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Abstract9

1. Ecological models are extensively and increasingly used in support of environmental policy10

and decision making. Dynamic Bayesian Networks (DBN) as a tool for conservation have11

been demonstrated to be a valuable tool for providing a systematic and intuitive approach12

to integrating data and other critical information to help guide the decision-making process.13

However, data for a new ecosystem are often sparse. In this case, a general DBN developed for14

similar ecosystems could be applicable, but this may require the adaptation of key elements15

of the network.16

2. The research presented in this paper focused on a case study to identify and implement17

guidelines for model adaptation. Our study adapted a general DBN of a seagrass ecosystem18

to a new location where nodes were similar, but the conditional probability tables varied. We19

focused on two species of seagrass (Zostera noltei and Z. marina) located in Arcachon Bay,20

France. Expert knowledge was used to complement peer-reviewed literature to identify which21

components needed adjustment including parameterisation and quantification of the model,22

and desired outcomes. We adopted both linguistic labels and scenario-based elicitation to23

elicit from experts the conditional probabilities used to quantify the DBN.24

3. Following the proposed guidelines, the model structure of the general DBN was retained, but25

the conditional probability tables were adapted for nodes that characterised the growth dy-26

namics in Zostera spp. population located in Arcachon Bay, as well as the seasonal variation27

on their reproduction. Particular attention was paid to the light variable as it is a crucial28

driver of growth and physiology for seagrasses.29

4. Our guidelines provide a way to adapt a general DBN to specific ecosystems to maximise30

model reuse and minimise re-development effort. Especially important from a transferability31
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perspective are guidelines for ecosystems with limited data, and how simulation and prior32

predictive approaches can be used in these contexts.33

Keywords: complex systems, seagrass, model transfers, ecosystems management.34

1 Introduction35

Seagrass ecosystems are widely recognised as crucial ecosystems in the coastal zone, with essen-36

tial functions contributing to multiple marine ecosystems (Hemminga and Duarte, 2000; Pachauri37

et al., 2014). As plants living in shallow coastal waters, seagrass are typically subjected to an-38

thropogenic stressors, such as water quality degradation and coastal development (Cambridge and39

McComb, 1984; Orth et al., 2006). Consequently, understanding the risks posed to these systems40

and how they respond to successive disturbances is essential for improved management (McCann,41

Marcot and Ellis, 2006). However, dealing with ecological problems is inherently complex since42

ecosystems are composed of heterogeneous, complex networks with nonlinear relationships and43

limited predictability (Folke et al., 2004; Starfield, 1997). This is due to multiple interactions that44

occur within ecosystems and between system components across temporal and spatial dimensions45

(Green et al., 2005).46

A model integrating for disparate data and capturing uncertainties and complexities inherent in47

natural systems is a Dynamic Bayesian Network (DBN) (Marcot and Penman, 2019). DBNs are48

temporal extensions of Bayesian networks, which are probabilistic graphical models that use a set49

of random factors (variables of interest) to represent a system (Fig. 1). Each variable within50

the DBN network is presented as a node with directed links forming arcs that express causal51

relationships quantified with conditional probabilities (Koski and Noble, 2011). The conditional52

probability table (CPTs) describes the probability of being in a particular state, given specified53

values of the associated states of the parent nodes; therefore, the size of each CPT for a node de-54

pends on the number of parent nodes and their states (Marcot et al., 2006). CPTs can be obtained55

from expert elicitation, learned from experimental or observational studies, or generated from a56

mix of both approaches. The dynamic component allows the model to capture these interactions57

between variables and changes over time (Friedman, Goldszmidt and Wyner, 2013).58

It is common to discretise nodes into states so that the model infers the subsequent probability59

distribution over those defined states for each node. Discretisation provides a way to capture deci-60

sion thresholds pertinent to management and represents an implicit recognition of the uncertainty61

in the model and available data. The establishment of states within each node is done using recog-62

nised classifications, management thresholds, or guidelines. In contrast, when this information is63

not available, expert knowledge must define node states and thresholds (Pollino et al., 2007).64

The value of DBNs as a tool to assist in the management of seagrass ecosystems has been demon-65

strated in numerous studies where network structures capture nonlinear, dynamic processes in66

response to natural and anthropogenic stressors (Wu et al., 2017, 2018; Trifonova et al., 2015;67

Maxwell et al., 2015). However, for a new ecosystem or less well known ecosystem, it is generally68
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Figure 1: The overall DBN structure. Nodes are ovals and arrows denote causal parent-child relationships

in the direction of the arc where a parent node (e.g., Meadow Type) influences a child node (e.g., Location

Type); conversely, an absence of a link implies conditional independence. Rounded rectangles denote sub-

networks. Nodes are coloured as follows: white for site condition nodes, purple for recovery nodes, green

for resistance nodes, blue for environmental nodes, yellow for population (shoot density) nodes, and pink

for all other nodes. From “Timing anthropogenic stressors to mitigate their impact on marine ecosystem

resilience Supplementary Information” by Wu et al. (2017), Nature Communications 8:1263, Supplementary

material, Figure 7.

not feasible to collect sufficient empirical data to represent the whole spectrum of scenarios (Clark,69

2001; Yates et al., 2018). The DBN framework provides a pragmatic approach for combining lim-70

ited data from different sources and also including relevant expert knowledge through a formal71

elicitaion process (Uusitalo, 2007). Experts’ opinions can be used to inform the model structure72

and parameterisation of the ecosystem variables, which are represented as nodes in the network73

(Pitchforth and Mengersen, 2013).74

The challenge considered in this paper is to adapt a DBN developed for one ecosystem to a new75

ecosystem. This aligns with the idea of model transferability, which involves retrofitting a previ-76

ously developed model to suit a new context (Vanreusel, Maes and Van Dyck, 2007; Hadayeghi77

et al., 2006; Rapacciuolo et al., 2012). This study presents an example of transferring a DBN de-78

veloped for a global seagrass ecosystem involving three genera to a specific site with two seagrass79

species. The model was adapted using expert information and the limited data available for the80

new system. Based on this example, general guidelines are introduced to adapt an existing DBN81

to a new context and validate the new model with limited data. A novel approach for evaluating82
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the transferability of such a DBN is also presented. The proposed method and lessons learned in83

this study can also be applied to other sites and help guide the reuse and adaptation of different84

models, especially for locations with limited data.85

2 Materials and Methods86

A DBN model was developed by Wu et al. (2018) to predict the resilience of seagrass meadows to87

dredging disturbances. The model focused on the following genera and locations, (1) Amphibolis88

at Jurien Bay, Australia, (2) Halophila at Hay Point, Australia, and (3) Zostera at Pelican Banks,89

Gladstone, Australia. This model considered whole-of-system interactions, including light reduc-90

tion due to dredging (the hazard), the duration, frequency and start time of dredging, as well as91

ecosystem characteristics such as the life-history traits expressed by genera and local environmental92

conditions. The general DBN model was also applied to predict how dredging timing, duration,93

and intensity affect the resilience of seagrasses belonging to similar genera at 28 sites distributed94

worldwide (Wu et al., 2017). However, species-specific variations, as well as the application of95

the general mmodel to specific locations, have not yet been explored. Therefore, we attempted to96

assess the model transferability from global to local scale and from genera to seagrass species.97

2.1 Arcachon Bay Case Study98

Our case study includes two Zostera seagrass species located in Arcachon Bay, France: Z. marina99

and Z. noltei. Arcachon Bay is a tidal ecosystem, sheltering Europe’s largest seagrass bed of dwarf100

grass (Z. noltei) (Auby and Labourg, 1996). This species colonises soft sandy to muddy sediments101

of shallow sheltered bays, often in intertidal areas. In the shallow subtidal sector around the102

channel edges, another species, Z. marina (eelgrass) grows forming smaller beds (Cognat et al.,103

2018). Seagrass mapping between 1989 and 2007 showed a severe decline of Zostera spp. from104

2005, an estimated 33% reduction for Z. noltei (from 68.5 km2 to 45.7 km2) and 74% (from 3.7105

km2 to 1.0 km2) for Z. marina meadows (Plus et al., 2010).106

Although studies have suggested that factors such as climate change, eutrophication, increased107

geese grazing, wasting disease, herbicide contamination, or dredging activities may explain this108

decline, the exact reason for the loss of seagrass in Arcachon Bay is still unclear (Cognat et al.,109

2018; Plus et al., 2010). Therefore, transferring a whole-of-system DBN model, which integrates110

analysis of interactions and feedbacks across different components of the system to Arcachon Bay,111

provides a way to understand the ongoing seagrass dynamics and allow projections to support112

future decision making. Furthermore, such a model could be used to simulate and assess different113

management scenarios to support decision makers.114

2.2 Overview of the Guidelines115

Our proposed guidelines have three main stages: knowledge acquisition, revision and design phase,116

and site application (Fig. 2). The first stage focuses on identifying local knowledge, and available117

data for the study area. The second stage reviews the model structure such as how nodes are linked118
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and what states should be assigned to each node. Furthermore, key elements in the functioning of119

the environmental system are identified. The third stage is the Site Application, which is subdivided120

into three steps that are iterated through until the best possible local model is obtained given local121

knowledge and available data. In the first step, the DBN is quantified using expert elicitation122

and/or available data. The proposed adaptation of the model is validated in the final step against123

observed data, ensuring that the model response reflects both the data and local knowledge.

Figure 2: Stepwise methodology flowchart for adapting an existing model through combined observation

data, literature, and expert knowledge.

124

Step 1: Identify Available Data and Expertise125

Insufficient and incomplete data is a widespread problem in environmental research, principally126

when information on the system in question is poorly studied. Therefore, when proposing to127

transfer an existing model to another context, an important step is to identify what data and128

expertise are available. The amount of data available and expert knowledge for that system will129

determine whether the model can be transferred or not. In that regard, in the absence of data,130
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the transferability of the model is not possible. On the other hand, the process of transferring a131

model becomes appropriate with sufficient data and suitable expertise available.132

In data-restricted case studies, the inclusion of experts’ knowledge is particularly beneficial to133

overcome data limitations, strengthen and/or adjust networks, assign states of nodes, and provide134

estimates of the parameters (Pitchforth and Mengersen, 2013). A structured expert elicitation135

can be employed to update the model, and available data can also be included as well as used for136

validation and threshold tuning.137

Step 2: Review the Model Structure and Identify Key Elements138

The revision and design phase involves reviewing the existing model structure where a set of139

links representing the causal relationships between nodes is assessed through expert elicitation.140

Then, expert knowledge and peer-reviewed literature are utilized to identify which components141

(nodes and states) needed adjustment. Finally, with the key elements (nodes and arcs) identified,142

the conditional relationships of these elements need to be quantified using conditional probability143

tables (CPTs).144

The use of expert knowledge and peer-reviewed literature may be necessary to identify which145

components of the DBN are likely to need adjustments to adapt the model to another context.146

For example, after identifying the species of interest, experts and literature can be consulted to147

list those factors that might help or hinder the success of management goals. It should be kept in148

mind that the structure of the DBN should give an overview of the whole environmental system,149

so begin by evaluating if the causal influence of nodes (and states) represents the most critical150

variables in the system as a whole.151

Step 3: Quantify the CPTs and Evidence152

A CPT underlies every node in a DBN, in which the data (expressed as probabilities) used to fill153

the CPTs must describe how a node changes in response to changes in its parents. As the DBN is a154

network, the effect of changing any variable is transmitted right through the network in congruence155

with the relationships expressed by the CPTs. Thus, when transferring a DBN to another context,156

the CPT for those nodes that have undergone adaptations need to be assessed and adjusted if157

required to fit the new case data. Aside from the CPT adjustments, it is also important to update158

the evidence, which is the new data entered into the DBN.159

Step 4: Make Simulations Based on the Model160

Having the CPTs quantified, the behaviour of the DBN model can be tested by trying different161

combinations of input values, such as altering the states of some nodes, to assess the posterior162

marginal probabilities across the entire network. If the model shows unrealistic behaviour, consider163

modifying the CPTs, by either combining, splitting, or redefining the nodes and/or states of the164

nodes, or readjusting the overall structure of the model until it provides a reasonable response.165
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Step 5: Validate the model166

The model validation phase is used to evaluate the confidence in the model components, such167

as factors, the structure, discretisation and quantification (Wu et al., 2017). Thus, a validation168

approach must be conducted to compare the predicted-state probabilities for a key response variable169

against observed state probabilities derived from data. One way to validate the model is through170

the mean squared error (MSE) metric, which is used to compute distances between the model171

predicted-state probabilities and observed data. The lower value of MSE indicates better model172

performance, and hence the more accurate the model predictions.173

2.3 Guidelines in the Context of the Case Study174

In accordance with the general guidelines, the methodology used to adapt the model to our case175

study is presented below, broken down into three stages where all steps and decisions are presented.176

2.3.1 Knowledge Acquisition177

Step 1: Identify Available Data and Expert Knowledge178

Because local ecological knowledge is crucial, specialists with good knowledge of seagrass and179

marine ecology in Arcachon Bay were consulted. During the elicitations, the modellers were re-180

sponsible for guiding the experts through the tasks, encouraging discussion, and presenting results181

and analysis back to the experts. In addition, modellers worked collaboratively with domain ex-182

perts in establishing relevant literature, data, and key biological and environmental processes that183

needed to be adapted for the case study. Communication with all experts was carried out entirely184

online, via Zoom and e-mail, since face to face meetings were not feasible due to global pandemic185

travel restrictions.186

The empirical data used here was provided by IFREMER (the French Institute for Research and187

Sea Exploitation) collected from nine sampling sites distributed over the whole of the Bay selected188

for their different depths, environmental conditions, and seagrass density (Cognat et al., 2018).189

Although we have data for nine sites, only four sites, FONT, GAIL, ILE, and ROCH, were con-190

sidered for tuning model parameters (light thresholds) and validation analysis because these sites191

were considered to be in good physiological condition and historically had not declined (Florian192

Ganthy, pers. comm.).193

Seagrass shoot density, benthic light and temperature data from a one-year field survey (December194

2015 - December 2016) were used to test and validate the model. For each site, measurements of195

shoot density were collected monthly, while light intensity (µmols m−2 s−1) and temperature (°C)196

were measured continuously at high frequency (10 min sampling rate). Unfortunately, no shoot197

density and biomass records were available for Z. marina, making it impracticable to validate the198

model for this species. To incorporate light data in DBN inference, we discretised light into states.199

The probability of light being in one of these states is based on simultaneous requirements of light200

intensity (mols m−2 day−1) and light duration per day (number of hours of saturation and com-201

pensation irradiance per day). Therefore, site-specific information was required when establishing202
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critical thresholds for water quality based on the responses of seagrass plants to light availability203

and minimum light levels. As this information was not available for our study area, we employed204

expert elicitation based on studies from similar sites in France and peer-reviewed literature to205

estimate light thresholds and estimate baseline light patterns.206

2.3.2 Revision and Design Phase207

Step 2: Review the Model Structure and Identify Key Elements208

The general DBN that was adapted in this study has a network structure comprised of 34 nodes209

organised into four themes, resistance (e.g., physiology), recovery (e.g., growth), site conditions210

(e.g., genera present), and environmental factors (e.g., light) (Fig. 1).The current framework211

uses hybrid and dynamic BNs containing discrete variables over multiple time stages. Overall,212

the key inputs for the model are the state probability for light (environmental), the genera and213

location-specific parameters relating to climate (tropical or temperate), depth and tidal exposure214

(subtidal or intertidal), and transitory or enduring (persistent) type of meadow (site conditions).215

The temporal frequency of this DBN model is monthly time steps and at local level.216

2.3.3 Site Application217

Step 3: Quantify the CPTs and Evidence218

Expert advice was also sought provide guidelines on node parametrisation, missing data handling219

and estimates of the conditional probabilities. With regards to parameterisation, experts identified220

nodes that required updating to adapt the general DBN to the Arcachon case study. The following221

example shows the CPT quantification process for one node, named physiological status of plants222

(Fig. 3). Note that other nodes, including accumulated light accumulated burial and location223

type are parent nodes of the physiological status of plants child node. The elicitation process took224

the form of scenarios, an intuitive way for experts to make sense of the evidence (Pennington and225

Hastie, 1993), and linguistic labels of certainty, extremely likely, very likely, likely, 50/50, unlikely,226

very unlikely, extremely unlikely and impossible. This iterative approach is adopted to maximise227

cognitive compatibility, as people find it challenging to think of probabilities with several condi-228

tioning factors to quantify the DBN (Uusitalo, 2007).229

During elicitations, we focused on updating the CPTs for nodes to capture the local growth dy-230

namics of Zostera spp. meadows located in the Bay of Arcachon and seasonal variations in their231

population and life histories. Local knowledge of seagrass growth rates and reproductive success232

was required to express and calculate the relationships between nodes related to the main drivers233

of the fitness of seagrass. Temporal variations of growth rates (e.g., light) and sexual reproduction234

(e.g., flowering shoots, seed production, and seed quality and density) between species and location235

were considered when updating the relevant conditional probability tables so that the interactions236

nodes and interactions between nodes captured the local conditions.237

Like other plants, the light regime is the primary environmental factor influencing photosynthesis238

and the growth of seagrass (Dennison, 1987). The light required for growth and survival varies239
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by species, location, and temperature (Kirk, 1994). The maximum photosynthetic rate which pro-240

motes plant growth occurs at saturating light conditions (above the light half-saturation point Ik).241

At lower light values, the compensation irradiance (Ic) level captures when photosynthesis exactly242

balances respiration and primary metabolism is maintained but not growth. If light falls below Ic,243

respiration is greater than photosynthesis, and there is not enough light for plant survival (Lee,244

Park and Kim, 2007). In the existing DBN model, the probability of above or below saturation245

light is used to capture the optimal and suboptimal light conditions that support seagrass growth.246

Here, experts propose to test two distinct ways to discretise the light factor to obtain evidence to247

support the use of a two-state (based only on Ik) or a three-state (Ik and Ic) light model. The248

thresholds used to discretise the light factor into those states are described below.

Figure 3: Simple model structure representing the relationship between a child node and all its parents and

an illustration of a CPT calculation for the node Physiological Status of Plants using expert elicitation.

The nodes Accumulated Light, Accumulated Burial and Location Type (parent nodes) represent the causal

factors of Physiological node Status of Plants node (child node).

249

As light intensity thresholds were not well understood in our study area, we used a K-nearest250

neighbours algorithm (k-NN) (Fix and Hodges, 1989) based on published data to apply to our area251

of study (See Supporting Information S1, and Table S1). For this approach, since photosynthetic252

parameters are related to temperature and show seasonal trends, we used the monthly tempera-253
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ture of Arcachon Bay to predict seasonal Ik and Ic thresholds. The saturation and compensation254

irradiance (Ik and Ic, respectively) obtained from the k-nearest algorithm are summarised for Z.255

noltei in Table 1 (See Supporting Information Tables S2 and S3 for more information on Ik and256

Ic, estimated for Z. marina and Z. noltei at the nine sampling sites). Both Ik and Ic were used257

to assess the number of hours of saturation and compensation light. From that, thresholds for258

light duration (Hsat and Hcomp) were required to determine the number of hours of saturation and259

compensation light per day was necessary to classify the daily light as above, below and/or below260

limitation state. Because this information was unknown for Z. noltei located at Arcachon Bay,261

we employed expert elicitation based on recorded data to set different combinations of Hsat and262

Hcomp values (Table 2).

Table 1: Average monthly water temperature (Temp, °C), saturation and compensation irradiance (Ik and

Ic, µmols photons m−2 s−1) estimated for Z. noltei located at FONT, GAIL, ILE and ROCH.

FONT GAIL ILE ROCH

Temp Ik Ic Temp Ik Ic Temp Ik Ic Temp Ik Ic

Jan 11 174 19 11 174 19 12 174 19 12 174 19

Feb 11 174 19 11 174 19 12 174 19 11 174 19

Mar 13 174 19 13 174 19 14 174 19 13 174 19

Apr 16 305 35 16 305 35 16 305 35 16 305 35

May 20 305 35 19 305 35 19 305 35 19 305 35

Jun 23 254 33 22 254 33 23 254 33 23 254 33

Jul 26 254 33 25 254 33 25 254 33 25 254 33

Aug 27 254 33 25 254 33 25 254 33 26 254 33

Sep 24 254 33 23 254 33 24 254 33 24 254 33

Oct 17 305 35 18 305 35 19 305 35 18 305 35

Nov 14 174 19 14 174 19 15 305 35 14 174 19

Dec 12 174 19 12 174 19 13 174 19 12 174 19

263

After establishing the light intensity and duration thresholds, it was possible to estimate the num-264

ber of days of light being in one of those states per month. The proportion of days of above265

saturation light in a month was represented by δ(xlightabovesat, t) and the probability of above satura-266

tion light was encoded as δ(xlightabovesat, t), t = {Jan, Feb, . . . , Dec}. The same equation was applied267

to model the probability of light being below saturation or below limitation. These probabili-268

ties were input as evidence to the DBN in simulating scenarios. Finally, we estimated the light269

conditions for all sites and used it as evidence of our model.270

Step 4: Make Simulations Based on the Model271

The behavior of the structure was tested by the application of two light models, in which different272

numbers of states for the light node were used. Furthermore, for each light model, combinations273

of light thresholds were also considered to assess the posterior marginal probabilities for the shoot274
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Table 2: The combination of the lengths of daily light periods thresholds (Hsat and Hcomp, hours) for Z.

noltei. The thresholds are separated for the 2-state model.

Model Threshold ID Hsat Hcomp

2-state

Thdl-1 4 -

Thdl-2 5 -

Thdl-3 5.5 -

Thdl-4 6 -

Thdl-5 7 -

Thdl-6 7.5 -

Thdl-7 8 -

Thdl-8 8.5 -

Thdl-9 9 -

3-state

Thdl-1 6 8.5

Thdl-2 6 9

Thdl-3 6 10

Thdl-4 6 11

Thdl-5 6 12

Thdl-6 7 8.5

Thdl-7 7 9

Thdl-8 7 10

Thdl-9 7 11

Thdl-10 7 12

Thdl-11 8 8.5

Thdl-12 8 9

Thdl-13 8 10

Thdl-14 8 11

Thdl-15 8 12

Thdl-16 8.5 8.5

Thdl-17 8.5 9

Thdl-18 8.5 10

Thdl-19 8.5 11

Thdl-20 8.5 12

Thdl-21 9 8.5

Thdl-22 9 9

Thdl-23 9 10

Thdl-24 9 11

Thdl-25 9 12
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density node. Specifically, we were interested in a key outcome node which was shoot density and275

its change over time. Thus, it is possible to verify if the predictions obtained from the model276

are consistent with the current understanding of the system (Chen and Pollino, 2012; Bogaert277

and Fasbender, 2007; Uusitalo, 2007). Therefore, we simulated different light threshold scenarios278

for both 2- and 3-state light formulations, and validated model predicted shoot density against279

observed shoot density. The simulations were conducted for each of the four sites in the Bay.280

The system response can be sub-divided into two periods, the initialisation period to establish the281

baseline pattern and the response period. A weighted mean approach was used as a comparative282

method in which multiple state probability trajectories are aggregated into a single trajectory. The283

weighted mean follows the approach of Wu et al. (2017).284

Step 5: Validate the Model285

The MSE was used as a distance metric to compute distances between simulated posterior marginal

distribution for shoot density (probabilities for high, moderate, low and zero shoot density) against

observed distributions of shoot density. Shoot density data collected in Arcachon Bay (Cognat

et al., 2018) were used to validate the prediction of the model (See Supporting Information Table

S4). We used a hierarchical ordinal regression analysis to transform the observed data into state

probabilities of high, moderate, low and zero shoot density as follows:

g(yi,t) = β0,i + β1,i sin

(
t

6π

)
+ β2.i,Site

286

Here, we use a Generalised Linear Mixed Model (GLMM) and g−1(yi,t) represents the probability287

of state i (high, moderate, low and zero) of shoot density at time t (month of year). The regression288

has coefficients β0 and β1, which are the global intercept and the slope for the seasonal effect from289

months t, respectively, and coefficient β2, which is the random effect used to capture the differences290

between sites. The model was formulated with the Bayesian framework (Wu et al., 2015) and fitted291

with Hamiltonian Monte Carlo (HMC) using the R package brms (Bürkner, 2018) using default,292

flat priors (i.e. uninformed priors).293

3 Results294

3.1 Application of Guidelines to Case Study295

In this section, the results from the application of the guidelines for adapting a model to a case296

study is outlined. The results are broken down into three stages that include sub-elements that297

can be viewed as a step-by-step process.298
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3.1.1 Knowledge Acquisition299

Step 1: Identify Available Data and Expert Knowledge300

Our study had access to both seagrass data, but only limited data, and environmental experts301

with local knowledge. Therefore, since data was limited and insufficient to ‘learn’ the DBN model302

structure, the effort to harness the expert knowledge to adapt the model became critical.303

Overall, the key inputs for the model were the state probability for light (environmental), the304

genera and location-specific parameters relating to climate (tropical or temperate), depth and305

tidal exposure (subtidal or intertidal), and transitory or enduring (persistent) type of meadow (site306

conditions). The temporal frequency of this DBN model was monthly time steps and over global307

spatial locations. The key metric of interest to management was shoot density (number of shoots308

m2). Given the importance of local ecological knowledge, we obtained the participation of ten309

experts in seagrass and marine ecology. Amongst them, six experts came from the Ifremer, France,310

one from Edith Cowan University, Australia, and one from James Cook University, Australia.311

3.1.2 Revision and Design Phase312

Step 2: Review the Model Structure and Identify Key Elements313

In the existing DBN framework (Wu et al., 2018), the variability in seagrass response was modelled314

globally across different latitudes, genera and local conditions. However, this model did not capture315

differences between species at local scales. Therefore, adjustments on factors used to capture the316

general health and growth of the two Zostera spp. are needed, these are summarised in Table 3.317

For example, although both species are perennial (persistent) in the Bay, Zostera beds display318

significant seasonal variations in density and biomass (Auby and Labourg, 1996). Tolerance and319

ability to acclimate to different environmental conditions, such as turbidity, salinity regimes and320

light availability, is also known to vary between species (Peralta et al., 2000; Cognat et al., 2018).321

For example, to offer better resistance to desiccation during low tide, Z. noltei has a narrower leaf322

than Z. marina, as Z. noltei covers the large intertidal flats of Arcachon Bay while Z. marina only323

grows in submerged channels (Plus et al., 2010).324

3.1.3 Site Application325

Step 3: Quantify the CPTs and Evidence326

As stated above, based on expert agreement it was unnecessary to change the definition of nodes327

and the core model dynamics for our case study, so the overall structure of the DBN was retained.328

The focus was then on changes in the designation of probabilities and correspondents CPTs for329

these components that reflect the local system of interest (Step 3, Fig. 2). The CPTs were used to330

capture the uncertainty and variation of multiple associations between species and their environ-331

ment. To elicit the conditional probabilities for each node of interest from the experts, questions332

were phrased as follows “If seagrasses were under good conditions of light but show poor physio-333

logical status, what is the probability of the plants growing?”.334
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Table 3: This table shows the nodes that have undergone adjustment when transferring the existing DBN

to the Arcachon Bay case study. In addition, a definition of the nodes is provided and where the change

took place in each node. Definition of the nodes is obtained from “Timing anthropogenic stressors to

mitigate their impact on marine ecosystem resilience Supplementary Information” by Wu et al. (2017),

Nature Communications 8:1263, Supplementary material, Table 3.

Node Definition What has changed?

Accumulated Light Probability of meeting light

requirements for the normal

function of the plant rep-

resenting accumulated vari-

ations and effects in that

month.

The addition of a third state.

The 2-state and 3-state mod-

els are compared.

Genera Presence Categorical, proportion of

meadow of that genera.

The current model adds two

specific Zostera species: Z.

marina and Z. noltei.

Physiological Status of

Plants

The physiological status cap-

tures the degree to which the

plant can function normally.

Node modelled as a function

of light factor - CPTs are ad-

justed when considering a 3-

state light model.

Baseline Shoot Density Best case expected shoot den-

sity for a given month given

the physiological status of the

meadow. Used to explicitly

capture large seasonal varia-

tions.

The CPTs are estimated for

each species separately to

capture the different growth

strategies between species.

Loss in Shoot Density Loss in shoot density for that

month.

Node modelled as a function

of light factor - CPTs are ad-

justed when considering a 3-

state light model.

Seed Density Density of seeds per m2.

States capture the dynamic

range in growth rates from

fast colonising species to slow

persistent species.

The CPTs are adjusted to

capture the reproduction cy-

cle for the two species.

Continue on the next page
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Recruitment Rate from

Seeds

Rate of recruitment into the

adult population from seeds.

The CPTs are adjusted to

capture the reproduction cy-

cle for the two species. Node

modelled as a function of

light factor - CPTs adjusted

when considering a 3-state

light model.

The modifications required for the case study included factors that characterised the growth dy-335

namics in Zostera spp. population located in Arcachon Bay and the seasonal variation on their336

reproduction (Table 4). Although adjustments were made to the conditional probabilities for the337

nodes used to capture the reproduction cycle of the seagrass, such as the seed density and seed338

recruitment rate factors, the CPTs for those parameters were determined to be identical for both339

species. This is because the seasonal variation in reproduction does not differ between the two340

species of Zostera. However, the seagrass growth captured via shoot density factor had the CPTs341

estimated separately for Z. marina and Z. noltei to capture the different growth strategies between342

the species. Additionally, nodes used to capture the impact on the seagrass population caused by343

different light conditions, such as loss in shoot density, physiological status of plants, and seed344

recruitment rate, have undergone adjustments when quantifying their CPTs for the 3-state of light345

model (Table 3).346

Light availability appears to be a critical factor influencing shoot densities, growth rates, and347

seagrass physiology. Thus, the light impact on seagrass ecosystems is considered in terms of eco-348

logical baselines and as a key stressor to modelling risk. However, determining an appropriate light349

threshold for seagrasses involves several challenges. First, because obtaining this information (Ik,350

Ic, Hsat and Hcomp) from regional and seasonal light regimes is uncommon. Second, the tolerance351

to different light regimes is known to vary between species, as each seagrass species has unique352

physiological and morphological adaptations to light availability (Dennison et al., 1993).353

In our case study, one element used as evidence of the model is the light conditions, which is incor-354

porated in DBN inference via state probability of above saturation, below saturation and/or below355

limitation light. As light thresholds were not well understood in our study area, a combination of356

light thresholds was established (Table 2) and then employed to estimate the state probability of357

light used to build evidence for the model (Step 4, Fig. 2).358

Step 4: Make Simulations Based on the Model359

In our case study, the model infers predicted-state probabilities for shoot density based on scenarios360

of different species (Z. marina or Z. noltei), the light conditions (2- or 3-state) and site-specific361

parameters relating to depth and tidal exposure (subtidal or intertidal) (Fig. 4). In the absence of362

light thresholds data, we considered ranges of values based on expert judgments as evidence of light363

conditions. This process of varying the value of uncertainty one at a time while keeping all other364

factors fixed helped us to draw conclusions about whether it should have further adjustments.365
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Each subfigure comprises two panels, where the top panel shows the state probability trajectories366

over time for the states indicated, while the bottom panel shows the weighted mean response367

(assuming a uniform distribution) of the expected value and the interquartile range. As can be seen368

from Fig. 4, a light saturation threshold Ik that is higher than available light leads to significant369

decline in shoot density but the level of impact differs by site. For example, when comparing370

FONT with ILE for Hsat = 8h, the meadow is driven to zero shoot density for seagrasses located371

at FONT, while this pattern is not observed at ILE.372

Step 5: Validate the Model373

The model was validated by comparing simulated scenarios corresponding to unobserved parame-374

ters (i.e. light thresholds) with observed data (shoot density and light over time). The MSE in the375

predicted state probabilities for shoot density compared to observed values lies between 0.01 to 0.376

04 across the four sites when considering theHsat of 6 h and 2-state model (Table 4), demonstrating377

an acceptable fit of the model to the data. Furthermore, the ability of the model to predict seagrass378

shoot density trends was also validated for the 3-state of light, in which the MSE values are on the379

order of 0.01 for GAIL and ROCH for Hsat of 6 h and Hcomp of 8.5 (Table 5). For the other two380

sites, FONT and ROCH, the lowest MSE estimated are 0.02 and 0.01, respectively, is observed381

when the highest light thresholds are considered. Thus, the 2- and 3-state models demonstrated382

a similar ability to predict the trends for the Z. noltei at Arcachon Bay; nevertheless, because of383

parsimony and data limitations in a model transferability context, we decided to go with a 2-states384

light model and Hsat of 6 h for Arcachon Bay.

Table 4: MSE for the 2-state model per site (FONT, GAIL, ILE and ROCH) and considering different

lengths of daily light periods thresholds (Hsat, hours) for Z. noltei.

Hsat FONT GAIL ILE ROCH

4 0.0417 0.0401 0.0405 0.0424

5 0.0399 0.0392 0.0395 0.0409

5.5 0.0390 0.0387 0.0392 0.0403

6 0.0362 0.0145 0.0121 0.0183

7 0.0586 0.0176 0.0434 0.0490

7.5 0.1446 0.0923 0.0785 0.0712

8 0.1977 0.1158 0.0930 0.1327

8.5 0.2848 0.1965 0.1764 0.2553

9 0.2939 0.2904 0.2605 0.2855

385

4 Discussion386

Model transferability and adaptation can be highly beneficial, since methods to enable reusing387

and adapting models can help with widespread model uptake to support managers and decision388

makers, especially for sites with limited data. In general, transferring a model to a new context389
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Figure 4: The model predicted-state probabilities for shoot density for Z. noltei located at FONT and ILE.

The initial 24 months are used for initialisation to allow the system to enter the baseline pattern. Top

plots are the probability of each shoot density state, and the bottom plots show the weighted mean of the

expected value and the interquartile range. Shoot density state probabilities for seagrass located at (a)

FONT and (b) ILE, when considered Hsat of 6 h as light thresholds to estimate the light conditions used as

input to the model. Shoot density state probabilities for seagrass located at (c) FONT and (d) ILE, when

considered Hsat of 8 h as light thresholds to estimate the light conditions used as input to the model.

can shorten the time and effort to develop a new model by adapting an existing model. Although390

not a replacement for comprehensive data and studies, model transferability helps to provide pre-391

dictive evidence on potential future scenarios to support proactive management, such as in the392

management of resilience. This paper has demonstrated the transferability of an existing general393
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Table 5: MSE for the 3-state model per site (FONT, GAIL, ILE and ROCH) and considering different

lengths of daily light periods thresholds (Hsat and Hcomp hours) for Z. noltei.

Hsat Hcomp FONT GAIL ILE ROCH

6 8.5 0.0254 0.0122 0.0108 0.0164

6 9 0.0295 0.0128 0.0113 0.0175

6 10 0.0336 0.0137 0.0116 0.0175

6 11 0.0363 0.0140 0.0117 0.0187

6 12 0.0363 0.0140 0.0117 0.0175

7 8.5 0.0230 0.0185 0.0168 0.0150

7 9 0.0269 0.0332 0.0287 0.0194

7 10 0.0416 0.0155 0.0423 0.0130

7 11 0.0543 0.0460 0.0425 0.0484

7 12 0.0561 0.0457 0.0427 0.0130

8 8.5 0.0822 0.0471 0.0348 0.0246

8 9 0.0875 0.0409 0.0365 0.0522

8 10 0.1495 0.0738 0.0775 0.0130

8 11 0.1976 0.1032 0.0846 0.1013

8 12 0.2021 0.1239 0.0910 0.0130

8.5 8.5 0.1258 0.0442 0.0418 0.0380

8.5 9 0.1241 0.0504 0.0450 0.0845

8.5 10 0.1887 0.1071 0.0938 0.0130

8.5 11 0.2669 0.1748 0.1263 0.2028

8.5 12 0.2758 0.1869 0.1782 0.0130

9 8.5 0.1247 0.0507 0.0455 0.0604

9 9 0.1356 0.0835 0.1020 0.0990

9 10 0.2045 0.1279 0.1160 0.0130

9 11 0.2798 0.2204 0.1717 0.2348

9 12 0.2911 0.2421 0.2072 0.0130

seagrass ecosystem DBN model to new sites and offered guidelines on model transferability that394

could be applicable across different contexts and scales around the world.395

In the future, substantial losses are expected on seagrass meadows in response to human impact,396

both through direct proximal impacts affecting seagrass meadows locally and indirect impacts,397

which may affect seagrass meadows far away from the sources of the disturbance (Duarte, 2002).398

Thus, the ability to transfer a global model and concepts and apply them to a local case study can399

help protect and sustainably manage these valuable marine resources such as the seagrass meadows400

located in Arcachon Bay.401

One of the challenges we faced in the study arose in defining the light thresholds to characterise402

the regional light regime and the lack of extensive empirical data available to validate our model.403
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Although we have shown that applying such a range of different light thresholds provides valuable404

insights into the effects of light intensity and duration variability on seagrass ecosystems, deter-405

mining an appropriate light threshold for seagrasses involves several challenges. For example, light406

requirements are unknown for many seagrass species, particularly locally-specific thresholds. The407

light levels can differ over multiple timescales; seagrass light requirements may vary by season and408

a range of environmental parameters, including water temperature and sediment chemistry (Lee,409

Park and Kim, 2007; Koch, 2001). Furthermore, the levels of adaptability of the plants to respond410

to changing environmental conditions can differ among species (Collier, Waycott and McKenzie,411

2012).412

Bayesian inference necessitates the use of certain prior distributions. Hence, approaches concerned413

with choosing a proper prior for a statistical analysis has been developed (Kass and Wasserman,414

1996; Sarma and Kay, 2020). Generally, experienced experts translate what is known about an415

application into choosing a probability distribution by reflecting beliefs about the unknown values416

of certain quantities. For example, Wang et al. (2018) developed effective numerical methods in417

which history matching specifies a prior distribution from expert-elicited information. As a result,418

a set of appropriate prior choices can be used as a basis for making a unique prior choice less arbi-419

trary in a sensitivity analysis (Wang et al., 2018). Based on that, an alternative model updating420

approach is also outlined here (See Supporting Information S2) to apply the calibration of light421

thresholds, and identify which best light model and threshold fit the empirical data. Although422

discretisation thresholds can be drawn from experts and literature when there is limited or no data423

available, finding high-scoring discretisation is difficult or impractical due to a large number of424

possibilities that need to be verified, which makes this approach beneficial. This methodology has425

the potential to be particularly valuable to select optimum DBN inputs (e.g., light thresholds) in426

data-scarce regions.427

Another challenge faced in this project was the scarce data to validate the model and the balance428

between a more detailed model and a practical model that is supported by available data and ex-429

pert knowledge. For example, discretising the light parameter into three states instead of two did430

not show better estimates for shoot density values when compared to the data. Furthermore, as431

there was only data for one species, steps from three to five were possible only for Z. noltei, whereas432

Z. marina could only complete steps one to three due to limited data (Fig. 2). Such a systematic433

set of guidelines can additionally help modellers and experts to identify potential limitations in the434

scope of the developed models, and where more study and data is needed. Although we focused435

on transfer of a general DBN to a local site and species, it could also include transfers to other436

stressors. For example, stressors from new environmental hazards or climate stress, such as heat437

stress caused by marine heatwaves, can be included in the model to explore changes in seagrass438

response.439
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5 Conclusions440

Model users are increasingly transferring models to alternative sites where data can be scarce.441

When transferring a model from one context to a new application context, the effort in developing442

a model is reduced, and data collection can be less demanding. In this regard, models transferred to443

novel conditions could provide predictions in data-poor scenarios, contributing to more informed444

management decisions. In this study, we have demonstrated the transferability of an existing445

general seagrass ecosystem DBN model to new sites and offered general guidelines capturing the446

lessons learned here. Moreover, the DBN adapted for the Arcachon Bay case study can also be447

applied to various other domains in ecology. For example, other stressors can be incorporated into448

the model, such as effects caused by climate events, to explore changes in seagrass response.449
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