REFERENCES
Agdm, A., Psaga, B., & Pmna, B.
(2020). Glial cells in schizophrenia: a unified hypothesis.
Alexander, S. P. H., Roberts, R. E.,
Broughton, B. R. S., Sobey, C. G., George, C. H., Stanford, S. C., . . .
Ahluwalia, A. (2018). Goals and practicalities of immunoblotting and
immunohistochemistry: A guide for submission to the British Journal of
Pharmacology. British Journal of Pharmacology, 175 (3), 407-411.
doi: https://doi.org/10.1111/bph.14112
Cadinu, D., Grayson, B., Podda, G.,
Harte, M. K., & Neill, J. C. (2017). NMDA receptor antagonist rodent
models for cognition in schizophrenia and identification of novel drug
treatments, an update. Neuropharmacology, 142 .
Clarke, Laura, E., Barres, Ben, & A.
(2013). Emerging roles of astrocytes in neural circuit development.Nature Reviews Neuroscience, 14 (6), 442-442.
Cullen, A. E., Scarlett, H., Pollak,
T. A., Graham, B., Joyce, D. W., Kempton, M. J., . . . Valeria, M.
(2018). Associations Between Non-Neurological Autoimmune Disorders and
Psychosis: A Meta-Analysis. Biological Psychiatry, 85 ,
S0006322318316305-.
Curtis, M. J., Alexander, S., Cirino,
G., Docherty, J. R., George, C. H., Giembycz, M. A., . . . Ahluwalia, A.
(2018). Experimental design and analysis and their reporting II: updated
and simplified guidance for authors and peer reviewers. British
Journal of Pharmacology, 175 (7), 987-993. doi:
https://doi.org/10.1111/bph.14153
Dauvermann, M. R., Lee, G., & Dawson,
N. (2017). Glutamatergic regulation of cognition and functional brain
connectivity: insights from pharmacological, genetic and translational
schizophrenia research. British Journal of Pharmacology, 174 (19),
3136-3160. doi: https://doi.org/10.1111/bph.13919
Deng, W., Aimone, J. B., & Gage, F.
H. (2010). New neurons and new memories: how does adult hippocampal
neurogenesis affect learning and memory? Nature Reviews
Neuroscience, 11 (5), 339-350. doi: 10.1038/nrn2822
di Nuzzo, L., Orlando, R., Tognoli,
C., Di Pietro, P., Bertini, G., Miele, J., . . . Nicoletti, F. (2015).
Antidepressant activity of fingolimod in mice. Pharmacology
Research & Perspectives, 3 (3), e00135. doi:
https://doi.org/10.1002/prp2.135
Efstathopoulos, P., Kourgiantaki, A.,
Karali, K., Sidiropoulou, K., Margioris, A. N., Gravanis, A., &
Charalampopoulos, I. (2015). Fingolimod induces neurogenesis in adult
mouse hippocampus and improves contextual fear memory.Translational Psychiatry, 5 (11), e685-e685. doi:
10.1038/tp.2015.179
Fillman, S. G., Cloonan, N., Catts,
V. S., Miller, L. C., Wong, J., McCrossin, T., . . . Weickert, C. S.
(2013). Increased inflammatory markers identified in the dorsolateral
prefrontal cortex of individuals with schizophrenia. Molecular
Psychiatry, 18 (2), 206-214. doi: 10.1038/mp.2012.110
Francis, M. M., Hummer, T. A.,
Liffick, E., Vohs, J. L., & Breier, A. (2020). Effects of fingolimod, a
sphingosine-1-phosphate (S1P) receptor agonist, on white matter
microstructure, cognition and symptoms in schizophrenia. Brain
Imaging and Behavior .
Goldsmith, D. R., Rapaport, M. H., &
Miller, B. J. (2016). A meta-analysis of blood cytokine network
alterations in psychiatric patients: comparisons between schizophrenia,
bipolar disorder and depression. Molecular Psychiatry .
Green, M. J., Matheson, S. L.,
Shepherd, A., Weickert, C. S., & Carr, V. J. (2011). Brain-derived
neurotrophic factor levels in schizophrenia: a systematic review with
meta-analysis. Mol Psychiatry, 16 (9), 960-972.
Greene, C., Hanley, N., & Campbell,
M. (2020). Blood-brain barrier associated tight junction disruption is a
hallmark feature of major psychiatric disorders. Translational
Psychiatry, 10 (1), 373-373. doi: 10.1038/s41398-020-01054-3
Guo, Y., Gan, X., Zhou, H., Zhou, H.,
& Tang, H. (2020). Fingolimod suppressed the chronic unpredictable mild
stress-induced depressive-like behaviors via affecting microglial and
NLRP3 inflammasome activation. Life Sciences, 263 , 118582.
Hemmati, F., Dargahi, L., Nasoohi,
S., Omidbakhsh, R., Mohamed, Z., Chik, Z., . . . Ahmadiani, A. (2013).
Neurorestorative effect of FTY720 in a rat model of Alzheimer’s disease:
Comparison with Memantine. Behavioural Brain Research, 252 ,
415-421. doi: https://doi.org/10.1016/j.bbr.2013.06.016
Hla, T., & Brinkmann, V. (2011).
Sphingosine 1-phosphate (S1P). Neurology, 76 (8 Supplement 3), S3.
doi: 10.1212/WNL.0b013e31820d5ec1
Iii, R. (2008). Mitogen-Activated
Protein Kinases in Synaptic Plasticity and Memory. Learning and
Memory: A Comprehensive Reference, 4 (6), 501-523.
Jentsch, J. D., & Roth, R. H.
(1999). The Neuropsychopharmacology of Phencyclidine: From NMDA Receptor
Hypofunction to the Dopamine Hypothesis of Schizophrenia.Neuropsychopharmacology Official Publication of the American
College of Neuropsychopharmacology, 20 (3), 201-225.
Jentsch, J. D., & Taylor, J. R.
(2001). Impaired Inhibition of Conditioned Responses Produced by
Subchronic Administration of Phencyclidine to Rats.Neuropsychopharmacology, 24 (1), 66-74. doi:
https://doi.org/10.1016/S0893-133X(00)00174-3
Kesteren, C. V., Gremmels, H., Witte,
L. D., Hol, E. M., Gool, A. V., Falkai, P. G., . . . Sommer, I. (2017).
Immune involvement in the pathogenesis of schizophrenia: a meta-analysis
on postmortem brain studies. Translational Psychiatry, 7 (3),
e1075.
Kowiański, P., Lietzau, G., Czuba,
E., Waśkow, M., Steliga, A., & Moryś, J. (2018). BDNF: A Key Factor
with Multipotent Impact on Brain Signaling and Synaptic Plasticity.Cellular and Molecular Neurobiology, 38 (3), 579-593. doi:
10.1007/s10571-017-0510-4
Liddelow, S. A., Guttenplan, K. A.,
Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., . . .
Peterson, T. C. (2017). Neurotoxic reactive astrocytes are induced by
activated microglia. Nature .
Lilley, E., Stanford, S. C., Kendall,
D. E., Alexander, S. P. H., Cirino, G., Docherty, J. R., . . .
Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of
Pharmacology: Updated guidance for 2020. British Journal of
Pharmacology, 177 (16), 3611-3616. doi:
https://doi.org/10.1111/bph.15178
Lima Giacobbo, B., Doorduin, J.,
Klein, H. C., Dierckx, R. A. J. O., Bromberg, E., & de Vries, E. F. J.
(2019). Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on
Neuroinflammation. Molecular neurobiology, 56 (5), 3295-3312. doi:
10.1007/s12035-018-1283-6
Malberg, J. E., Eisch, A. J.,
Nestler, E. J., & Duman, R. S. (2000). Chronic Antidepressant Treatment
Increases Neurogenesis in Adult Rat Hippocampus. The Journal of
Neuroscience, 20 (24), 9104. doi: 10.1523/JNEUROSCI.20-24-09104.2000
Meier, U.-C., Ramagopalan, S. V.,
Goldacre, M. J., & Goldacre, R. (2020). Risk of Schizophrenia and
Bipolar Disorder in Patients With Multiple Sclerosis: Record-Linkage
Studies. Frontiers in Psychiatry, 11 (662). doi:
10.3389/fpsyt.2020.00662
Miguez, A., García-Díaz Barriga, G.,
Brito, V., Straccia, M., Giralt, A., Ginés, S., . . . Alberch, J.
(2015). Fingolimod (FTY720) enhances hippocampal synaptic plasticity and
memory in Huntington’s disease by preventing p75NTR up-regulation and
astrocyte-mediated inflammation. Human Molecular Genetics,
24 (17), 4958-4970. doi: 10.1093/hmg/ddv218
Momtazmanesh, S., Zare-Shahabadi, A.,
& Rezaei, N. (2019). Cytokine Alterations in Schizophrenia: An Updated
Review. Frontiers in Psychiatry, 10 (892). doi:
10.3389/fpsyt.2019.00892
Morris, R. (1984). Developments of a
water-maze procedure for studying spatial learning in the rat.Journal of Neuroscience Methods, 11 (1), 47-60. doi:
https://doi.org/10.1016/0165-0270(84)90007-4
Nassireslami, E., Nikbin, P.,
Payandemehr, B., Amini, E., Mohammadi, M., Vakilzadeh, G., . . .
Sharifzadeh, M. (2013). A cAMP analog reverses contextual and tone
memory deficits induced by a PKA inhibitor in Pavlovian fear
conditioning. Pharmacology Biochemistry and Behavior, 105 ,
177-182. doi: https://doi.org/10.1016/j.pbb.2013.02.016
Norbert, & Müller. (2018).
Inflammation in Schizophrenia: Pathogenetic Aspects and Therapeutic
Considerations. Schizophrenia Bulletin .
Pape, K., Tamouza, R., Leboyer, M.,
& Zipp, F. (2019). Immunoneuropsychiatry — novel perspectives on
brain disorders. Nature Reviews Neurology, 15 (6), 317-328. doi:
10.1038/s41582-019-0174-4
Pollak, T. A., Drndarski, S., Stone,
J. M., David, A. S., & Abbott, N. J. (2018). The blood–brain barrier
in psychosis. Lancet Psychiatry, 5 (1), 79-92.
Rahimian, R., Wakid, M., O’Leary, L.
A., & Mechawar, N. (2021). The emerging tale of microglia in
psychiatric disorders. Neuroscience & Biobehavioral Reviews,
131 , 1-29. doi: https://doi.org/10.1016/j.neubiorev.2021.09.023
Sanchez-Alavez, M., Nguyen, W., Mori,
S., Wills, D. N., Otero, D., Ehlers, C. L., & Conti, B. (2019). Time
course of microglia activation and brain and blood cytokine/chemokine
levels following chronic ethanol exposure and protracted withdrawal in
rats. Alcohol, 76 , 37-45. doi:
https://doi.org/10.1016/j.alcohol.2018.07.005
Santambrogio, L., Belyanskaya, S. L.,
Fischer, F. R., Cipriani, B., & Riese, R. (2001). Developmental
plasticity of CNS microglia. Proceedings of the National Academy
of Sciences, 98 (11), 6295-6300.
Sekar, A., Bialas, A. R., Rivera, H.
D., Davis, A., & O’Donovan, M. C. (2016). Schizophrenia risk from
complex variation of complement component 4. Nature, 530 (7589),
177-183.
Sert, N., Hurst, V., Ahluwalia, A.,
Alam, S., & Wuerbel, H. (2020). The ARRIVE guidelines 2.0: updated
guidelines for reporting animal research. BMJ Open Science, 4 (1),
e100115.
Soulet, D., & Rivest, S. (2008).
Microglia. Current Biology, 18 (12), R506-R508.
Sun, Y., Feng, H., Lei, Z., & Feng,
L. (2016). The sphingosine‐1‐phosphate analogue, FTY‐720, promotes the
proliferation of embryonic neural stem cells, enhances hippocampal
neurogenesis and learning and memory abilities in adult mice. Br J
Pharmacol, 173 (18), 2793-2807.
Sun, Y., Hong, F., Zhang, L., &
Feng, L. (2016). The sphingosine-1-phosphate analogue, FTY-720, promotes
the proliferation of embryonic neural stem cells, enhances hippocampal
neurogenesis and learning and memory abilities in adult mice.British Journal of Pharmacology, 173 (18), 2793-2807. doi:
https://doi.org/10.1111/bph.13557
Upthegrove, R., Manzanares-Teson, N.,
& Barnes, N. M. (2014). Cytokine function in medication-naive first
episode psychosis: a systematic review and meta-analysis.Schizophrenia Research, 155 (1-3), 101-108.
Valeria, Mondelli, Annamaria,
Cattaneo, Martino, Belvederi, . . . Forti. (2011). Stress and
Inflammation Reduce Brain-Derived Neurotrophic Factor Expression in
First-Episode Psychosis. Journal of Clinical Psychiatry .
Vallières, L., Campbell, I. L., Gage,
F. H., & Sawchenko, P. E. (2002). Reduced Hippocampal Neurogenesis in
Adult Transgenic Mice with Chronic Astrocytic Production of
Interleukin-6. Journal of Neuroscience, 22 (2), 486-492.
Woo, J. J., Pouget, J. G., Zai, C.
C., & Kennedy, J. L. (2020). The complement system in schizophrenia:
where are we now and what’s next? Molecular Psychiatry, 25 (1),
114-130. doi: 10.1038/s41380-019-0479-0
Wu, M. (2013). Inhibition of Adult
Hippocampal Neurogenesis by Sustained Interleukin-1beta.Dissertations & Theses - Gradworks .
Wu, S.-Y., Pan, B.-S., Tsai, S.-F.,
Chiang, Y.-T., Huang, B.-M., Mo, F.-E., & Kuo, Y.-M. (2020). BDNF
reverses aging-related microglial activation. Journal of
neuroinflammation, 17 (1), 210-210. doi: 10.1186/s12974-020-01887-1
Zhu, Z., Fu, Y., Tian, D., Sun, N.,
Han, W., Chang, G., . . . Shi, F.-D. (2015). Combination of the Immune
Modulator Fingolimod With Alteplase in Acute Ischemic Stroke.Circulation, 132 (12), 1104-1112. doi:
doi:10.1161/CIRCULATIONAHA.115.016371