References
1. Ali, H., Khan, E. & Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemistry2019 , e6730305 (2019).
2. He, Z. L., Yang, X. E. & Stoffella, P. J. Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19 , 125–140 (2005).
3. Kanawade, S. M., Hamigi, A. D. & Gaikwad, R. W. Ecological Effect of Pollution. IJCEA 332–335 (2010) doi:10.7763/IJCEA.2010.V1.57.
4. Rhind, S. M. Anthropogenic pollutants: a threat to ecosystem sustainability? Philos Trans R Soc Lond B Biol Sci 364 , 3391–3401 (2009).
5. Brown, D. H. & Wells, J. M. Physiological Effects of Heavy Metals on the Moss Rhytidiadelphus squarrosus. Annals of Botany66 , 641–647 (1990).
6. Devi, S. R. & Prasad, M. N. V. Membrane Lipid Alterations in Heavy Metal Exposed Plants. in Heavy Metal Stress in Plants: From Molecules to Ecosystems (eds. Prasad, M. N. V. & Hagemeyer, J.) 99–116 (Springer, 1999). doi:10.1007/978-3-662-07745-0_5.
7. Guschina, I. A. & Harwood, J. L. Lipid metabolism in the moss Rhytidiadelphus squarrosus (Hedw.) Warnst. from lead‐contaminated and non‐contaminated populations. Journal of Experimental Botany53 , 455–463 (2002).
8. Janicka-Russak, M., Kabała, K., Burzyński, M. & Kłobus, G. Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots. Journal of Experimental Botany 59 , 3721–3728 (2008).
9. Boominathan, R. & Doran, P. M. Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytologist156 , 205–215 (2002).
10. Shahid, M. et al. Heavy-Metal-Induced Reactive Oxygen Species: Phytotoxicity and Physicochemical Changes in Plants. inReviews of Environmental Contamination and Toxicology Volume 232(ed. Whitacre, D. M.) 1–44 (Springer International Publishing, 2014). doi:10.1007/978-3-319-06746-9_1.
11. Assche, F. V. & Clijsters, H. Effects of metals on enzyme activity in plants. Plant, Cell & Environment 13 , 195–206 (1990).
12. Küpper, H., Dědic, R., Svoboda, A., Hála, J. & Kroneck, P. M. H. Kinetics and efficiency of excitation energy transfer from chlorophylls, their heavy metal-substituted derivatives, and pheophytins to singlet oxygen. Biochimica et Biophysica Acta (BBA) - General Subjects1572 , 107–113 (2002).
13. Küpper, H., Šetlík, I., Spiller, M., Küpper, F. C. & Prášil, O. Heavy Metal-Induced Inhibition of Photosynthesis: Targets of in Vivo Heavy Metal Chlorophyll Formation1. Journal of Phycology38 , 429–441 (2002).
14. Tan, Y.-F., O’Toole, N., Taylor, N. L. & Millar, A. H. Divalent Metal Ions in Plant Mitochondria and Their Role in Interactions with Proteins and Oxidative Stress-Induced Damage to Respiratory Function.Plant Physiol 152 , 747–761 (2010).
15. Verbruggen, N., Hermans, C. & Schat, H. Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist 181 , 759–776 (2009).
16. Krämer, U. Metal Hyperaccumulation in Plants. Annu. Rev. Plant Biol. 61 , 517–534 (2010).
17. Papadopulos, A. S. T. et al. Rapid Parallel Adaptation to Anthropogenic Heavy Metal Pollution. Molecular Biology and Evolution 38 , 3724–3736 (2021).
18. Becher, M., Talke, I. N., Krall, L. & Krämer, U. Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. The Plant Journal 37 , 251–268 (2004).
19. Gao, J., Sun, L., Yang, X. & Liu, J.-X. Transcriptomic Analysis of Cadmium Stress Response in the Heavy Metal Hyperaccumulator Sedum alfredii Hance. PLoS One 8 , e64643 (2013).
20. Halimaa, P. et al. Gene Expression Differences betweenNoccaea caerulescens Ecotypes Help to Identify Candidate Genes for Metal Phytoremediation. Environ. Sci. Technol. 48 , 3344–3353 (2014).
21. Meier, S. K. et al. Comparative RNA-seq analysis of nickel hyperaccumulating and non-accumulating populations of Senecio coronatus (Asteraceae). The Plant Journal 95 , 1023–1038 (2018).
22. Pence, N. S. et al. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens.PNAS 97 , 4956–4960 (2000).
23. van de Mortel, J. E. et al. Large Expression Differences in Genes for Iron and Zinc Homeostasis, Stress Response, and Lignin Biosynthesis Distinguish Roots of Arabidopsis thaliana and the Related Metal Hyperaccumulator Thlaspi caerulescens. Plant Physiol142 , 1127–1147 (2006).
24. Hanikenne, M. et al. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature453 , 391–395 (2008).
25. Talke, I. N., Hanikenne, M. & Krämer, U. Zinc-Dependent Global Transcriptional Control, Transcriptional Deregulation, and Higher Gene Copy Number for Genes in Metal Homeostasis of the Hyperaccumulator Arabidopsis halleri. Plant Physiol 142 , 148–167 (2006).
26. Bartee, L., Shriner, W. & Creech, C. Eukaryotic epigenetic regulation. (2017).
27. Li, B., Carey, M. & Workman, J. L. The Role of Chromatin during Transcription. Cell 128 , 707–719 (2007).
28. Gehring, M., Bubb, K. L. & Henikoff, S. Extensive Demethylation of Repetitive Elements During Seed Development Underlies Gene Imprinting.Science 324 , 1447–1451 (2009).
29. Lang, Z. et al. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proc Natl Acad Sci U S A 114 , E4511–E4519 (2017).
30. Rathore, P., Raina, S. N., Kumar, S. & Bhat, V. Retro-Element Gypsy-163 Is Differentially Methylated in Reproductive Tissues of Apomictic and Sexual Plants of Cenchrus ciliaris. Frontiers in Genetics 11 , 795 (2020).
31. Sanchez, D. H. & Paszkowski, J. Heat-Induced Release of Epigenetic Silencing Reveals the Concealed Role of an Imprinted Plant Gene.PLOS Genetics 10 , e1004806 (2014).
32. Tsuji, H., Saika, H., Tsutsumi, N., Hirai, A. & Nakazono, M. Dynamic and Reversible Changes in Histone H3-Lys4 Methylation and H3 Acetylation Occurring at Submergence-inducible Genes in Rice.Plant and Cell Physiology 47 , 995–1003 (2006).
33. Zhang, M., Xu, C., von Wettstein, D. & Liu, B. Tissue-Specific Differences in Cytosine Methylation and Their Association with Differential Gene Expression in Sorghum1[W]. Plant Physiol156 , 1955–1966 (2011).
34. Galati, S. et al. Heavy metals modulate DNA compaction and methylation at CpG sites in the metal hyperaccumulator Arabidopsis halleri. Environmental and Molecular Mutagenesis 62 , 133–142 (2021).
35. Gullì, M., Marchi, L., Fragni, R., Buschini, A. & Visioli, G. Epigenetic modifications preserve the hyperaccumulator Noccaea caerulescens from Ni geno-toxicity. Environmental and Molecular Mutagenesis 59 , 464–475 (2018).
36. Ghosh, I., Sadhu, A., Moriyasu, Y., Bandyopadhyay, M. & Mukherjee, A. Manganese oxide nanoparticles induce genotoxicity and DNA hypomethylation in the moss Physcomitrella patens. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 842 , 146–157 (2019).
37. Pour, A. H., Özkan, G., Nalci, Ö. B. & Hali̇Loğlu, K. Estimation of genomic instability and DNA methylation due to aluminum (Al) stress in wheat (Triticum aestivum L.) using iPBS and CRED-iPBS analyses.Turk J Bot 43 , 27–37 (2019).
38. Taspinar, M. S. et al. Aluminum-Induced Changes on DNA Damage, DNA Methylation and LTR Retrotransposon Polymorphism in Maize.Arab J Sci Eng 43 , 123–131 (2018).
39. Agar, G. et al. Effects of Lead Sulfate on Genetic and Epigenetic Changes, and Endogenous Hormone Levels in Corn ( Zea mays L.). Pol. J. Environ. Stud. 23 , 1925–1932 (2014).
40. Greco, M., Chiappetta, A., Bruno, L. & Bitonti, M. B. In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J Exp Bot 63 , 695–709 (2012).
41. Xin, C., Chi, J., Zhao, Y., He, Y. & Guo, J. Cadmium stress alters cytosine methylation status and expression of a select set of genes in Nicotiana benthamiana. Plant Science 284 , 16–24 (2019).
42. Aina, R. et al. Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiologia Plantarum 121 , 472–480 (2004).
43. Filek, M. et al. The protective role of selenium in rape seedlings subjected to cadmium stress. Journal of Plant Physiology 165 , 833–844 (2008).
44. Kumar, M., Bijo, A. J., Baghel, R. S., Reddy, C. R. K. & Jha, B. Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation.Plant Physiology and Biochemistry 51 , 129–138 (2012).
45. Bednarek, P. T., Orłowska, R. & Niedziela, A. A relative quantitative Methylation-Sensitive Amplified Polymorphism (MSAP) method for the analysis of abiotic stress. BMC Plant Biology17 , 79 (2017).
46. Niedziela, A. The influence of Al3+ on DNA methylation and sequence changes in the triticale (× Triticosecale Wittmack) genome. J Appl Genetics 59 , 405–417 (2018).
47. Cicatelli, A. et al. Epigenetic control of heavy metal stress response in mycorrhizal versus non-mycorrhizal poplar plants.Environ Sci Pollut Res 21 , 1723–1737 (2014).
48. Feng, S. J., Liu, X. S., Cao, H. W. & Yang, Z. M. Identification of a rice metallochaperone for cadmium tolerance by an epigenetic mechanism and potential use for clean up in wetland. Environmental Pollution 288 , 117837 (2021).
49. Feng, S. J. et al. Identification of epigenetic mechanisms in paddy crop associated with lowering environmentally related cadmium risks to food safety. Environmental Pollution 256 , 113464 (2020).
50. Ezaki, B., Higashi, A., Nanba, N. & Nishiuchi, T. An S-adenosyl Methionine Synthetase (SAMS) Gene from Andropogon virginicus L. Confers Aluminum Stress Tolerance and Facilitates Epigenetic Gene Regulation in Arabidopsis thaliana. Frontiers in Plant Science 7 , 1627 (2016).
51. Shafiq, S. et al. Lead, Cadmium and Zinc Phytotoxicity Alter DNA Methylation Levels to Confer Heavy Metal Tolerance in Wheat.Int J Mol Sci 20 , (2019).
52. Dubey, S. et al. Identification and expression analysis of conserved microRNAs during short and prolonged chromium stress in rice (Oryza sativa). Environ Sci Pollut Res 27 , 380–390 (2020).
53. Ding, Y., Chen, Z. & Zhu, C. Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot62 , 3563–3573 (2011).
54. Huang, S. Q., Peng, J., Qiu, C. X. & Yang, Z. M. Heavy metal-regulated new microRNAs from rice. Journal of Inorganic Biochemistry 103 , 282–287 (2009).
55. Huang, S. Q. et al. A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnology Journal 8 , 887–899 (2010).
56. Xie, F. L. et al. Computational identification of novel microRNAs and targets in Brassica napus. FEBS Letters581 , 1464–1474 (2007).
57. Zhou, Z. S., Huang, S. Q. & Yang, Z. M. Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Biochemical and Biophysical Research Communications374 , 538–542 (2008).
58. Cong, W. et al. Transgenerational memory of gene expression changes induced by heavy metal stress in rice (Oryza sativa L.).BMC Plant Biology 19 , 282 (2019).
59. Ou, X. et al. Transgenerational Inheritance of Modified DNA Methylation Patterns and Enhanced Tolerance Induced by Heavy Metal Stress in Rice (Oryza sativa L.). PLOS ONE 7 , e41143 (2012).
60. Rahavi, M. R., Migicovsky, Z., Titov, V. & Kovalchuk, I. Transgenerational Adaptation to Heavy Metal Salts in Arabidopsis.Front Plant Sci 2 , (2011).
61. Shaw, J. Heavy Metal Tolerance in Plants: Evolutionary Aspects . (CRC Press, 1989).
62. Elvira, N. J., Medina, N. G., Leo, M., Cala, V. & Estébanez, B. Copper Content and Resistance Mechanisms in the Terrestrial Moss Ptychostomum capillare: A Case Study in an Abandoned Copper Mine in Central Spain. Arch Environ Contam Toxicol 79 , 49–59 (2020).
63. Konno, H., Nakashima, S. & Katoh, K. Metal-tolerant moss Scopelophila cataractae accumulates copper in the cell wall pectin of the protonema. Journal of Plant Physiology 167 , 358–364 (2010).
64. Krzesłowska, M., Lenartowska, M., Mellerowicz, E. J., Samardakiewicz, S. & Woźny, A. Pectinous cell wall thickenings formation—A response of moss protonemata cells to lead.Environmental and Experimental Botany 65 , 119–131 (2009).
65. Krzesłowska, M. & Woźny, A. Lead uptake, localization and changes in cell ultrastructure ofFunaria hygrometrica protonemata.Biologia Plantarum (2008) doi:10.1007/BF02873855.
66. Lang, I. & Wernitznig, S. Sequestration at the cell wall and plasma membrane facilitates zinc tolerance in the moss Pohlia drummondii.Environmental and Experimental Botany 74 , 186–193 (2011).
67. Antreich, S., Sassmann, S. & Lang, I. Limited accumulation of copper in heavy metal adapted mosses. Plant Physiology and Biochemistry 101 , 141–148 (2016).
68. Boquete, M. T., Lang, I., Weidinger, M., Richards, C. L. & Alonso, C. Patterns and mechanisms of heavy metal accumulation and tolerance in two terrestrial moss species with contrasting habitat specialization.Environmental and Experimental Botany 182 , 104336 (2021).
69. Sabovljević, M. S. et al. Metal accumulation in the acrocarp moss Atrichum undulatum under controlled conditions. Environmental Pollution 256 , 113397 (2020).
70. Bellini, E. et al. The Moss Leptodictyum riparium Counteracts Severe Cadmium Stress by Activation of Glutathione Transferase and Phytochelatin Synthase, but Slightly by Phytochelatins. Int J Mol Sci 21 , 1583 (2020).
71. van Gurp, T. P. et al. epiGBS: reference-free reduced representation bisulfite sequencing. Nat Methods 13 , 322–324 (2016).
72. Shaw, A. J. Population Biology of the Rare Copper Moss, Scopelophila cataractae. American Journal of Botany 80 , 1034–1041 (1993).
73. Simms, E. L. Defining tolerance as a norm of reaction.Evolutionary Ecology 14 , 563–570 (2000).
74. Mounger, J. et al. Inheritance of DNA methylation differences in the mangrove Rhizophora mangle. Evolution & Development23 , 351–374 (2021).
75. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 , 2114–2120 (2014).
76. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol29 , 644–652 (2011).
77. Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8 , 1494–1512 (2013).
78. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics28 , 3150–3152 (2012).
79. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods 9 , 357–359 (2012).
80. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics31 , 3210–3212 (2015).
81. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12 , 323 (2011).
82. Götz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research36 , 3420–3435 (2008).
83. OmicsBox – Bioinformatics Made Easy, BioBam Bioinformatics, March 3, 2019, . (2019).
84. Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research.Bioinformatics 21 , 3674–3676 (2005).
85. Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research47 , D309–D314 (2019).
86. Smit, A., Hubley, R, & Green, P. RepeatMasker Open-4.0.(2013).
87. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat Methods 12 , 59–60 (2015).
88. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria . (2018).
89. RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA . (2019).
90. Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2 , e281 (2014).
91. Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24 , 1403–1405 (2008).
92. Dray, S. & Dufour, A.-B. The ade4 Package: Implementing the Duality Diagram for Ecologists. Journal of Statistical Software22 , 1–20 (2007).
93. Goudet, J. hierfstat, a package for r to compute and test hierarchical F-statistics. Molecular Ecology Notes 5 , 184–186 (2005).
94. Legendre, P. & Anderson, M. J. Distance-Based Redundancy Analysis: Testing Multispecies Responses in Multifactorial Ecological Experiments.Ecological Monographs 69 , 1–24 (1999).
95. Oksanen, J. et al. vegan: Community Ecology Package . (2020).
96. Wang, Y., Qian, M., Ruan, P., Teschendorff, A. E. & Wang, S. Detection of epigenetic field defects using a weighted epigenetic distance-based method. Nucleic Acids Res 47 , e6–e6 (2019).
97. Feng, H., Conneely, K. N. & Wu, H. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res 42 , e69 (2014).
98. Park, Y. & Wu, H. Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics 32 , 1446–1453 (2016).
99. Zheng, X., Zhang, N., Wu, H.-J. & Wu, H. Estimating and accounting for tumor purity in the analysis of DNA methylation data from cancer studies. Genome Biology 18 , 17 (2017).
100. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26 , 139–140 (2010).
101. Al-Shahrour, F., Díaz-Uriarte, R. & Dopazo, J. FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20 , 578–580 (2004).
102. Kent, W. J. BLAT—The BLAST-Like Alignment Tool. Genome Res. 12 , 656–664 (2002).
103. Shaw, A. J. Genetic biogeography of the rate ‘copper moss’, Scopelophila cataractae (Pottiaceae). Plant Systematics and Evolution 197 , 43–58 (1995).
104. Shaw, J. Evolution of Heavy Metal Tolerance in Bryophytes. II. An Ecological and Experimental Investigation of the ‘Copper Moss,’ Scopelophila cataractae (Pottiaceae). American Journal of Botany74 , 813–821 (1987).
105. Nomura, T. & Hasezawa, S. Regulation of gemma formation in the copper moss Scopelophila cataractae by environmental copper concentrations. J Plant Res 124 , 631–638 (2011).
106. Shaw, A. J. Morphological Uniformity Among Widely Disjunct Populations of the Rare ‘Copper Moss,’ Scopelophila cataractae (Pottiaceae). Systematic Botany 18 , 525–537 (1993).
107. Herrera, C. M. & Bazaga, P. Epigenetic correlates of plant phenotypic plasticity: DNA methylation differs between prickly and nonprickly leaves in heterophyllous Ilex aquifolium (Aquifoliaceae) trees. Botanical Journal of the Linnean Society 171 , 441–452 (2013).
108. Róis, A. S. et al. Epigenetic rather than genetic factors may explain phenotypic divergence between coastal populations of diploid and tetraploid Limonium spp. (Plumbaginaceae) in Portugal. BMC Plant Biol 13 , 205 (2013).
109. Alonso, C., Pérez, R., Bazaga, P., Medrano, M. & Herrera, C. M. Individual variation in size and fecundity is correlated with differences in global DNA cytosine methylation in the perennial herb Helleborus foetidus (Ranunculaceae). American Journal of Botany101 , 1309–1313 (2014).
110. Medrano, M., Herrera, C. M. & Bazaga, P. Epigenetic variation predicts regional and local intraspecific functional diversity in a perennial herb. Molecular Ecology 23 , 4926–4938 (2014).
111. Platt, A., Gugger, P. F., Pellegrini, M. & Sork, V. L. Genome-wide signature of local adaptation linked to variable CpG methylation in oak populations. Molecular Ecology 24 , 3823–3830 (2015).
112. Richards, C. L. & Pigliucci, M. Epigenetic Inheritance. A Decade into the Extended Evolutionary Synthesis. PG (2020) doi:10.30460/99624.
113. Puy, J. et al. Competition-induced transgenerational plasticity influences competitive interactions and leaf decomposition of offspring. New Phytologist 229 , 3497–3507 (2021).
114. Yadav, N. S. et al. Multigenerational exposure to heat stress induces phenotypic resilience, and genetic and epigenetic variations in Arabidopsis thaliana offspring . 2020.11.30.405365 https://www.biorxiv.org/content/10.1101/2020.11.30.405365v1 (2020) doi:10.1101/2020.11.30.405365.
115. Verhoeven, K. J. F., Jansen, J. J., van Dijk, P. J. & Biere, A. Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytologist 185 , 1108–1118 (2010).
116. Boquete, M. T., Muyle, A. & Alonso, C. Plant epigenetics: phenotypic and functional diversity beyond the DNA sequence.American Journal of Botany 108 , 553–558 (2021).
117. Lang, D. et al. The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. The Plant Journal 93 , 515–533 (2018).
118. Diop, S. I. et al. A pseudomolecule-scale genome assembly of the liverwort Marchantia polymorpha. The Plant Journal101 , 1378–1396 (2020).
119. Schmid, M. W. et al. Extensive epigenetic reprogramming during the life cycle of Marchantia polymorpha. Genome Biology19 , 9 (2018).
120. Zemach, A., McDaniel, I. E., Silva, P. & Zilberman, D. Genome-Wide Evolutionary Analysis of Eukaryotic DNA Methylation. Science(2010).
121. Alvarez, M. et al. Reduced representation characterization of genetic and epigenetic differentiation to oil pollution in the foundation plant Spartina alterniflora . 426569 https://www.biorxiv.org/content/10.1101/426569v3 (2020) doi:10.1101/426569.
122. Robertson, M. et al. Combining epiGBS markers with long read transcriptome sequencing to assess differentiation associated with habitat in Reynoutria (aka Fallopia) . 2020.09.30.317966 https://www.biorxiv.org/content/10.1101/2020.09.30.317966v1 (2020) doi:10.1101/2020.09.30.317966.
123. Hasan, M. K. et al. Responses of Plant Proteins to Heavy Metal Stress—A Review. Front. Plant Sci. 8 , (2017).
124. Lemire, J. A., Harrison, J. J. & Turner, R. J. Antimicrobial activity of metals: mechanisms, molecular targets and applications.Nat Rev Microbiol 11 , 371–384 (2013).
125. Tamás, M. J., Sharma, S. K., Ibstedt, S., Jacobson, T. & Christen, P. Heavy Metals and Metalloids As a Cause for Protein Misfolding and Aggregation. Biomolecules 4 , 252–267 (2014).
126. Choudhary, S. P., Kanwar, M., Bhardwaj, R., Yu, J.-Q. & Tran, L.-S. P. Chromium Stress Mitigation by Polyamine-Brassinosteroid Application Involves Phytohormonal and Physiological Strategies in Raphanus sativus L. PLOS ONE 7 , e33210 (2012).
127. Hussain, A., Nazir, F. & Fariduddin, Q. Polyamines (spermidine and putrescine) mitigate the adverse effects of manganese induced toxicity through improved antioxidant system and photosynthetic attributes in Brassica juncea. Chemosphere 236 , 124830 (2019).
128. Nahar, K., Hasanuzzaman, M., Suzuki, T. & Fujita, M. Polyamines-induced aluminum tolerance in mung bean: A study on antioxidant defense and methylglyoxal detoxification systems.Ecotoxicology 26 , 58–73 (2017).
129. Wang, X., Shi, G., Xu, Q. & Hu, J. Exogenous polyamines enhance copper tolerance of Nymphoides peltatum. Journal of Plant Physiology 164 , 1062–1070 (2007).
130. Sarry, J.-E. et al. The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. PROTEOMICS 6 , 2180–2198 (2006).
Table 1: Average DNA methylation (Mean) and standard deviation of DNA methylation (Std. Dev.) per group (i.e. each unique population – Pop. - and treatment – Treat. - combination) for each separate sequence context (CG, CHG, CHH), and across all contexts (all) in samples of the copper moss Scopelophila cataractae obtained with the complete single methylation polymorphism matrix (All SMPs; n=43,365 SMPs), and the ccomplete and polymorphic matrix (Polym. SMPs; n=3,769 SMPs).