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Abstract22

Generation time has previously been the focus of comparative life history analyses. Here we23

examine three metrics: generation time Tc, reproductive dispersion S (the distribution of24

ages of reproduction), and damping time τ (time to converge to stable (st)age distribution).25

We use data on 633 species of animals and plants, and perform phylogenetically corrected26

analyses. First we find that S varies allometrically and isometrically with Tc. As a result, τ27

varies allometrically with either Tc or S but not both. Second, we find a trade-off between τ28

and S, so that τ does not vary isometrically with Tc. This trade-off is a novel demographic29

component to the relationship between τ , Tc and S that is otherwise partly determined by30

their similarity as biological times. Our results indicate that species at the slow end of the31

slow-fast continuum take longer to converge to stable distribution than species with fast32

life-histories.33
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Introduction34

Life history traits describe processes such as survival, growth, and reproduction that deter-35

mine an organism’s fitness components and are fundamental to ecological and evolutionary36

processes, such as biological invasions (Sakai et al. 2001), local extinctions (Silvertown et al.37

1996; Jongejans et al. 2008), and species diversification (Chesson 2000). Distinct combina-38

tions of life history trait values result in distinct life history strategies (Stearns 1983), and39

an important goal of life-history theory is to explain the range of variation in strategies40

exhibited by species (Partridge and Harvey 1988; Hillesheim and Stearns 1992; Roff 1992,41

2002; Salguero-Gómez et al. 2016b).42

Given the diversity of life history patterns across species, it is notable that theory and43

empirical evidence suggest that distinct life history strategies are placed along a slow-fast44

continuum (Stearns 1983, 1992). Species at the slow end of the continuum are characterized45

by late maturity, low fecundity and long lifespan, which lead to long generation time, and46

those with the opposite suite of traits occupy the fast end and have short generation time47

(Franco and Silvertown 1996; Oli 2004; Gaillard et al. 2016; Salguero-Gómez et al. 2016b;48

Salguero-Gómez 2017). The “speed" of an age-structured life history can be measured by the49

generation time Tc, the average age of net reproduction, where net reproduction is the prod-50

uct of fertility m(a) and the probability of survival l(a) to age a. A similar generation time51

can be constructed for stage-structured models (Cochran and Ellner 1992) and age+stage52

structure (Steiner et al. 2014a). The generation time Tc correlates closely with the position of53

a species along the slow-fast continuum (Gaillard et al. 2005) and is an important metric for54

describing variation among life histories (Gamelon et al. 2014; Healy et al. 2019). Of course55

the generation time does not reflect the age-spread of reproduction in iteroparous species,56

which is measured by reproductive dispersion (also called demographic dispersion in Tul-57

japurkar et al. (2009)). Certainly there is no connection in semelparous species that always58

have zero reproductive dispersion regardless of generation time (Thomas 2013; Crespi and59

Teo 2002) (note that semelparous individuals may be asynchronous in reproductive timing).60

But in iteroparous species, the extent of this spread has long been of interest in life history61

theory (Cole 1954; Trumbo 2013; Hughes 2017; Hautekèete et al. 2001; Varpe and Ejsmond62

2018), and is our focus here. Let us quantify the reproductive dispersion by the standard63

deviation S of the age of net reproduction around the average age Tc (other measures of re-64

productive dispersion are considered later). The study of reproductive dispersion was made65

famous by Cole (1954) who explored the difference between semelparity and iteroparity, and66

there is ongoing interest in the extent of iteroparity (Hautekèete et al. 2001; Trumbo 2013;67

Hughes 2017; Varpe and Ejsmond 2018). These studies suggest that the reproductive dis-68

persion depends on many factors, including survival at juvenile and adult stages, trade-offs69

between survival and reproduction, physiological development and regulation, environmental70
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variability, homeostatic ability, and behavior. In consequence we can argue that, in absence71

of any structural constraints, there is no systematic covariation across a range of species72

between the reproductive dispersion S and the average age of reproduction Tc.73

However, structural constraints do matter (e.g. allometric constraints that cause all74

life history traits expressed in mass, time, or length units to change with species-specific75

body size)(McMahon and Bonner 1983), so we can make an alternative argument for such76

covariation in iteroparous species. It is known that generation time scales with average77

adult body mass (M) as Tc ∝ M0.25 (Millar and Zammuto 1983; Gaillard et al. 2005), like78

all physiological times (Lindstedt and Calder 1981) or biological times (Lindstedt et al. 1986;79

Gillooly et al. 2002; Brown et al. 2004; Hamilton et al. 2011). Given that both S and Tc are80

“biological times”, i.e., internal, body-mass-dependent, time scales to which the durations81

(or rates) of biological events are entrained (Lindstedt et al. 1986), we may expect that82

reproductive dispersion scales in the same way with body size as generation time, and so83

the two covary positively and isometrically sensu Huxley and Teissier (1936). But any such84

relationship between S and Tc is likely to be noisy given the factors mentioned above.85

A different perspective on reproductive dispersion comes from its effect on population86

dynamics. To understand this, consider how a population structure returns to the stable87

structure after a disturbance. After any such disturbance, reproduction has to fill in any gaps88

in the population’s structure relative to the stable structure, and such gaps will be filled in89

more rapidly in a species that has a high reproductive dispersion than in a species with low90

reproductive dispersion. The time scale of population recovery after a disturbance is given91

by the damping time. For age-structured populations (Keyfitz 1965; Coale 1972; Trussell92

1977; Taylor 1979; Tuljapurkar 1982a,b, 1985; Wachter 1991; Caswell 2001), damping time93

(τ) decreases with the reproductive dispersion (S) but increases with generation time (Tc) (a94

similar relationship must hold for stage-structured populations). Previous analyses used this95

result to explore the evolution of life histories (Orzack and Tuljapurkar 1989; Tuljapurkar96

et al. 2009) but assumed that reproductive dispersion S and generation time Tc can vary97

independently. While this might hold within species where evolutionary allometry is weak98

at the best, large body size variation across species should lead to systematic covariation99

between reproductive dispersion S and generation time Tc that will affect the pattern of100

variation of damping time τ .101

Hence, three hypotheses can be proposed about the association among generation time,102

reproductive dispersion, and damping time across species that widely differ in size and103

Baüplan. Under the biological time hypothesis (H1), all three metrics that are expressed104

in time units should strongly covary positively and isometrically, leaving only a weak and105

unstructured variation in each metric for a given life history speed. Under the demographic106

hypothesis (H2), the damping time depends on both reproductive dispersion and generation107
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time. Lastly (hypothesis H3), both biological time and demographic hypotheses matter, so108

that all three quantities should covary positively (in partial support of H1), but reproductive109

dispersion and damping time should be partly decoupled from generation time. For a given110

life history speed, a trade-off between reproduction dispersion and damping time should be111

detected (in partial support of H2). Here we describe the results of a test of these hypotheses.112

The next section defines reproductive dispersion, generation time, damping time, the113

(known) analytical approximations, and the data we used. We then analyze the covariation114

of reproductive dispersion and generation time, and of damping time. The results are based115

on Phylogenetic Generalized Least Squares (PGLS, Freckleton et al. (2002)) regressions and116

Phylogenetic Principal Component Analyses (PPCA, Revell (2010)) to account for the effect117

of phylogeny. We also perform the analysis based on ordinary least squares regression (OLS)118

and find similar results. The discussion considers the implications of our findings and the119

possible reasons for them.120

Definitions and Data121

Reproduction, Dispersion and Damping122

We use discrete times and ages. In an age-structured life history (Coale 1972; Caswell123

2001; Keyfitz and Caswell 2005), with m(a) and l(a) as defined earlier, the expected lifetime124

reproduction of a newborn is the net reproductive rate R0 =
∑

a l(a)m(a). For a cohort125

(individuals born at the same time), the generation time (the measure we use for life history126

“speed”) is the average age of net reproduction127

Tc =

∑
a a l(a)m(a)

R0

,

and the spread of reproduction around the mean age Tc is the reproductive dispersion S,128

S2 =

∑
a(a− Tc)

2 l(a)m(a)

R0

,

Similar definitions for stage-structure are given by Caswell (2001) and for age-and-stage129

structure by Steiner et al. (2014b), and are used here. Note that there are alternate measures130

for generation time such as Tb, calculated as weighted mean age of the mothers at childbirth131

in a population (Gaillard et al. 2005). Our findings hold even if we use Tb in place of Tc132

for generation time. Other measures of reproductive dispersion such as reproductive span133

(the difference between age at last reproduction ω and age at first reproduction α) also yield134

similar results as S. Additionally, when the population is stationary or nearly so, there is a135
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correlation between evolutionary entropy (Demetrius et al. 2009) and logS.136

The dynamics of a structured population are described by a population projection matrix137

which has a dominant eigenvalue λ0 = exp(r0), where r0 is the population intrinsic rate of138

increase, and a leading subdominant eigenvalue λ1 = exp(r1 + is1) (where r1, s1 are the real139

and imaginary parts and i =
√
−1). Here r0 is always larger than r1 (we assume that the140

population matrix is irreducible and aperiodic). These eigenvalues define the damping time141

τ as142

τ =
1

(r0 − r1)
> 0. (1)

After a disturbance, the population structure approaches stability with time t as cycles143

around the stable structure whose size (amplitude) decreases over time as e−t/τ . The am-144

plitude of the cycles falls more slowly for a life history with high damping time than a life145

history with small damping time. Thus the damping time in equation (1) is the time scale146

of convergence of (st)age-structured populations to the stable (st)age distribution.147

An approximate analysis by Wachter (1991) extended earlier work to show that148

r0 ≈
logR0

Tc

+
S2 (logR0)

2

2T 3
c

, (2)

and149

r1 ≈ r0 −
2π2S2

T 3
c

. (3)

A similar approximation for r0 holds in general for structured populations (Steiner et al.150

2014b) and we conjecture that in such cases r1 is similarly given by equation (3).151

Using these approximations, the damping time in equation (1) is152

τ ≃ T 3
c

2π2 S2
. (4)

Hence, everything else being constant, damping time τ should increase with generation time153

Tc, and decrease with increasing age dispersion S of reproduction. If the biological times Tc154

and S scale perfectly with each other, then damping time τ will increase proportionally with155

Tc, or alternatively with S.156

We also compare the exact damping time τ , calculated from the population projection157

matrix using equation (1) with the damping time given by the analytical approximation (4).158

We find that the approximation does qualitatively predict the exact damping time on the159

log-log scale (see Appendix B and Fig C.10).160
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Data161

We calculate reproductive dispersion in a large number of species covering a wide range of162

generation times. We use three databases which provide population projection matrices:163

COMPADRE (v.6.20.5.0) for plants (Salguero-Gómez et al. 2015); COMADRE (v.4.20.5.0)164

for animals (Salguero-Gómez et al. 2016a); and age-specific data for mammals compiled by165

Jean-Michel Gaillard (Schindler et al. 2012) and Madan Oli (Oli 2004) (hereafter called GO).166

These data have been uploaded as a supplement on github.167

After data checking and cleaning (details in the Appendix A), we have a total of 3865168

matrices (689 different species). To carry out phylogenetic generalized least squares (PGLS)169

and phylogenetic principal component (PPCA) analyses, we begin with a master phylo-170

genetic tree from Open Tree of Life version 12.3 (https://tree.opentreeoflife.org/171

about/synthesis-release/v12.3) and build a phylogenetic tree containing the species in172

our analysis; we then use the compute.brlen function from the R package ape (Paradis and173

Schliep 2019) to calculate the branch lengths. For species with multiple matrices, we use174

the median value of reproductive dispersion S to select one matrix for each species as S175

is more variable than Tc in the data (the mean of CV taken over all species is 0.43 for S176

and 0.34 for Tc). The resulting dataset includes both phylogenies and life history traits for177

633 out of 689 unique species (we could not find phylogenies from the master tree using178

recorded scientific names for the other 56 species): stage-structured data for 319 species in179

COMPADRE; stage-structured data for 215 species in COMADRE; age-structured data for180

53 species in COMADRE; age-structured data for 75 species in GO. Thus we use these 633181

species (633 matrices) for the PGLS analyses as well as PPCA. The data for plants are all182

stage-structured, whereas animal data are structured by either stage or age (classification183

discussed in the Appendix A).184

In the graphs, results and discussions that follow, note that we standardize the time185

unit as years. For each species, we compute directly (by standard numerical methods) the186

life history speed (Tc), the reproductive dispersion (S), and the damping time (τ) from the187

population projection matrix we retained.188

We examine the data and our results in a variety of ways. In the main text, we present189

PGLS and PPCA results separately for all age-specific data (from GO and COMADRE),190

stage-specific data for animals (COMADRE), and stage-specific data on plants (COM-191

PADRE). In the Appendix C, we present supplementary figures for PGLS regression for192

each class of animals and plants.193
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Results194

Generation time and reproductive dispersion195

We first analyze the relationship between generation time (Tc) and reproductive dispersion196

(S), computed as above from the datasets. As shown in Fig 1 for animals (top two panels),197

and plants (bottom panel), logS is proportional to log Tc. This conclusion holds within198

animals and plants, and also within data organized by age-structure alone or stage-structure199

alone. The relationship between log(S) and log(Tc) is strong (R2 > 0.8) and statistically200

significant (P ≤ 0.001). The regression of log(S) versus log(Tc) in Fig 1 yields slopes between201

0.96 and 1.12, all close to the value of 1 that corresponds to isometry. Pagel’s λ for animals202

and plants structured by stage is 0.29 and 0.00, respectively, which indicates that phylogeny203

has only a weak influence. For animals structured by age, Pagel’s λ is 0.63, indicating a204

moderate influence of phylogeny.205

Does a similar relationship between reproductive dispersion and generation time hold for206

the species within taxonomic classes? We group species by classes, and keep those classes207

that contain 20 or more species, including Actinopterygii, Aves, Mammalia, and Reptilia in208

animals and Magnoliopsida and Liliopsida in plants. A strong scaling relationship between209

reproductive dispersion S and generation time Tc is found in each class. The regression slope210

between log Tc and logS for each class varies but is approximately close to 1 (isometry).211

Summary statistics for each class such as Pagel’s λ and R2 are reported in the Appendix C212

(Figs C.1, C.2).213

For just age-structured populations we can argue that an increase in reproductive dis-214

persion likely implies a large reproductive span as measured by the difference between age215

at last reproduction ω and age at first reproduction α. In such cases, the biological time216

hypothesis implies an allometric and isometric increase in reproductive span (ω − α) with217

generation time, and indeed we find such a relationship, although noisy (see Appendix Fig218

C.3).219

Figure 1 here

Three time metrics: damping, generation, reproductive dispersion220

We next examine how the damping time τ (calculated from the population projection matrix)221

changes with generation time Tc and reproductive dispersion S, for age or stage structure.222

Fig 2 for animals and plants shows that log τ is proportional to log Tc even though the223

relationship is not isometric. Across species we find that224

τ ∝ T b
c , with b between 0.65 and 0.82. (5)
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The relationship between log(τ) and log(Tc) is statistically significant but noisy, more so for225

stage-based population models than age-based ones. In addition, the positive relationship226

holds within classes (see Appendix Fig C.4 and C.5), but is still noisy.227

The variability around the main correlation in Fig 2 could be due to the effect of repro-228

ductive dispersion, in addition to the inevitable variation due to the effect of sample size229

or the rarity of some events (e.g., such as deaths of large trees). However, we find that the230

variability in Fig 2 is largely independent of reproductive dispersion (S) (see Appendix Fig231

C.6).232

Given our previous finding that S scales allometrically with Tc (see comments following233

equation (4)), we expect that log τ is also proportional to logS. This is indeed what we find234

(see Appendix Fig C.7). These results clearly show that the demographic hypothesis (H2)235

is false, but only partly support the biological time hypothesis (H1). Although damping236

time and generation time are positively associated, they are linked with a hypoallometric237

relationship, meaning that the time to converge to stable (st)age structure increases with238

generation time but more slowly than if there was the simple proportionality expected under239

H1.240

Figure 2 here
The strong covariation among generation time, reproductive dispersion, and damping241

time means that we must contend with multicollinearity (Dormann et al. 2013). We therefore242

turn to a PPCA on the three datasets (i.e. age-structured animals, stage-structured animals,243

and stage-structured plants). Fig 3 shows the first two principal components (PPC1 and244

PPC2) for age-structured animals. In the Appendix C we show the corresponding results in245

Fig C.8 and C.9 for stage-structured animals and plants. Details of the PPCA are presented246

in Table 1. The results were remarkably consistent across these datasets indicating that the247

nature of population structure (i.e. age vs. stage) or the type of organism (animal vs. plant)248

does not influence life history patterns.249

As expected under H1, PPC1 captures the positive covariation among the three metrics250

and accounts for most across-species life history variation. However, this outcome does not251

fully support H1. First, PPC1 only explains around three-quarter of the total life history252

variation included in the three metrics (74% for age- and stage-structured animals, 77% for253

plants). Second, generation time by itself almost entirely determines the time scale corre-254

sponding to PPC1 (86% for age-structured animals, 87% for stage-structured animals, and255

98% for plants), so we see that PPC1 is aligned with the slow-fast continuum. Both repro-256

ductive dispersion and damping time show a substantial variation that is decoupled from the257

slow-fast continuum, so PPC2 emerges as a second structuring axis of life history variation.258

This second axis accounts for substantial life history variation (23% for age-structured ani-259

mals, 26% for stage-structured animals, and 22% for plants) and leaves the third potential260
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axis to be restricted to noise by accounting only for 3% or less of life history variation (3% for261

age-structured animals, 0.6% for stage-structured animals, 0.7% for plants). PPC2 describes262

the trade-off expected under H3 between reproductive dispersion and damping time. Plants263

and animals differ in the relative contribution to this trade-off between reproductive disper-264

sion and damping time. In animals, reproductive dispersion contributes only slightly more265

than damping time to PPC2 (loadings for age-structure -0.61 vs. 0.49, for stage-structure266

-0.57 vs. 0.54), consistently lower than the contribution of these traits to PPC1. In plants,267

damping time contributes much more than reproductive dispersion to PPC2 (-0.24 vs. 0.85),268

with a relative contribution much larger than to PPC1.269

Figure 3 here
Table 1 here

Discussion270

Our first finding here is a robust scaling relationship between reproductive dispersion S271

and generation time Tc. Across a wide range of species and taxa, S varies allometrically272

and approximately isometrically with Tc, in partial support of hypothesis H1. This finding273

implies that species with slow life-histories (characterized by late maturity, low fecundity,274

and long generation time) typically spread reproduction over a wider age range than those275

with fast life-histories. A population that has both relatively high Tc and dispersion S276

is likely better able to time-average risks (e.g., during development, during reproduction).277

Such bet-hedging strategies may help ride out fluctuations by dispersing the effect over large278

(st)age classes and have been discussed by Tuljapurkar et al. (2009) and Sæther et al. (2013).279

Another consequence of the biological time hypothesis (H1) is that damping time τ280

should vary allometrically and isometrically with generation time Tc. But we only find that281

τ is positively correlated with Tc on the log-log scale, with modest effects of reproductive282

dispersion S. The slope of log τ on log Tc is consistently less than 1, and so the time to283

converge to stable (st)age structure has a hypoallometric scaling with generation time, which284

contrasts with the isometric relationship expected under H1.285

Nonetheless, this finding implies that species with slow life-histories take a long time286

to converge to stable structure after disturbances than species with fast life-histories. Our287

finding greatly extends Capdevila et al. (2020) who argue that the long convergence time288

(slow recovery rate) of the Asian elephants (Elephas maximus) makes them more vulnerable289

to continuous habitat loss than red squirrels (Tamiasciurus hudsonicus). We propose that290

generation time, a major axis of variation in mammalian life-history tactics (Gaillard et al.291

2005), also sets the time scale for response and recovery of species following perturbations.292

Alternatively, given that we have found that Tc and S are strongly correlated, we could293
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state that τ covaries with S on the log-log scale, with small contribution from Tc. Indeed,294

we find such a relationship, and so hypothesis H2 is rejected because of the covariation of Tc295

and S. To deal with the collinearity of Tc and S, we use a PPCA.296

Our PPCA results provide clear evidence of selective pressure to reduce damping time.297

The first principal component (PPC1) aligns with the slow-fast continuum. However, we298

find that PPC2 accounts for about one quarter of overall variation among the three traits299

analyzed, independent from the slow-fast continuum (PPC1). PPC2 is largely shaped by a300

trade-off between reproductive dispersion and damping time. This trade-off is pervasive and301

occurs independently of the population structure or of organisms considered. This trade-off302

is also consistent with our last hypothesis (H3) which corresponds to a general demographic303

process that has remained undetected up to now. However, selective pressure against long304

damping time seems to differ between plants and animals. In animals, reproductive disper-305

sion plays a key role by being weakly coupled to the slow-fast continuum. On the other306

hand, in plants, damping time is much more strongly decoupled from the slow-fast contin-307

uum. We thus propose that in animals an increase in reproductive dispersion limits the long308

damping time that might accompany a long generation time, whereas in plants an increase309

of reproductive dispersion has a smaller effect on damping time.310
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Figure445

Figure 1: Reproductive dispersion (S) versus generation time (Tc) on a log-log scale. Time
unit is years. Upper panel, age-structured animal data from COMADRE and GO; middle
panel, stage-structured animal data from COMADRE; bottom panel, stage-structured plant
data from COMPADRE. Each panel displays the fitted model and its coefficient of determi-
nation (R2) based on PGLS regression. P-value in each panel is less than 0.001. The 95%
confidence interval for the regression slope is [0.92, 1.00] for the upper panel, [1.04, 1.09] for
the middle panel and [1.11, 1.14] for the bottom panel. Pagel’s λ is 0.63, 0.29 and 0.00 for
the upper, middle and bottom panels respectively.
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Figure 2: Damping time (τ) versus generation time (Tc) on a log-log scale. Damping time
(τ) is calculated directly from each population projection matrix. Time unit is years. Upper
panel, age-structured animal data from COMADRE (circles) and GO (crosses); middle panel,
stage-structured animal data from COMADRE; bottom panel, stage-structured plant data
from COMPADRE. Each panel displays the fitted model and its coefficient of determination
(R2) based on PGLS regression. P-value in each panel is less than 0.001. The 95% confidence
interval for the regression slope of each panel is [0.74, 0.83] for the upper panel, [0.75, 0.89]
for the middle panel and [0.61, 0.70] for the bottom panel. Pagel’s λ is 0.00, 0.13 and 0.27
for the upper, middle and bottom panels respectively.
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Figure 3: Phylogenetic principal component analysis (PPCA) of reproductive dispersion (S),
generation time (Tc) and damping time (τ) on a log scale for age-structured animals. Arrow
length indicates the loading of each life-history trait onto PCA axes. Points represent the
position of species along the phylogeneticly corrected principal component (PPC)1 and 2,
and are colored by Class. Numbers in parentheses on both axes represent the proportion
of variance explained by the corresponding PPC. Results for stage-structured animals and
plants can be found in the Appendix C.
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Table446

Table 1: Loadings from a phylogenetic principal component analysis (PPCA)

Dataset Principal component

PPC1 PPC2

Animal by age Metric

log(Tc) -0.93 -0.25
log(S) -0.77 -0.61
log(τ) -0.87 0.49

Proportion of variance 74% 23%
Cumulative proportion 74% 97%

Animal by stage Metric

log(Tc) 0.93 -0.34
log(S) 0.82 -0.57
log(τ) 0.84 0.54

Proportion of variance 74% 26%
Cumulative proportion 74% 99%

Plant by stage Metric

log(Tc) -0.99 -0.07
log(S) -0.97 -0.24
log(τ) -0.53 0.85

Proportion of variance 77% 22%
Cumulative proportion 77% 99%

Appendix447

A Supplementary Information on Data448

For COMPADRE (v.6.20.5.0) and COMADRE (v.4.20.5.0) database, there are initially 8925449

matrices (759 species) and 2275 matrices (415 species), respectively. Then we conduct a series450

of data cleaning to prepare the dataset for the analysis.451

A.1 Data classification for age- and stage-structured matrices452

The COMADRE and COMPADRE database consists of three criteria to indicate whether453

the population projection matrix contains (st)ages based on size (MatrixCriteriaSize), devel-454
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opment (MatrixCriteriaOntogeny), age (MatrixCriteriaAge). We get a rough classification455

of age and stage-structured data after removing ’NA’ in the three criteria. If MatrixCrite-456

riaSize == "No" & MatrixCriteriaAge == "Yes" & MatrixCriteriaOntogeny == "No", it’s457

considered as age-structured data, otherwise it’s stage-structured data.458

For COMPADRE, we only consider stage-structured data for the analysis. For age-459

structured data in COMADRE, we further check the intersection of last row and last column460

in the survival matrix. If the value is zero, then we classify it as a age-structured data; if it461

is non-zero, then classify it as stage-structured data considering that some individuals will462

survive beyond the last age observed.463

A.2 Filters used before calculation464

Using the flags in the dataset, we exclude data with missing values in vital rates (i.e, no465

NA’s in the matrices); ensure the survival probability is always less than 1 for the last466

(st)age and less than or equal to 1 for other (st)ages; ensure the survival probability for467

the last age/stage is always less than 1; ensure the fecundity was measured in the study;468

remove data from one unclear source (Master thesis with no title and author name); remove469

semelparous species Oncorhynchus tshawytscha (Chinook salmon), Bacteria (Spirochaetes)470

and Virus (lentivirus).471

We keep those fertility matrices that have non-zero elements only on the first row to ensure472

offspring are born into the first (st)age. We eliminate those matrices with non-zero cloning473

data since we do not analyse clonal mode of reproduction. To standardize the life-history474

traits to units of year based on the values of projection intervals, we only keep matrices where475

the projection interval is non-zero. For data that have mixed male and female population476

projection matrices in one matrix, marked as StudiedSex == "M/F - Males and females477

separately in the same population matrix model" in the database, we separate and check478

them individually according to their source papers.479

For age-structured data in COMADRE, we further ensure survival matrix should have480

non-zero value only in the sub-diagonal; ensure that the fertility matrix has more than 1481

non-zero value in the first row to allow for dispersion of reproductive events.482

A.3 Filters used during and after calculation483

For stage-structured data in both COMADRE and COMPADRE, we remove matrices where484

(I-U) inverse does not exist (where I is the Identity matrix and U is the survival matrix)485

to enable the calculation. Besides, considering the biological realisticity, we remove unlikely486

values by ensuring log(Tc) < 5, log(S) > −15, and log(τ) < 15.487
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A.4 Matrices used for PGLS analysis488

We then combine our computed life-history traits (generation time, reproductive dispersion489

and damping time) with the phylogenetic tree we build based on the master phylogenetic490

tree from Open Tree of Life version 12.3 (https://tree.opentreeoflife.org/about/synthesis-491

release/v12.3). For several species we had multiple matrices, we use the median value of492

age-dispersion S to select one matrix for each species as S was much more variable than Tc493

in the data (the mean of CV within each species is 0.43 for S and 0.34 for Tc). The resulting494

dataset includes both phylogenies and life history traits for 633 out of 689 unique species495

(we could not find phylogenies from the master tree using recorded scientific names for the496

other 56 species). Thus we used these 633 species (633 matrices) for the PGLS analyses:497

stage-structured data for 319 species in COMPADRE; stage-structured data for 215 species498

in COMADRE; age-structured data for 53 species in COMADRE; age-structured data for499

75 species in GO.500

A.5 Limitations501

Small population sizes may lead to biased estimates of vital rates. In some populations that502

have long-lived stage(s), such as trees, the numbers of deaths to large individuals observed503

during the study period may be small so the corresponding estimated survival rates may be504

artificially high. Consequently, studies that incorporate both age and stage structure will505

be important (de Valpine et al. 2014). Matrix dimensionality is taken from the data, but is506

known to influence the life-history traits calculated (Salguero-Gomez and Plotkin 2010).507

B How Good is the Analytical Approximation?508

Recall that equation (4) approximates damping time τ in terms of the ratio T 3
c /S

2. To eval-509

uate this approximation, we compare the exact damping time τ (calculated directly from the510

population projection matrix) and the damping time τ given by the analytical approxima-511

tion. On a log-log scale, we find that the analytical approximation does qualitatively predict512

the exact damping time, indicating a statistically significant correlation between them (see513

Appendix Fig C.10). In general, the damping time from the approximation is smaller than514

the damping time calculated from data. Compared to plants, the analytical approximation515

for animals is better because the OLS regression for animals has a slope close to 1 (0.94 for516

age-structured animals, 0.84 for stage-structured animals, and 0.63 for plants) and a large517

R2 (0.71 for age-structured animals, 0.79 for stage-structured animals, and 0.54 for plants).518

This could be because the approximation ignores higher moments of the distribution of519

reproduction, which may be significant for plants and animals with stage-based dynamics.520
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C Figure521

Figure C.1: Class-wise plots for reproductive dispersion (S) versus generation time (Tc) on a
log scale for animals. The unit of time is years. Each panel corresponds to a Class. On the top
left of each panel, we also present the fitted model and its coefficient of determination (R2)
based on PGLS regression. P-value in each panel is less than 0.001. The 95% confidence
interval for the regression slope and the value of Pagel’s λ are [0.98, 1.14] and 0.50 for
Actinopterygii, [1.05, 1.13] and 0.00 for Aves, [0.96, 1.01] and 0.01 for Mammalia, [0.95, 1.14]
and 0.01 for Reptilia.
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Figure C.2: Class-wise plots for reproductive dispersion S versus generation time Tc on a log
scale for plants. The unit of time is years. Each panel corresponds to a Class. On the top left
of each panel, we also present the fitted model and its coefficient of determination (R2) based
on PGLS regression. P-value in each panel is less than 0.001. The 95% confidence interval
for the regression slope and the value of Pagel’s λ are [1.11, 1.18] and 0.83 for Liliopsida,
[1.13, 1.18] and 0.05 for Magnoliopsida.
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Figure C.3: Reproductive span (ω − α) versus generation time (Tc) on a log scale for age-
structured animals. The unit of time is years. On the top left, we also present the fitted
model and its coefficient of determination (R2) based PGLS regression. P-value is less than
0.01. The 95% confidence interval for the regression slope and the value of Pagel’s λ are
[0.92, 1.01] and 0.60.
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Figure C.4: Class-wise plots for damping time (τ) versus generation time (Tc) on a log scale
for animals. It should be noted that the damping time (τ) presented here is the exact value
calculated from population projection matrix instead of the approximation in equation (4).
The unit of time is years. Each panel corresponds to a Class. On the top left of each panel,
we also present the fitted model and its coefficient of determination (R2) based on PGLS
regression. P-value in each panel is less than 0.01, except for Reptilia (P = 0.01). The 95%
confidence interval for the regression slope and the value of Pagel’s λ are [0.62, 1.20] and
0.52 for Actinopterygii, [0.62, 0.86] and 0.00 for Aves, [0.65, 0.77] and 0.00 for Mammalia,
[0.38, 0.84] and 0.00 for Reptilia.
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Figure C.5: Class-wise plots for damping time (τ) versus generation time (Tc) on a log scale
for plants. The unit of time is years. Each panel corresponds to a Class. It should be noted
that the damping time (τ) presented here is the exact value calculated from population
projection matrix instead of the approximation in equation (4). On the top left of each
panel, we also present the fitted model and its coefficient of determination (R2) based on
PGLS regression. P-value in each panel is less than 0.01. The 95% confidence interval for
the regression slope and the value of Pagel’s λ are [0.57, 0.74] and 0.45 for Liliopsida, [0.56,
0.68] and 0.12 for Magnoliopsida.
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Figure C.6: Residuals of the PGLS model of log(τ) and log Tc versus reproductive dispersion
in a log scale (log(S)). On the top left of each panel, we also present the fitted model and its
coefficient of determination (R2) based on ordinary least squares regression (OLS). P-value
in each panel is larger than 0.1. The 95% confidence interval for the regression slope is [-0.09,
-0.01] for the upper panel, [-0.01, 0.11] for the middle panel and [0.01, 0.09] for the bottom
panel.
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Figure C.7: Damping time (τ) versus reproductive dispersion (S) on a log-log scale. Time
unit is years. Upper panel, age-structured animal data from COMADRE and GO; middle
panel, stage-structured animal data from COMADRE; bottom panel, stage-structured plant
data from COMPADRE. Each panel displays the fitted model and its coefficient of determi-
nation (R2) based on PGLS regression. P-value in each panel is less than 0.001. The 95%
confidence interval for the regression slope is [0.56, 0.65] for the upper panel, [0.45, 0.59] for
the middle panel and [0.33, 0.42] for the bottom panel. Pagel’s λ is 0.00, 0.14 and 0.52 for
the upper, middle and bottom panels respectively.
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Figure C.8: Phylogenetic principal component analysis (PPCA) of reproductive dispersion
(S), generation time (Tc) and damping time (τ) on a log scale for stage-structured animals.
Arrow length indicates the loading of each life-history trait onto PCA axes. Points represent
the position of species along the phylogeneticly corrected principal component (PPC)1 and
2 and are colored by Class. Numbers in parentheses on both axes represent the proportion
of variance explained by the corresponding PPC.
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Figure C.9: Phylogenetic principal component analysis (PPCA) of reproductive dispersion
(S), generation time (Tc) and damping time (τ) on a log scale for stage-structured plants.
Arrow length indicates the loading of each life-history trait onto PCA axes. Points represent
the position of species along the phylogeneticly corrected principal component (PPC)1 and
2 and are colored by Class. Numbers in parentheses on both axes represent the proportion
of variance explained by the corresponding PPC.
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Figure C.10: Comparison between log(τ) calculated from population projection matrix
(PPM) and log(τ) from analytical approximation. Noted that here we include results from
3865 matrices (689 different species). The unit of time is years. Specifically, there are age-
structured animal data from COMADRE and GO (upper), stage-structured animal data
from COMADRE (middle), and stage-structured plant data from COMPADRE (bottom).
On the top left of each panel, we also present the fitted model and its coefficient of determi-
nation (R2) based on ordinary least squares regression (OLS). The 95% confidence interval
for the regression slope of each panel is: [0.91, 0.97] for the upper panel, [0.83, 0.85] for the
middle panel and [0.62, 0.64] for the bottom panel.
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