References
Alexander, J.M., Diez, J.M. & Levine, J.M. (2015). Novel competitors shape species’ responses to climate change. Nature , 525, 515–518.
Allesina, S. & Tang, S. (2012). Stability criteria for complex ecosystems. Nature , 483, 205–208.
Avolio, M.L., Forrestel, E.J., Chang, C.C., Pierre, K.J. La, Burghardt, K.T. & Smith, M.D. (2019). Demystifying dominant species. New Phytol. , 1106–1126.
Bates, D., Mächler, M., Bolker, B. & Walker, S. (2014). Fitting linear mixed-effects models using lme4. J. Stat. Softw. , 67.
Borge, K., Hultmark, D., Clark, A.G., Rosbash, M., Spellman, P.T., Tzou, P., et al. (2004). Impact of Nitrogen Deposition Grasslands.Science (80-. ). , 303, 1876–1879.
Bowman, W.D., Ayyad, A., Bueno de Mesquita, C.P., Fierer, N., Potter, T.S. & Sternagel, S. (2018). Limited ecosystem recovery from simulated chronic nitrogen deposition. Ecol. Appl. , 28, 1762–1772.
Brown, J.H., Valone, T.J. & Curtin, C.G. (1997). Reorganization of an arid ecosystem in response to recent climate change. Proc. Natl. Acad. Sci. U. S. A. , 94, 9729–9733.
Carpentier, C., Barabás, G., Spaak, J.W. & De Laender, F. (2021). Reinterpreting the relationship between number of species and number of links connects community structure and stability. Nat. Ecol. Evol. , 5, 1102–1109.
Cavin, L., Mountford, E.P., Peterken, G.F. & Jump, A.S. (2013). Extreme drought alters competitive dominance within and between tree species in a mixed forest stand. Funct. Ecol. , 27, 1424–1435.
Clark, J.S., Lane Scher, C. & Swift, M. (2020). The emergent interactions that govern biodiversity change. Proc. Natl. Acad. Sci. U. S. A. , 117, 17074–17083.
Clark, J.S., Nemergut, D., Seyednasrollah, B., Turner, P.J. & Zhang, S. (2017). Generalized joint attribute modeling for biodiversity analysis: Median-zero, multivariate, multifarious data. Ecol. Monogr. , 87, 34–56.
Csergo, A.M., Demeter, L. & Turkington, R. (2013). Declining Diversity in Abandoned Grasslands of the Carpathian Mountains: Do Dominant Species Matter? PLoS One , 8, 1–9.
Davis, A.J., Jenkinson, L.S. & Lawton, J.H. (1998). Making mistakes when predicting shifts in species range in response to global warming.Nature , 391, 783–786.
Dovrat, G., Meron, E., Shachak, M., Golodets, C. & Osem, Y. (2020). Functional reorganization and productivity of a water-limited annual plant community. Plant Ecol. , 221, 191–204.
Evans, S.E., Byrne, K.M., Lauenroth, W.K. & Burke, I.C. (2011). Defining the limit to resistance in a drought-tolerant grassland: Long-term severe drought significantly reduces the dominant species and increases ruderals. J. Ecol. , 99, 1500–1507.
Farrer, E.C., Ashton, I.W., Knape, J. & Suding, K.N. (2014). Separating direct and indirect effects of global change: A population dynamic modeling approach using readily available field data. Glob. Chang. Biol. , 20, 1238–1250.
Felton, A.J. & Smith, M.D. (2017). Integrating plant ecological responses to climate extremes from individual to ecosystem levels.Philos. Trans. R. Soc. B Biol. Sci. , 372.
Gilman, S.E., Urban, M.C., Tewksbury, J., Gilchrist, G.W. & Holt, R.D. (2010). A framework for community interactions under climate change.Trends Ecol. Evol. , 25, 325–331.
Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J. & Stoffel, M. (2014). 21st century climate change in the European Alps-A review. Sci. Total Environ. , 493, 1138–1151.
Götzenberger, L., de Bello, F., Bråthen, K.A., Davison, J., Dubuis, A., Guisan, A., et al. (2012). Ecological assembly rules in plant communities-approaches, patterns and prospects. Biol. Rev. , 87, 111–127.
Hallett, L.M., Jones, S.K., Macdonald, A.A.M., Jones, M.B., Flynn, D.F.B., Ripplinger, J., et al. (2016). CODYN : An R package of community dynamics metrics. Methods Ecol. Evol. , 1146–1151.
Hillebrand, H., Blasius, B., Borer, E.T., Chase, J.M., Downing, J.A., Eriksson, B.K., et al. (2018). Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. , 55, 169–184.
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., et al. (2019). Chapter 2: High Mountain Areas. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. IPCC Spec. Rep. Ocean Cryosph. a Chang. Clim. , 131–202.
Hoover, D.L., Knapp, A.K. & Smith, M.D. (2014). Resistance and resilience of a grassland ecosystem to climate extremes. Ecology , 95, 2646–2656.
IPCC. (2018). Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,.Ipcc - Sr15 , 2, 17–20.
Kittel, T.G.F., Williams, M.W., Chowanski, K., Hartman, M., Ackerman, T., Losleben, M., et al. (2015). Contrasting long-term alpine and subalpine precipitation trends in a mid-latitude North American mountain system, Colorado Front Range, USA. Plant Ecol. Divers. , 8, 607–624.
Komatsu, K.J., Avolio, M.L., Lemoine, N.P., Isbell, F., Grman, E., Houseman, G.R., et al. (2019). Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proc. Natl. Acad. Sci. U. S. A. , 116, 17867–17873.
Kraft, N.J.B. & Ackerly, D. (2014). The Assembly of Plant Communities. In: Ecology and the Environment (ed. Monson, R.K.). Springer New York, pp. 67–88.
Kuznetsova, A., Brockhoff, P.B. & Christensen, R.H.B. (2017). lmerTest Package: Tests in Linear Mixed Effects Models . J. Stat. Softw. , 82.
Liancourt, P., Spence, L.A., Song, D.S., Lkhagva, A., Sharkhuu, A., Boldgiv, B., et al. (2013). Plant response to climate change varies with topography, interactions with neighbors, and ecotype.Ecology , 94, 444–453.
Little, C.J., Wheeler, J.A., Sedlacek, J., Cortés, A.J. & Rixen, C. (2016). Small ‑ scale drivers : the importance of nutrient availability and snowmelt timing on performance of the alpine shrub Salix herbacea.Oecologia , 180, 1015–1024.
Mariotte, P., Vandenberghe, C., Kardol, P., Hagedorn, F. & Buttler, A. (2013). Subordinate plant species enhance community resistance against drought in semi-natural grasslands. J. Ecol. , 101, 763–773.
McKinney, M.L. & Lockwood, J.L. (1999). Biotic homogenization: A few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. , 14, 450–453.
Pepin, N., Bradley, R.S., Diaz, H.F., Baraer, M., Caceres, E.B., Forsythe, N., et al. (2015). Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. , 5, 424–430.
Post, E., Pedersen, C. & Watts, D.A. (2021). The rich get richer and the poor get poorer : commonness and rarity of arctic tundra plants diverge under warming and herbivore exclusion. Res. Sq. , 1–22.
R Core Team. (2020). R: A Language and Environment for Statistical Computing.
Regina, V., Vinicius, M., Grombone-guaratini, M.T., Maria, D. & Matos, S. (2018). Thinking about super-dominant populations of native species – Examples from Brazil. Perspect. Ecol. Conserv. , 16, 74–82.
Roe, A.D., Keena, M.A. & Hamelin, R.C. (2021). Oh the places they ’ ll go : improving species distribution modelling for invasive forest pests in an uncertain world . Biol. Invasions . Springer International Publishing.
Roth, T., Kohli, L., Rihm, B. & Achermann, B. (2013). Nitrogen deposition is negatively related to species richness and species composition of vascular plants and bryophytes in Swiss mountain grassland. Agric. Ecosyst. Environ. , 178, 121–126.
Sheil, D. (2016). Disturbance and distributions: Avoiding exclusion in a warming world. Ecol. Soc. , 21.
Smart, S.M., Thompson, K., Marrs, R.H., Le Duc, M.G., Maskell, L.C. & Firbank, L.G. (2006). Biotic homogenization and changes in species diversity across human-modified ecosystems. Proc. R. Soc. B Biol. Sci. , 273, 2659–2665.
Smith, J., Sconiers, W., Spasojevic, M., Ashton, I. & Suding, K. (2012). Phenological changes in alpine plants in response to increased snowpack, temperature, and nitrogen. Arctic, Antarct. Alp. Res. , 44, 135–142.
Smith, M.D., Knapp, A.K. & Collins, S.L. (2009). A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology , 90, 3279–3289.
Suding, K.N., Collins, S.L., Gough, L., Clark, C., Cleland, E.E., Gross, K.L., et al. (2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc. Natl. Acad. Sci. U. S. A. , 102, 4387–4392.
Suttle, K.B., Thomsen, M. a. & Power, M.E. (2007). Species Interactions Reverse Grassland Responses to Changing Climate. Science (80-. ). , 315, 640–642.
Swab, R.M., Regan, H.M., Matthies, D., Becker, U. & Bruun, H.H. (2015). The role of demography , intra-species variation , and species distribution models in species ’ projections under climate change.Ecography (Cop.). , 221–230.
Valladares, F., Bastias, C.C., Godoy, O., Granda, E. & Escudero, A. (2015). Species coexistence in a changing world. Front. Plant Sci. , 6, 1–16.
Vandvik, V., Skarpaas, O., Klanderud, K., Telford, J., Halbritter, A.H., Goldberg, D.E., et al. (2020). Biotic rescaling reveals importance of species interactions for variation in biodiversity responses to climate change. Proc. Natl. Acad. Sci. , 117, 33720–33720.
Wickham, H. (2009). Elegant Graphics for Data Analysis .Media . 2nd edn. Springer Publishing Company, Incorporated.
Winfree, R., Fox, J.W., Williams, N.M., Reilly, J.R. & Cariveau, D.P. (2015). Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. , 18, 626–635.
Wohlgemuth, D., Solan, M. & Godbold, J.A. (2016). Specific arrangements of species dominance can be more influential than evenness in maintaining ecosystem process and function. Sci. Rep. , 6–13.
Zavaleta, E.S., Shaw, M.R., Chiariello, N.R., Mooney, H.A. & Field, C.B. (2003). Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. Proc. Natl. Acad. Sci. U. S. A. , 100, 7650–7654.
Zhao, Y.H., Memmott, J., Vaughan, I.P., Li, H.D., Ren, Z.X., Lázaro, A.,et al. (2021). The impact of a native dominant plant, Euphorbia jolkinii, on plant–flower visitor networks and pollen deposition on stigmas of co-flowering species in subalpine meadows of Shangri-La, SW China. J. Ecol. , 109, 2107–2120.