. Zhang et al. [26] investigated the type-II

excitability if the injected current I is regarded as the control parameter when r = 1/13, a = 0.7 and

b = 0.8, the neuron undergoes subcritical Adronov-Hopf bifurcation at I = 0.3297 where the state

of the neuron changes from quiescence into periodic spiking. Moreover, when the input current

I = 1.4203, then the neuron goes through subcritical Adronov-Hopf bifurcation again.

For the deterministic case, Liu ad Xie [13] proved that, there exists the Hope bifurcation point for

the Caputo-type fractional FHN model, they also investigated the synchronization rate of fractional

FHN neurous model, which is greater than that of the integer-order counterpart. Liu et al. [14]

proved that there exists the Hopf bifurcation point, where the state of the model neuron changes

from the quiescence into periodic spiking, they proved that the range of periodic spiking of the

fractional-order model neuron is clearly smaller than that of the corresponding integer-order model

neuron. For the stability analysis and synchronization analysis, we refer the readers to [15] and [16]

for details. However, noise is ubiquitous in neural systems and it may arise from many different

sources. In the stochastic model, Yamakou et al. [23] proved that there exists a global random

attractor for the stochastic FHN system. Uda [20] discussed the ergodicity and spike rate for

stochastic FitzHugh-Nagumo neural model. Li et al. [12] used Fourier coefficient and coherence

resonance coefficient to measure the behavior of stochastic resonance and coherence resonance,

respectively, and analyzed the effects of additive noise and multiplicative noise.

Recently, the influence of noise on the synchronization in stochastic model with Gaussian noise

has been studied. Chen et al. [4] established the sufficient criteria for both complete synchronization

and generalized synchronization of a class of chaotic systems, Wang et al. [21] studied the finite-

time anti-synchronization control of memristive neural networks with stochastic perturbations,
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Yang and Cao [24] studied the finite-time stochastic synchronization problem for complex networks

with stochastic noise perturbations.

As we know, there is a little of papers focus on the fractional FHN model driven by fBm.

The novelty of this paper is to establish the regularity for the stochastic convolution of fBm for

the Hurst parameter H ∈ (1
4 , 1), we also obtain the regularity for the stochastic convolution for

Gaussian white noise. Based on the Banach fixed point theorem, we prove the global existence of

the solution to stochastic systems (1.1), which is dependent on the order of fractional derivative and

Hurst parameter H. The numerical simulations of Caputo-type fractional FHN system perturbed

by the Gaussian noise and fBm are provided, respectively.

The rest of the paper is organized as follows. In Section 2, some basic concepts, the func-

tion setting and the definition of mild solution to the system (1.1) are presented. The existence

and uniqueness of mild solutions are established in Section 3. In Section 4, the exponential syn-

chronization and finite-time synchronization for the regular stochastic FHN model are provided.

Numerical analysis of synchronization on time-fractional stochastic FHN model are given in Section

5. Conclusion is presented in section 6.

2 Preliminaries

In this section, the definitions of Caputo-type fractional derivatives and fBm are introduced, which

can refer to [2] and [17].

Definition 2.1. The Riemann-Liouville fractional integral of order β > 0 of function f ∈ L1([0, T ];X)

is defined by

Iβt f(t) =
1

Γ(β)

∫ t

0
(t− s)β−1f(s)ds.

Definition 2.2. The Caputo fractional derivative of order β ∈ (0, 1) of function f ∈ C([0, T ];X)

is defined by

Dβ
t f(t) :=

d

dt
[I1−β
t (f(t)− f(0))] =

1

Γ(1− β)

∫ t

0
(t− s)−βf ′(s)ds.

Definition 2.3. Let (Ω,F ,P) be a complete probability space, and {BH(t)}t≥0 be a continuous

centered Gaussian stochastic process. If the covariance function of βH(t) satisfies

RH(t, s) = E[βH(t)βH(s)] =
1

2
(|t|2H + |s|2H + |t− s|2H) =

∫ t∧s

0
KH(t, r)KH(s, r)dr, t, s ∈ R,

then, BH(t) is called a two-sided one-dimensional fBm with Hurst parameter H, where KH(t, s) is

the square integrable kernel by

KH(t, s) = CH(t− s)H−1/2 + CH(
1

2
−H)

∫ t

s
(r − s)H−3/2[1− (

s

r
)1/2−H ]dr,

and

CH =

√
2HΓ(3/2−H)

Γ(1/2 +H)Γ(2− 2H)
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and
∂KH

∂t
(t, s) = CH

(
H − 1

2

)
(t− s)H−3/2

(s
t

) 1
2
−H

.

We define the adjoint operator K∗T on a possible subset of L2([0, T ]) by

(K∗Tϕ)(s) = KH(T, s)ϕ(s) +

∫ T

s
(ϕ(r)− ϕ(s))

∂KH(r, s)

∂r
dr.

Therefore, the Wiener integral about BH(t) can be defined by∫ t

0
ϕ(s)dBH(s) =

∫ t

0
(K∗Tϕ)(s)dW (s), ∀ t ∈ [0, T ].

Now, we introduce some notations of functional spaces given as follows

M(T ) =
{

(u(t), v(t))
∣∣∣u(t), v(t) ∈ C[0, T ]

}
with the norm ‖(u, v)‖ = max

t∈[0,T ]

(
|u(t)|+ |v(t)|

)
.

Definition 2.4. A stochastic process (u(t), v(t)) is called a mild solution to (1.1) with initial value

(u0, v0) if the following equation is satisfied
u(t) = u0 + 1

Γ(β)

∫ t
0 (t− τ)β−1

(
u(τ)− u(τ)3

3 − v(τ) + I
)
dτ + 1

Γ(β)

∫ t
0 (t− τ)β−1dBH

1 (τ),

v(t) = v0 + 1
Γ(β)

∫ t
0 (t− τ)β−1

(
u(τ) + a− bv(τ)

)
dτ + 1

Γ(β)

∫ t
0 (t− τ)β−1dBH

2 (τ).

3 Well-posedness of stochastic FHN model

In this section, we will study the existence and uniqueness of mild solution to the time-fractional

stochastic FHN model. Firstly, we will establish the regularity of the stochastic convolution

Z(t) =

∫ t

0
(t− τ)β−1dW (τ)

for the Brownian motion (H = 1
2), then prove the existence of mild solution for equations (1.1)

with Brownian motion.

Lemma 3.1 ([8]). If β > 3
4 , then the stochastic convolution {Z(t)}t∈[0,T ] is continuous, and there

exists C > 0 such that

E|Z(t)|2 6 CT 2β−1 <∞.

Next, we are going to establish the basic properties of the following stochastic integrals

Z(t) =

∫ t

0
(t− τ)β−1dBH(τ)

with respect to fBm.
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Lemma 3.2 ([8]). If t ∈ [0, T ], the following results hold

(1) For any H ∈ (1
2 , 1), assume that 2β + H − 2 > 0 holds. Then the stochastic convolution

{ZH(t)}t∈[0,T ] is continuous, and there exists C > 0 such that

E|Z(t)|2 6 CT 2β+2H−2 <∞.

(2) For any H ∈ (1
4 ,

1
2), assume that 1 −H < β < H + 1

2 and 3β + H − 5
2 > 0 hold. Then the

stochastic convolution {ZH(t)}t∈[0,T ] is continuous, and there exists C > 0 such that

E|Z(t)|2 6 CT 2β+2H−2 <∞.

Theorem 3.1. We set

M(T ) =

{
(u(t), v(t))

∣∣∣u(t), v(t) ∈ C[0, T ], max
t∈[0,T ]

{
|u(t)|, |v(t)|

}
≤ P

}
,

the following results hold

(1) For any H ∈ (1
2 , 1). Assume that 2β + H − 2 > 0 holds. Then the fractional stochastic

equations (1.1) has a local solution for T small enough in M(T );

(2) For any H ∈ (1
4 ,

1
2). Assume that 1 −H < β < H + 1

2 and 3β + H − 5
2 > 0 hold. Then the

fractional stochastic equations (1.1) has a local solution for T small enough in M(T );

(3) For any H = 1
2 and if β > 3

4 . Then the fractional stochastic equations (1.1) has a local mild

solution for T small enough in M(T ).

Proof. Define the map F : M(T )→M(T ) by{
Fu(t) = u0 + 1

Γ(β)

∫ t
0 (t− τ)β−1

(
u(τ)− u(τ)3

3 − v(τ) + I
)
dτ + 1

Γ(β)

∫ t
0 (t− τ)β−1dBH

1 (τ),

Fv(t) = v0 + 1
Γ(β)

∫ t
0 (t− τ)β−1

(
u(τ) + a− bv(τ)

)
dτ + 1

Γ(β)

∫ t
0 (t− τ)β−1dBH

2 (τ),

for any (u(t), v(t)) ∈ M(T ). By Lemmas 3.1 and 3.2, it is easy to verify that F maps M(T ) into

itself. Next, we will prove that equation (1.1) posses a local solution. For any (u1, v1) ∈ M(T ),

(u2, v2) ∈M(T ), and let P = max
t∈[0,T ]

{|u1|, |u2|}, then we have

|Fu1(t)− Fu2(t)|

=
1

Γ(β)
|
∫ t

0
(t− τ)β−1[(u1(τ)− u2(τ))− u3

1(τ)− u3
2(τ)

3
− (v1(τ)− v2(τ))]dτ |

≤ 1

Γ(β)

∫ t

0
(t− τ)β−1(|u1(τ)− u2(τ)|+ P 2|u1(τ)− u2(τ)|+ |v1(τ)− v2(τ)|)dτ

≤ 1

βΓ(β)
(1 + P 2)T β‖(u1(t), v1(t))− (u2(t), v2(t))‖,
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and

|Fv1(t)− Fv2(t)| = 1

Γ(β)
|
∫ t

0
(t− τ)β−1[(u1(τ)− u2(τ))− b(v1(τ)− v2(τ))]dτ |

≤ 1

Γ(β)

∫ t

0
(t− τ)β−1(|u1(τ)− u2(τ)|+ |b||v1(τ)− v2(τ)|)dτ

6
1

βΓ(β)
(1 + |b|)T β‖(u1(t), v1(t))− (u2(t), v2(t))‖.

Thus

‖F (u1(t), v1(t))− F (u2(t), v2(t))‖ 6 1

βΓ(β)
(2 + |b|+ P 2)T β‖(u1(t), v1(t))− (u2(t), v2(t))‖.

By choosing sufficient small T1 such that 1
βΓ(β)(2 + |b| + P 2)T β < 1. Banach fixed point theorem

implies that F has one unique fixed point in M(T1). The proof of Theorem 3.1 is complete.

Theorem 3.2. The following results hold

(1) For any H ∈ (1
2 , 1). Assume that 2β + H − 2 > 0 holds. Then the fractional stochastic

equations (1.1) has a global mild solution;

(2) For any H ∈ (1
4 ,

1
2). Assume that 1 −H < β < H + 1

2 and 3β + H − 5
2 > 0 hold. Then the

fractional stochastic equations (1.1) has a global mild solution;

(3) For any H = 1
2 . If β > 3

4 , then the fractional stochastic equations (1.1) has a global mild

solution.

Proof. Consider the following equations
Dβ
t u = (u− u3

3 − v + I)dt+ dBH
1 (t),

Dβ
t v = r(u+ a− bv)dt+ dBH

2 (t),

u(δ) = ϕu(δ), v(δ) = ψv(δ).

(3.1)

It can be deduced similarly that there exists some δ1 > 0, such that equations (3.1) has one unique

solution on [δ, δ + δ1]. Repeating the above arguments, we can deduce the equations (1.1) has a

global mild solution. The proof of Theorem is complete.

4 The synchronization of stochastic FHN model

In this section, we investigate the finite time synchronization and exponential synchronization for

the following FHN model {
du = [u− u3

3 − v + I]dt,

dv = [r(u+ a− bv)]dt.
(4.1)
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We introduce the control terms Γ1,Γ2 and additive fractional noise into the FHN model, then the

following response control system given by{
dû = [û− û3

3 − v̂ + I + Γ1]dt+ dBH
1 (t),

dv̂ = [r(û+ a− bv̂) + Γ2]dt+ dBH
2 (t),

(4.2)

where

Γ1 =
1

3
(û2u− ûu2)− 1

2(û)− u
− |û− u|α, Γ2 = − 1

2(v̂ − v)
− |v̂ − v|α, 0 < α < 1.

Let e1 = u− û, e2 = v − v̂, then{
de1 = [e1 − ( û

3

3 − u
3)− e2]dt+ Γ1dt+ dBH

1 (t),

de2 = [r(e1 − be2)]dt+ Γ2dt+ dBH
2 (t).

(4.3)

We denote that

A =

(
1 −1
r −rb

)
,

if (rb + 1)2 ≥ 4r for some positive real number r and b. Then, the direct calculations show that

there exists a positive real number λ > 0 such that 〈Ax, x〉 ≤ −λ|x|2. For example, r = 1
13 , b =

0.8, a = 0.7 and I = 0.3297, matrix A posses a positive eigenvalue, and the FHN model undergoes

subcritical Adronov-Hopf bifurcation, see [26] for details.

Lemma 4.1 ([5]). Assume that a continuous, positive-definite function V (t) satisfies the following

differential inequality:

V̇ (t) ≤ −ηV α(t), ∀ t ≥ t0, V (t0) ≥ 0,

where η > 0, 0 < α < 1 are two constants. Then, for any given t0, V (t) satisfies the following

inequality

V 1−α(t) ≤ V 1−α(t0))− η(1− α)(t− t)), t0 ≤ t ≤ t1,

and

V (t) ≡ 0, ∀ t ≥ t1,

with t1 given by

t1 = t0 +
V 1−α(t0)

η(1− α)
.

Theorem 4.1. If (rb+ 1)2 ≥ 4r for some positive real number r and b. Then the error dynamics

in (4.3) will converge to zero in finite time and the finite-time synchronization can be achieved.

Proof. The application of Itô’s formula to Lyapunov function

V (e(t)) =
1

2

(
|e1(t)|2 + |e2(t)|2

)
,

where e(t) := (e1(t), e2(t)), we deduce that

E[dV (e(t))] ≤− λ|e(t)|2 − 1

3
E〈û3 − u3, û− u〉+ E〈Γ1, û− u〉+

1

2
E〈Γ2, v̂ − v〉+ 1

≤− E
(
λ|e(t)|2 + |e1(t)|α+1 + |e2(t)|α+1

)
dt,
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which implies

E[dV (e(t))] ≤ −E
[
|e1(t)|α+1 + |e2(t)|α+1

]
dt.

According to 0 < α < 1 and Jesen’s inequality, we get(
|e1(t)|α+1 + |e2(t)|α+1

) 1
α+1 ≥

(
|e1(t)|2 + |e2(t)|2

) 1
2
,

then

|e1(t)|α+1 + |e2(t)|α+1 ≥ 2
α+1
2
(
V (e(t))

)α+1
2 .

Hence, it follows that

E[dV (e(t))] ≤ −2
α+1
2 E

[(
V (e(t))

)α+1
2

]
dt.

And

E
[(
V (e(0))

)α+1
2

]
=
(
E
[
V (e(0))

])α+1
2
.

By Lemma 4.1, V (e(t)) stochastically converges to zero in finite time, whose upper bound is

t1 =

(
V (e(0))

) 1−α
2

2
α+1
2 (1− α)/2

=
2

α−1
2

(
|e1(0)|2 + |e2(0)|2

) 1−α
2

2
α+1
2 (1− α)/2

=

(
|e1(0)|2 + |e2(0)|2

) 1−α
2

(1− α)
.

The required assertion follows.

In the sequel, we will study the exponential synchronization of FHN model (4.1). To this end,

we consider the following response control systemsdũ =
[
ũ− ũ3

3 − ṽ + I + Γ3(ũ, ṽ, u, v)
]
dt+ (ũ− u)dBH

1 (t),

dṽ =
[
r(ũ+ a− bṽ) + Γ4(ũ, ṽ, u, v)

]
dt+ (ṽ − v)dBH

2 (t),
(4.4)

where

Γ3 =
1

3
(ũ3 − u3)− ũ− u, Γ4 = −(ṽ − v).

Denote e3(t) := ũ− u, e4(t) := ṽ − v and ẽ := (e3, e4). Then FHN model (4.2) can be rewrite into

the following system

dẽ = [Aẽ− ẽ]dt+ ẽdBH(t). (4.5)

Theorem 4.2. If (rb+ 1)2 ≥ 4r for some positive real number r and b. Then the error dynamics

in (4.5) will converge to zero and the synchronization can be achieved.

Proof. Choosing Lyapunov function V (ẽ(t)) = 1
2

[
(e3(t))2 + (e4(t))2

]
, and applying Itô’s formula to

V (ẽ(t)), we derive

E[dV (ẽ(t))] =E
(
〈Aẽ(t), ẽ(t)〉 − 〈ẽ(t), ẽ(t)〉+

1

2

[
|e3(t)|2 + |e4(t)|2

])
dt

≤− (λ+
1

2
)E|ẽ(t)|2dt = −(2λ+ 1)E

[
V (ẽ(t))

]
dt.

Gronwall inequality guarantees that

E|ẽ(t)|2 ≤ E|ẽ(0)|2 exp
(
− (2λ+ 1)t

)
,

which implies that lim supt→∞
1
t log(E|ẽ(t)|2) ≤ −(2λ+ 1) < 0. The required assertion follows.
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5 Stochastic synchronization of time-fractional FHN model

We consider the following stochastic differential equations{
Dβ
t u1 =

[
(u1 −

u31
3 − v1 + I1) + r1(u2 − u1)

]
dt+ σ1dBH

1 (t),

Dβ
t v1 =

[
r(u1 + a− bv1)

]
dt+ σ2dBH

2 (t),
(5.1)

and {
Dβ
t u2 =

[
(u2 −

u32
3 − v2 + I2) + r2(u1 − u2)

]
dt+ σ1dBH

1 (t),

Dβ
t v2 =

[
r(u2 + a− bv2)

]
dt+ σ2dBH

2 (t),
(5.2)

where a, b and r are parameters, I1 and I2 denotes the injected current, r1 and r2 are coupling

intensity, σ1 and σ2 are disturbance intensity, β ∈ (0, 1) is the order of fractional derivative.

Let e1 = u1 − u2 and e2 = v1 − v2. If t → ∞, we can obtain that ‖e‖ = ‖e1‖ + ‖e2‖ → 0

a.s., and the two coupled neurons achieve complete synchronization. If I1 = I2, r1 = r2, When the

initial values are different,the two neurons can achieve complete synchronization by adjusting the

coupling strength. Choosing the parameters u1(0) = 0, v1(0) = 0, u2(0) = 1, v2(0) = 1, and

a = 0.7, b = 0.8, I1 = I2 = 0.4, r1 = r2 = 0.1.

and we specify the MATLAB code for simulating ‖e‖.

1 clear all;
2 I1=0.4; r=0.1; a=0.7; b=0.8; I2=0.4; r1=0.1; r2=0.1; orders=0.5; H=1/2; Tstep=0.01;
3 TSim=200; Y0=[0 0 1 1]; israndom=1; cgm 1=0; cgm 2=0; cgm 3=0; cgm 4=0;
4 [e, T, Y]=fun y(I1,r1,r,a,b,r2,I2,orders,H,Tstep,TSim,Y0,...
5 israndom,cgm 1,cgm 2,cgm 3,cgm 4);
6

7 function [e, T, Y]=fun y(I1,r1,r,a,b,r2,I2,orders,H,Tstep,TSim,Y0,...
8 israndom,cgm 1,cgm 2,cgm 3,cgm 4)
9 n=round(TSim/Tstep); q1=orders; w1 =israndom*wfbm(H,n); w2 =israndom*wfbm(H,n);

10 for i=1:n−1
11 dw1(i+1)=Tstepˆ(H)*(w1(i+1)−w1(i));
12 dw2(i+1)=Tstepˆ(H)*(w2(i+1)−w2(i));
13 end
14 cp1=1;
15 for j=1:n
16 c1(j)=(1−(1+q1)/j)*cp1;
17 cp1=c1(j);
18 end
19 x1=zeros(n,1);x2=zeros(n,1); y1=x1; y2=x2;
20 x1(1)=Y0(1); y1(1)=Y0(2); x2(1)=Y0(3); y2(1)=Y0(4);
21 for i=2:n+1
22 x1(i)=(x1(i−1)−x1(i−1)ˆ3/3−y1(i−1)+I1+r1*(x2(i−1)−x1(i−1)))*Tstepˆq1...
23 −memo(x1, c1, i)+cgm 1*dw1(i−1);
24 y1(i)=(r*(x1(i−1)−b*y1(i−1)+a))*Tstepˆq1 − memo(y1, c1, i)+cgm 2*dw2(i−1);
25 x2(i)=(x2(i−1)−x2(i−1)ˆ3/3−y2(i−1)+I2+r2*(x1(i−1)−x2(i−1)))*Tstepˆq1...
26 −memo(x2, c1, i)+cgm 3*dw1(i−1);
27 y2(i)=(r*(x2(i−1)−b*y2(i−1)+a))*Tstepˆq1 − memo(y2, c1, i)+cgm 4*dw2(i−1);
28 end
29 Y(:,1)=x1; Y(:,2)=y1; Y(:,3)=x2; Y(:,4)=y2;
30 e=abs(x1−x2)+abs(y1−y2);
31 T=0:Tstep:TSim;
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Figure 1, Figure 3 and Figure 8 show that the curves of error ‖e‖ vary with time. It can be seen

that the two neurons can achieve complete synchronization.
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Figure 1: Time varying curve of synchronization error ‖e‖ of integer-order deterministic FHN
model, where β = 1 and σ1 = σ2 = 0.
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Figure 2: Time varying curve of synchronization error ‖e‖ of fractional-order deterministic FHN
model, where β = 1, H = 0.5 and σ1 = σ2 = 0.25.
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Figure 3: Time varying curve of synchronization error ‖e‖ of integer-order deterministic FHN
model, where β = 1, H = 0.5 and σ1 = σ2 = 1.
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Figure 4: Time varying curve of synchronization error ‖e‖ of fractional-order deterministic FHN
model, where β = 1, H = 0.5 and σ1 = σ2 = 4.
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Figure 5: Time varying curve of synchronization error ‖e‖ of fractional-order deterministic FHN
model, where β = 1, H = 0.375 and σ1 = σ2 = 4.
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Figure 6: Time varying curve of synchronization error ‖e‖ of fractional-order deterministic FHN
model, where β = 1, H = 0.8 and σ1 = σ2 = 4.

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

||e
||

Figure 7: Time varying curve of synchronization error ‖e‖ of fractional-order deterministic FHN
model, where β = 0.5, H = 0.8 and σ1 = σ2 = 4.
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Figure 8: Time varying curve of synchronization error ‖e‖ of fractional-order deterministic FHN
model, where β = 0.3, H = 0.8 and σ1 = σ2 = 4.
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It can be seen from the above figures that the rate of complete synchronization of neurons grad-

ually increases with the decrease of the order of FHN model. Meanwhile, the discharge frequency

of the neurons gradually increases with the decrease of the order of the FHN model. Therefore,

it may be that the increase of discharge frequency makes the rate of complete synchronization of

neurons gradually increase with the low order of the FHN model.

5.1 Hurst parameter H effect on the synchronization

In this subsection, we analysis the stochastic effect on the synchronization of stochastic fractional

systems (5.1) and (5.2). Figure 9, Figure 10 and Figure 11 respectively show the synchronization

diagram of two neurons when the order is β = 0.5 and σ1 = σ2 = 1 and fBm H = 0.375, 0.5, 0.8.
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Figure 9: β = 0.5, H = 0.375
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Figure 10: β = 0.5, H = 0.5
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Figure 11: β = 0.5, H = 0.8
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Figure 12, Figure 13 and Figure 14 show that the synchronization diagram of two neurons when

β = 0.9 and σ1 = σ2 = 1, order H = 0.375, 0.5, 0.8.
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Figure 12: β = 0.9, H = 0.375
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Figure 13: β = 0.9, H = 0.5
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Figure 14: β = 0.9, H = 0.8

5.2 Fractional order effect on the synchronization

Figure 15, Figure 16 and Figure 17 show that the synchronization diagram of two neurons when

H = 0.5 and σ1 = σ2 = 1, order β = 0.5, 0.8, 1.

Figure 18, Figure 19 and Figure 20 show that the synchronization diagram of two neurons when

H = 0.375 and σ1 = σ2 = 1, order β = 0.5, 0.8, 1.
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Figure 15: H = 0.5, β = 0.5
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Figure 16: H = 0.5, β = 0.8
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Figure 17: H = 0.5, β = 1
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Figure 18: H = 0.375, β = 0.5
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Figure 19: H = 0.375, β = 0.8
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Figure 20: H = 0.375, β = 1

6 Conclusion

In this paper, we study the exponential synchronization and finite-time synchronization of Caputo-

type fractional FitzHugh-Nagumo equations driven by fBm. By using stochastic analysis, we es-

tablish the sufficient conditions for the existence and uniqueness of the mild solution. Then, we

obtain the exponential stability and finite-time stability results by constructing suitable Lyapunov

functions. Numerical experiments verify the effectiveness of the theoretical analysis. Finally, we

numerically investigated the effects on synchronization of the Hurst parameter in fBm, and the

effects of beat parameter on the synchronization phenomenon of time-fractional FitzHugh-Nagumo

equations.

The simulation show that the rate of complete synchronization of neurons gradually increases

with the decrease of the order of FHN model. Meanwhile, the discharge frequency of the neurons

gradually increases with the decrease of the order of the FHN model. Therefore, it may be that the

increase of discharge frequency makes the rate of complete synchronization of neurons gradually

increase with the low order of the FHN model.
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