References
Bammer, V., Apostolou, A., Bulat, D., Effenberger, M., Erős, T., Hortic,
S., . . . Simonović, P. (2021). Fish. In I. Liška, F. Wagner, M. Sengl,
K. Deutsch, J. Slobodník, & M. Paunović (Eds.), Joint Danube survey 4
Scientific Report: A Shared Analysis of the Danube River (pp. 41-54).
(ICPDR Ed.). Vienna.
Boivin-Delisle, D., Laporte, M., Burton, F., Dion, R., Normandeau, E.,
& Bernatchez, L. (2021). Using environmental DNA for biomonitoring of
freshwater fish communities: Comparison with established gillnet surveys
in a boreal hydroelectric impoundment. Environmental DNA, 3(1), 105-120.
doi:https://doi.org/10.1002/edn3.135
Boyer, F., Mercier, C., Bonin, A., Le Bras, Y., Taberlet, P., &
Coissac, E. (2016). OBITOOLS: a UNIX-inspired software package for DNA
metabarcoding. Molecular Ecology Resources, 16(1), 176-182.
doi:10.1111/1755-0998.12428
Burnham, K. P., & Anderson, D. R. (2002). Model Selection and
Multimodel Inference: A Practical Information-Theoretical Approach
(Springer Ed.). New York.
Bylemans, J., Gleeson, D. M., Hardy, C. M., & Furlan, E. (2018). Toward
an ecoregion scale evaluation of eDNA metabarcoding primers: A case
study for the freshwater fish biodiversity of the Murray-Darling Basin
(Australia). Ecology and Evolution, 8(17), 8697-8712.
doi:10.1002/ece3.4387
Cantera, I., Cilleros, K., Valentini, A., Cerdan, A., Dejean, T.,
Iribar, A., . . . Brosse, S. (2019). Optimizing environmental DNA
sampling effort for fish inventories in tropical streams and rivers.
Scientific Reports, 9(1), 3085-3085. doi:10.1038/s41598-019-39399-5
CEN (2003). EN 14011 - Water quality - Sampling of fish with
electricity. Retrieved from
Chambert, T., Pilliod, D. S., Goldberg, C. S., Doi, H., & Takahara, T.
(2018). An analytical framework for estimating aquatic species density
from environmental DNA. Ecology and Evolution, 8(6), 3468-3477.
doi:10.1002/ece3.3764
Chevassus, B. (1979). Hybridization in salmonids - Results and
perspectives. Aquaculture, 17(2), 113-128.
doi:10.1016/0044-8486(79)90047-4
Civade, R., Dejean, T., Valentini, A., Roset, N., Raymond, J. C., Bonin,
A., . . . Pont, D. (2016). Spatial Representativeness of Environmental
DNA Metabarcoding Signal for Fish Biodiversity Assessment in a Natural
Freshwater System. Plos One, 11(6). doi:10.1371/journal.pone.0157366
Comets, E., Lavenu, A., & Lavielle, M. (2017). Parameter Estimation in
Nonlinear Mixed Effect Models Using saemix, an R Implementation of the
SAEM Algorithm. Journal of Statistical Software, 80(3), 1-41.
Crawford, S. S., & Muir, A. M. (2008). Global introductions of salmon
and trout in the genus Oncorhynchus: 1870-2007. Reviews in Fish Biology
and Fisheries, 18(3), 313-344. doi:10.1007/s11160-007-9079-1
Czeglédi, I., Sály, P., Specziár, A., Preiszner, B., Szalóky, Z.,
Maroda, Á., . . . Erős, T. (2021). Congruency between two traditional
and eDNA-based sampling methods in characterising taxonomic and
trait-based structure of fish communities and community-environment
relationships in lentic environment. Ecological Indicators, 129.
doi:10.1016/j.ecolind.2021.107952
Deiner, K., Bik, H. M., Machler, E., Seymour, M., Lacoursiere-Roussel,
A., Altermatt, F., . . . Bernatchez, L. (2017). Environmental DNA
metabarcoding: Transforming how we survey animal and plant communities.
Molecular ecology, 26(21), 5872-5895. doi:10.1111/mec.14350
Di Muri, C., Lawson Handley, L., Bean, C. W., Li, J., Peirson, G.,
Sellers, G. S., . . . Hänfling, B. (2020). Read counts from
environmental DNA (eDNA) metabarcoding reflect fish abundance and
biomass in drained ponds. Metabarcoding and Metagenomics, 4.
doi:10.3897/mbmg.4.56959
Doi, H., Uchii, K., Matsuhashi, S., Takahara, T., Yamanaka, H., &
Minamoto, T. (2017). Isopropanol precipitation method for collecting
fish environmental DNA. Limnology and Oceanography-Methods, 15(2),
212-218. doi:10.1002/lom3.10161
Doi, H., Uchii, K., Takahara, T., Matsuhashi, S., Yamanaka, H., &
Minamoto, T. (2015). Use of Droplet Digital PCR for Estimation of Fish
Abundance and Biomass in Environmental DNA Surveys. Plos One, 10(3), 11.
doi:10.1371/journal.pone.0122763
Doledec, S., & Chessel, D. (1994). Co-inertia analysis - An alternative
method for studying species environment relationships. Freshwater
Biology, 31(3), 277-294. doi:10.1111/j.1365-2427.1994.tb01741.x
Dray, S., Chessel, D., & Thioulouse, J. (2003). Co-inertia analysis and
the linking of ecological data tables. Ecology, 84(11), 3078-3089.
doi:10.1890/03-0178
Eros, T., Bammer, V., Gyorgy, A. I., Pehlivanov, L., Schabuss, M.,
Zornig, H., . . . Szaloky, Z. (2017). Typology of a Great River Using
Fish Assemblages: Implications for the Bioassessment of the Danube
River. River Research and Applications, 33(1), 37-49.
doi:10.1002/rra.3060
Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008).
Species detection using environmental DNA from water samples. Biology
Letters, 4(4), 423-425. doi:10.1098/rsbl.2008.0118
Ficetola, G. F., Pansu, J., Bonin, A., Coissac, E., Giguet-Covex, C., De
Barba, M., . . . Taberlet, P. (2015). Replication levels, false
presences and the estimation of the presence/absence from eDNA
metabarcoding data. Molecular Ecology Resources, 15(3), 543-556.
doi:10.1111/1755-0998.12338
Frincu, R. M. (2021). Long-Term Trends in Water Quality Indices in the
Lower Danube and Tributaries in Romania (1996-2017). International
Journal of Environmental Research and Public Health, 18(4).
doi:10.3390/ijerph18041665
Goutte, A., Molbert, N., Guerin, S., Richoux, R., & Rocher, V. (2020).
Monitoring freshwater fish communities in large rivers using
environmental DNA metabarcoding and a long-term electrofishing survey. J
Fish Biol, 97(2), 444-452. doi:10.1111/jfb.14383
Hanfling, B., Handley, L. L., Read, D. S., Hahn, C., Li, J. L., Nichols,
P., . . . Winfield, I. J. (2016). Environmental DNA metabarcoding of
lake fish communities reflects long-term data from established survey
methods. Molecular ecology, 25(13), 3101-3119. doi:10.1111/mec.13660
Harper, L. R., Handley, L. L., Hahn, C., Boonham, N., Rees, H. C.,
Gough, K. C., . . . Hanfling, B. (2018). Needle in a haystack? A
comparison of eDNA metabarcoding and targeted qPCR for detection of the
great crested newt (Triturus cristatus). Ecology and Evolution, 8(12),
6330-6341. doi:10.1002/ece3.4013
Harper, L. R., Lawson Handley, L., Carpenter, A. I., Ghazali, M., Di
Muri, C., Macgregor, C. J., . . . Hänfling, B. (2019). Environmental DNA
(eDNA) metabarcoding of pond water as a tool to survey conservation and
management priority mammals. Biological Conservation, 238.
doi:10.1016/j.biocon.2019.108225
Hoshino, T., Nakao, R., Doi, H., & Minamoto, T. (2021). Simultaneous
absolute quantification and sequencing of fish environmental DNA in a
mesocosm by quantitative sequencing technique. Scientific Reports,
11(1). doi:10.1038/s41598-021-83318-6
Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M. (2011).
”Sight-unseen” detection of rare aquatic species using environmental
DNA. Conservation Letters, 4(2), 150-157.
doi:10.1111/j.1755-263X.2010.00158.x
Jo, T., Fukuoka, A., Uchida, K., Ushimaru, A., & Minamoto, T. (2020).
Multiplex real-time PCR enables the simultaneous detection of
environmental DNA from freshwater fishes: a case study of three exotic
and three threatened native fishes in Japan. Biological Invasions,
22(2), 455-471. doi:10.1007/s10530-019-02102-w
Kirschner, A. K. T., Schachner, I., Jakwerth, S., Savio, D., Toth, E.,
Kolarevic, S., . . . Farnleitner, A. H. (2021). Microbial faecal
pollution and source tracking. In I. Liška, F. Wagner, M. Sengl, K.
Deutsch, J. Slobodník, & M. Paunović (Eds.), Joint Danube survey 4
Scientific Report: A Shared Analysis of the Danube River (pp. 183-192).
Vienna: ICPDR.
Klymus, K. E., Merkes, C. M., Allison, M. J., Goldberg, C. S., Helbing,
C. C., Hunter, M. E., . . . Richter, C. A. (2019). Reporting the limits
of detection and quantification for environmental DNA assays.
Environmental DNA, 2(3), 271-282. doi:10.1002/edn3.29
Kottelat, M., & Freyhof, J. (2007). Handbook of European freshwater
fishes. Berlin: Kottelat (Privately published).
Kresser, W., & Laszloffy, W. (1964). Hydrologie du Danube. La Houille
Blanche, 2, 133-178.
Lamb, P. D., Hunter, E., Pinnegar, J. K., Creer, S., Davies, R. G., &
Taylor, M. I. (2019). How quantitative is metabarcoding: A
meta-analytical approach. Molecular ecology, 28(2), 420-430.
doi:https://doi.org/10.1111/mec.14920
MacConaill, L. E., Burns, R. T., Nag, A., Coleman, H. A., Slevin, M. K.,
Giorda, K., . . . Thorner, A. R. (2018). Unique, dual-indexed sequencing
adapters with UMIs effectively eliminate index crosstalk and
significantly improve sensitivity of massively parallel sequencing. Bmc
Genomics, 19. doi:10.1186/s12864-017-4428-5
McElroy, M. E., Dressler, T. L., Titcomb, G. C., Wilson, E. A., Deiner,
K., Dudley, T. L., . . . Jerde, C. L. (2020). Calibrating Environmental
DNA Metabarcoding to Conventional Surveys for Measuring Fish Species
Richness. Frontiers in Ecology and Evolution, 8.
Meulenbroek, P., Drexler, S., Huemer, D., Gruber, S., Krumbock, S.,
Rauch, P., . . . Waidbacher, H. (2018). Species-specific fish larvae
drift in anthropogenically constructed riparian zones on the Vienna
impoundment of the River Danube, Austria: Species occurrence,
frequencies, and seasonal patterns based on DNA barcoding. River
Research and Applications, 34(7), 854-862. doi:10.1002/rra.3303
Miya, M. (2022). Environmental DNA Metabarcoding: A Novel Method for
Biodiversity Monitoring of Marine Fish Communities. Annual review of
marine science, 14(1), null. doi:10.1146/annurev-marine-041421-082251
Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato, K., .
. . Iwasaki, W. (2015). MiFish, a set of universal PCR primers for
metabarcoding environmental DNA from fishes: detection of more than 230
subtropical marine species. Royal Society open science, 2(7), 33.
doi:10.1098/rsos.150088
Olsen, J. B., Lewis, C. J., Massengill, R. L., Dunker, K. J., &
Wenburg, J. K. (2016). An evaluation of target specificity and
sensitivity of three qPCR assay for detecting environmental DNA from
Northern Pike (Esox lucius) (vol 7, pg 615, 2015). Conservation Genetics
Resources, 8(1), 89-89. doi:10.1007/s12686-016-0526-y
Piñol, J., Senar, M. A., & Symondson, W. O. C. (2019). The choice of
universal primers and the characteristics of the species mixture
determine when DNA metabarcoding can be quantitative. Molecular ecology,
28(2), 407-419. doi:https://doi.org/10.1111/mec.14776
Polanco F, A., Richards, E., Flück, B., Valentini, A., Altermatt, F.,
Brosse, S., . . . Pellissier, L. (2021). Comparing the performance of
12S mitochondrial primers for fish environmental DNA across ecosystems.
Environmental DNA, n/a(n/a). doi:10.1002/edn3.232
Pont, D., Rocle, M., Valentini, A., Civade, R., Jean, P., Maire, A., . .
. Dejean, T. (2018). Environmental DNA reveals quantitative patterns of
fish biodiversity in large rivers despite its downstream transportation.
Scientific Reports, 8, 13. doi:10.1038/s41598-018-28424-8
Pont, D., Valentini, A., Rocle, M., Maire, A., Delaigue, O., Jean, P.,
& Dejean, T. (2021). The future of fish-based ecological assessment of
European rivers: from traditional EU Water Framework Directive compliant
methods to eDNA metabarcoding-based approaches. J Fish Biol, 98(2),
354-366. doi:10.1111/jfb.14176
R Core Team (2020). R software v.4.03. A language and environment for
statistical computing. Vienna, Austria: R foundation for statistical
Computing.
Rourke, M. L., Fowler, A. M., Hughes, J. M., Broadhurst, M. K.,
DiBattista, J. D., Fielder, S., . . . Furlan, E. M. (2021).
Environmental DNA (eDNA) as a tool for assessing fish biomass: A review
of approaches and future considerations for resource surveys.
Environmental DNA, n/a(n/a). doi:10.1002/edn3.185
Sard, N. M., Herbst, S. J., Nathan, L., Uhrig, G., Kanefsky, J.,
Robinson, J. D., & Scribner, K. T. (2019). Comparison of fish
detections, community diversity, and relative abundance using
environmental DNA metabarcoding and traditional gears. Environmental
DNA, 1(4), 368-384. doi:10.1002/edn3.38
Sato, M., Inoue, N., Nambu, R., Furuichi, N., Imaizumi, T., & Ushio, M.
(2021). Quantitative assessment of multiple fish species around
artificial reefs combining environmental DNA metabarcoding and acoustic
survey. Scientific Reports, 11(1), 19477-19477.
doi:10.1038/s41598-021-98926-5
Schmutz, S., Zauner, G., Eberstaller, J., & Jungwirth, M. (2001). Die
“streifenbefischungsmethode”: Eine methode zur quantifizierung von
fischbeständen mittelgrosser fliessgewässer. Österreichs Fischerei, 54,
14-27.
Schnell, I. B., Bohmann, K., & Gilbert, M. T. P. (2015). Tag jumps
illuminated - reducing sequence-to-sample misidentifications in
metabarcoding studies. Molecular Ecology Resources, 15(6), 1289-1303.
doi:10.1111/1755-0998.12402
Shu, L., Ludwig, A., & Peng, Z. (2020). Standards for Methods Utilizing
Environmental DNA for Detection of Fish Species. Genes (Basel), 11(3).
doi:10.3390/genes11030296
Sigsgaard, E. E., Torquato, F., Froslev, T. G., Moore, A. B. M.,
Sorensen, J. M., Range, P., . . . Thomsen, P. F. (2020). Using
vertebrate environmental DNA from seawater in biomonitoring of marine
habitats. Conservation Biology, 34(3), 697-710. doi:10.1111/cobi.13437
Soberon, J., & Llorente, J. (1993). THE USE OF SPECIES ACCUMULATION
FUNCTIONS FOR THE PREDICTION OF SPECIES RICHNESS. Conservation Biology,
7(3), 480-488. doi:10.1046/j.1523-1739.1993.07030480.x
Sommerwerk, N., Hein, T., Schneider-Jakoby, M., Baumgartner, C.,
Ostojic´, A., Paunovic´, M., . . . Tockner, K. (2009). The Danube River
Basin. In K. Tockner, C. Zarfl, & C. Robinson (Eds.), Rivers of Europe
(pp. 59-112). Amsterdam: Elsevier Academic Press,.
Stankovic, D., Crivelli, A. J., & Snoj, A. (2015). Rainbow Trout in
Europe: Introduction, Naturalization, and Impacts. Reviews in Fisheries
Science & Aquaculture, 23(1), 39-71. doi:10.1080/23308249.2015.1024825
Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., & Kawabata, Z.
(2012). Estimation of Fish Biomass Using Environmental DNA. Plos One,
7(4), 8. doi:10.1371/journal.pone.0035868
Thompson, G. G., Withers, P. C., Pianka, E. R., & Thompson, S. A.
(2003). Assessing biodiversity with species accumulation curves;
inventories of small reptiles by pit-trapping in Western Australia.
Austral Ecology, 28(4), 361-383. doi:10.1046/j.1442-9993.2003.01295.x
Tjorve, E. (2003). Shapes and functions of species-area curves: a review
of possible models. Journal of Biogeography, 30(6), 827-835.
doi:10.1046/j.1365-2699.2003.00877.x
Ushio, M., Murakami, H., Masuda, R., Sado, T., Miya, M., Sakurai, S., .
. . Kondoh, M. (2018). Quantitative monitoring of multispecies fish
environmental DNA using high-throughput sequencing. Metabarcoding and
Metagenomics, 2. doi:10.3897/mbmg.2.23297
Valentini, A., Taberlet, P., Miaud, C., Civade, R., Herder, J., Thomsen,
P. F., . . . Dejean, T. (2016). Next-generation monitoring of aquatic
biodiversity using environmental DNA metabarcoding. Molecular ecology,
25(4), 929-942. doi:10.1111/mec.13428
van Bleijswijk, J. D. L., Engelmann, J. C., Klunder, L., Witte, H. J.,
Witte, J. I., & van der Veer, H. W. (2020). Analysis of a coastal North
Sea fish community: Comparison of aquatic environmental DNA
concentrations to fish catches. Environmental DNA, 2(4), 429-445.
doi:https://doi.org/10.1002/edn3.67
Wang, S., Yan, Z., Hanfling, B., Zheng, X., Wang, P., Fan, J., & Li, J.
(2021). Methodology of fish eDNA and its applications in ecology and
environment. The Science of the total environment, 755(Pt 2),
142622-142622. doi:10.1016/j.scitotenv.2020.142622
Wilcox, T. M., McKelvey, K. S., Young, M. K., Engkjer, C., Lance, R. F.,
Lahr, A., . . . Schwartz, M. K. (2020). Parallel, targeted analysis of
environmental samples via high‐throughput quantitative PCR.
Environmental DNA, 2(4), 544-553. doi:10.1002/edn3.80
Wilcox, T. M., McKelvey, K. S., Young, M. K., Sepulveda, A. J., Shepard,
B. B., Jane, S. F., . . . Schwartz, M. K. (2016). Understanding
environmental DNA detection probabilities: A case study using a
stream-dwelling char Salvelinus fontinalis. Biological Conservation,
194, 209-216. doi:10.1016/j.biocon.2015.12.023
Yates, M. C., Cristescu, M. E., & Derry, A. M. (2021). Integrating
physiology and environmental dynamics to operationalize environmental
DNA (eDNA) as a means to monitor freshwater macro-organism abundance.
Mol Ecol. doi:10.1111/mec.16202
Yates, M. C., Fraser, D. J., & Derry, A. M. (2019). Meta‐analysis
supports further refinement of eDNA for monitoring aquatic
species‐specific abundance in nature. Environmental DNA, 1(1), 5-13.
doi:10.1002/edn3.7
Yates, M. C., Glaser, D. M., Post, J. R., Cristescu, M. E., Fraser, D.
J., & Derry, A. M. (2021). The relationship between eDNA particle
concentration and organism abundance in nature is strengthened by
allometric scaling. Mol Ecol, 30(13), 3068-3082. doi:10.1111/mec.15543
Zajiceke, P., & Wolter, C. (2018). The gain of additional sampling
methods for the fish-based assessment of large rivers. Fisheries
Research, 197, 15-24. doi:10.1016/j.fishres.2017.09.018