REFERENCES
1. Schlant RC, Adolph RJ, DiMarco JP, et al. Guidelines for electrocardiography. A report of the American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Committee on Electrocardiography). Circulation. 1992;85(3):1221-1228.
2. Hornick J, Costantini O. The Electrocardiogram: Still a Useful Tool in the Primary Care Office. Med Clin North Am.2019;103(5):775-784.
3. Maron BJ, Friedman RA, Kligfield P, et al. Assessment of the 12-lead ECG as a screening test for detection of cardiovascular disease in healthy general populations of young people (12-25 Years of Age): a scientific statement from the American Heart Association and the American College of Cardiology. Circulation.2014;130(15):1303-1334.
4. Garvey JL, Zegre-Hemsey J, Gregg R, Studnek JR. Electrocardiographic diagnosis of ST segment elevation myocardial infarction: An evaluation of three automated interpretation algorithms. J Electrocardiol.2016;49(5):728-732.
5. Kudenchuk PJ, Maynard C, Cobb LA, et al. Utility of the prehospital electrocardiogram in diagnosing acute coronary syndromes: the Myocardial Infarction Triage and Intervention (MITI) Project. J Am Coll Cardiol. 1998;32(1):17-27.
6. Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med. 2019;25(1):65-69.
7. Ribeiro AH, Ribeiro MH, Paixão GMM, et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat Commun.2020;11(1):1760.
8. Siontis KC, Noseworthy PA, Attia ZI, Friedman PA. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat Rev Cardiol. 2021;18(7):465-478.
9. Anthony HKaSKMaAJDaW-YKaZIAaRECaPAFa. An artificial intelligence–enabled ECG algorithm for comprehensive ECG interpretation: Can it pass the ‘Turing test’? Cardiovascular Digital Health Journal. 2021;2(3):164-170.
10. Attia ZI, Friedman PA, Noseworthy PA, et al. Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs. Circ Arrhythm Electrophysiol. 2019;12(9):e007284.
11. Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet. 2019;394(10201):861-867.
12. Ko WY, Siontis KC, Attia ZI, et al. Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram. J Am Coll Cardiol. 2020;75(7):722-733.
13. Guglin ME, Thatai D. Common errors in computer electrocardiogram interpretation. Int J Cardiol. 2006;106(2):232-237.
14. O’Shea K, Nash R. An introduction to convolutional neural networks.arXiv preprint arXiv:151108458. 2015.
15. Patel NJ, Deshmukh A, Pant S, et al. Contemporary trends of hospitalization for atrial fibrillation in the United States, 2000 through 2010: implications for healthcare planning. Circulation.2014;129(23):2371-2379.
16. Chugh SS, Havmoeller R, Narayanan K, et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study.Circulation. 2014;129(8):837-847.
17. Samuel M, Brophy JM. Challenges in Assessing the Incidence of Atrial Fibrillation Hospitalizations. Can J Cardiol.2019;35(10):1291-1293.
18. Coyne KS, Paramore C, Grandy S, Mercader M, Reynolds M, Zimetbaum P. Assessing the direct costs of treating nonvalvular atrial fibrillation in the United States. Value Health. 2006;9(5):348-356.
19. Lloyd-Jones DM, Wang TJ, Leip EP, et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study.Circulation. 2004;110(9):1042-1046.
20. Go AS, Hylek EM, Phillips KA, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA. 2001;285(18):2370-2375.
21. Lip GYH, Brechin CM, Lane DA. The global burden of atrial fibrillation and stroke: a systematic review of the epidemiology of atrial fibrillation in regions outside North America and Europe.Chest. 2012;142(6):1489-1498.
22. Morin DP, Bernard ML, Madias C, Rogers PA, Thihalolipavan S, Estes NA. The State of the Art: Atrial Fibrillation Epidemiology, Prevention, and Treatment. Mayo Clin Proc. 2016;91(12):1778-1810.
23. Yuan S, Larsson SC. No association between coffee consumption and risk of atrial fibrillation: A Mendelian randomization study. Nutr Metab Cardiovasc Dis. 2019 Nov;29(11):1185-1188. doi: 10.1016/j.numecd.2019.07.015. Epub 2019 Jul 27. PMID: 31558414. In.
24. Stewart S, Hart CL, Hole DJ, McMurray JJ. A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. Am J Med.2002;113(5):359-364.
25. Hongo RH, Goldschlager N. Overreliance on computerized algorithms to interpret electrocardiograms. Am J Med. 2004;117(9):706-708.
26. Shah AP, Rubin SA. Errors in the computerized electrocardiogram interpretation of cardiac rhythm. J Electrocardiol.2007;40(5):385-390.
27. Bogun F, Anh D, Kalahasty G, et al. Misdiagnosis of atrial fibrillation and its clinical consequences. Am J Med.2004;117(9):636-642.
28. Lindow T, Kron J, Thulesius H, Ljungström E, Pahlm O. Erroneous computer-based interpretations of atrial fibrillation and atrial flutter in a Swedish primary health care setting. Scand J Prim Health Care. 2019;37(4):426-433.
29. Mant J, Fitzmaurice DA, Hobbs FD, et al. Accuracy of diagnosing atrial fibrillation on electrocardiogram by primary care practitioners and interpretative diagnostic software: analysis of data from screening for atrial fibrillation in the elderly (SAFE) trial. BMJ.2007;335(7616):380.
30. Schläpfer J, Wellens HJ. Computer-Interpreted Electrocardiograms: Benefits and Limitations. J Am Coll Cardiol.2017;70(9):1183-1192.
31. Madias JE. Computerized interpretation of electrocardiograms: Taking stock and implementing new knowledge. J Electrocardiol.2018;51(3):413-415.
32. Novotny T, Bond R, Andrsova I, et al. The role of computerized diagnostic proposals in the interpretation of the 12-lead electrocardiogram by cardiology and non-cardiology fellows. Int J Med Inform. 2017;101:85-92.
33. Anh D, Krishnan S, Bogun F. Accuracy of electrocardiogram interpretation by cardiologists in the setting of incorrect computer analysis. J Electrocardiol. 2006;39(3):343-345.
34. Yao X, Attia ZI, Behnken EM, et al. Batch enrollment for an artificial intelligence-guided intervention to lower neurologic events in patients with undiagnosed atrial fibrillation: rationale and design of a digital clinical trial. Am Heart J. 2021;239:73-79.
35. Clifford GD, Liu C, Moody B, et al. AF Classification from a Short Single Lead ECG Recording: the PhysioNet/Computing in Cardiology Challenge 2017. Comput Cardiol (2010). 2017;44.
36. Smith SW, Walsh B, Grauer K, et al. A deep neural network learning algorithm outperforms a conventional algorithm for emergency department electrocardiogram interpretation. J Electrocardiol.2019;52:88-95.
37. Anthony HKaW-YKaZIAaMSCaPAFaPAN. A comprehensive artificial intelligence–enabled electrocardiogram interpretation program.Cardiovascular Digital Health Journal. 2020;1(2):62-70.
38. Svennberg E, Friberg L, Frykman V, Al-Khalili F, Engdahl J, Rosenqvist M. Clinical outcomes in systematic screening for atrial fibrillation (STROKESTOP): a multicentre, parallel group, unmasked, randomised controlled trial. Lancet. 2021;398(10310):1498-1506.
39. Svennberg E, Engdahl J, Al-Khalili F, Friberg L, Frykman V, Rosenqvist M. Mass Screening for Untreated Atrial Fibrillation: The STROKESTOP Study. Circulation. 2015;131(25):2176-2184.
40. Svendsen JH, Diederichsen SZ, Højberg S, et al. Implantable loop recorder detection of atrial fibrillation to prevent stroke (The LOOP Study): a randomised controlled trial. Lancet.2021;398(10310):1507-1516.
41. Fitzmaurice DA, McCahon D, Baker J, et al. Is screening for AF worthwhile? Stroke risk in a screened population from the SAFE study.Fam Pract. 2014;31(3):298-302.
42. Swancutt D, Hobbs R, Fitzmaurice D, et al. A randomised controlled trial and cost effectiveness study of systematic screening (targeted and total population screening) versus routine practice for the detection of atrial fibrillation in the over 65s: (SAFE) [ISRCTN19633732].BMC Cardiovasc Disord. 2004;4:12.
43. Menke J, Lüthje L, Kastrup A, Larsen J. Thromboembolism in atrial fibrillation. Am J Cardiol. 2010;105(4):502-510.
44. Danias PG, Caulfield TA, Weigner MJ, Silverman DI, Manning WJ. Likelihood of spontaneous conversion of atrial fibrillation to sinus rhythm. J Am Coll Cardiol. 1998;31(3):588-592.
45. Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation. Analysis of pooled data from five randomized controlled trials. Arch Intern Med. 1994;154(13):1449-1457.
46. van Walraven C, Hart RG, Connolly S, et al. Effect of age on stroke prevention therapy in patients with atrial fibrillation: the atrial fibrillation investigators. Stroke. 2009;40(4):1410-1416.
47. Tereshchenko LG, Henrikson CA, Cigarroa J, Steinberg JS. Comparative Effectiveness of Interventions for Stroke Prevention in Atrial Fibrillation: A Network Meta-Analysis. J Am Heart Assoc.2016;5(5).
48. Romero JR, Morris J, Pikula A. Stroke prevention: modifying risk factors. Ther Adv Cardiovasc Dis. 2008;2(4):287-303.
49. Jonas DE, Kahwati LC, Yun JDY, Middleton JC, Coker-Schwimmer M, Asher GN. Screening for Atrial Fibrillation With Electrocardiography: Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA. 2018;320(5):485-498.
50. Martínez-Sellés M, Massó-van Roessel A, Álvarez-García J, et al. Interatrial block and atrial arrhythmias in centenarians: Prevalence, associations, and clinical implications. Heart Rhythm.2016;13(3):645-651.
51. Arboix A, Martí L, Dorison S, Sánchez MJ. Bayés syndrome and acute cardioembolic ischemic stroke. World J Clin Cases.2017;5(3):93-101.
52. Rabinstein AA, Yost MD, Faust L, et al. Artificial Intelligence-Enabled ECG to Identify Silent Atrial Fibrillation in Embolic Stroke of Unknown Source. J Stroke Cerebrovasc Dis.2021;30(9):105998.
53. Alonso A, Roetker NS, Soliman EZ, Chen LY, Greenland P, Heckbert SR. Prediction of Atrial Fibrillation in a Racially Diverse Cohort: The Multi-Ethnic Study of Atherosclerosis (MESA). J Am Heart Assoc.2016;5(2).
54. Schnabel RB, Sullivan LM, Levy D, et al. Development of a risk score for atrial fibrillation (Framingham Heart Study): a community-based cohort study. Lancet. 2009;373(9665):739-745.
55. Alonso A, Krijthe BP, Aspelund T, et al. Simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population: the CHARGE-AF consortium. J Am Heart Assoc.2013;2(2):e000102.
56. Christopoulos G, Graff-Radford J, Lopez CL, et al. Artificial Intelligence-Electrocardiography to Predict Incident Atrial Fibrillation: A Population-Based Study. Circ Arrhythm Electrophysiol. 2020;13(12):e009355.
57. Khurshid S, Friedman S, Reeder C, et al. Electrocardiogram-based Deep Learning and Clinical Risk Factors to Predict Atrial Fibrillation.Circulation. 2021.
58. Kashou AH, Rabinstein AA, Attia IZ, et al. Recurrent cryptogenic stroke: A potential role for an artificial intelligence-enabled electrocardiogram? HeartRhythm Case Rep. 2020;6(4):202-205.
59. Saver JL. CLINICAL PRACTICE. Cryptogenic Stroke. N Engl J Med. 2016;374(21):2065-2074.
60. Li L, Yiin GS, Geraghty OC, et al. Incidence, outcome, risk factors, and long-term prognosis of cryptogenic transient ischaemic attack and ischaemic stroke: a population-based study. Lancet Neurol.2015;14(9):903-913.
61. Sacco RL, Ellenberg JH, Mohr JP, et al. Infarcts of undetermined cause: the NINCDS Stroke Data Bank. Ann Neurol.1989;25(4):382-390.
62. Wolf ME, Grittner U, Böttcher T, et al. Phenotypic ASCO Characterisation of Young Patients with Ischemic Stroke in the Prospective Multicentre Observational sifap1 Study. Cerebrovasc Dis. 2015;40(3-4):129-135.
63. Marini C, De Santis F, Sacco S, et al. Contribution of atrial fibrillation to incidence and outcome of ischemic stroke: results from a population-based study. Stroke. 2005;36(6):1115-1119.
64. Paciaroni M, Agnelli G, Caso V, et al. Atrial fibrillation in patients with first-ever stroke: frequency, antithrombotic treatment before the event and effect on clinical outcome. J Thromb Haemost. 2005;3(6):1218-1223.
65. Sanna T, Diener HC, Passman RS, et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med.2014;370(26):2478-2486.
66. Kernan WN, Ovbiagele B, Black HR, et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke.2014;45(7):2160-2236.
67. Diener HC, Sacco RL, Easton JD, et al. Dabigatran for Prevention of Stroke after Embolic Stroke of Undetermined Source. N Engl J Med.2019;380(20):1906-1917.
68. Hart RG, Connolly SJ, Mundl H. Rivaroxaban for Stroke Prevention after Embolic Stroke of Undetermined Source. N Engl J Med.2018;379(10):987.
69. January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation.2014;130(23):e199-267.
70. Chen LY, Chung MK, Allen LA, et al. Atrial Fibrillation Burden: Moving Beyond Atrial Fibrillation as a Binary Entity: A Scientific Statement From the American Heart Association. Circulation.2018;137(20):e623-e644.
71. Swiryn S, Orlov MV, Benditt DG, et al. Clinical Implications of Brief Device-Detected Atrial Tachyarrhythmias in a Cardiac Rhythm Management Device Population: Results from the Registry of Atrial Tachycardia and Atrial Fibrillation Episodes. Circulation.2016;134(16):1130-1140.
72. Rankin AJ, Tran RT, Abdul-Rahim AH, Rankin AC, Lees KR. Clinically important atrial arrhythmia and stroke risk: a UK-wide online survey among stroke physicians and cardiologists. QJM: An International Journal of Medicine. 2014;107(11):895-902.
73. Freedman B, Boriani G, Glotzer TV, Healey JS, Kirchhof P, Potpara TS. Management of atrial high-rate episodes detected by cardiac implanted electronic devices. Nat Rev Cardiol.2017;14(12):701-714.
74. Kumbhani DJ, Cannon CP, Beavers CJ, et al. 2020 ACC Expert Consensus Decision Pathway for Anticoagulant and Antiplatelet Therapy in Patients With Atrial Fibrillation or Venous Thromboembolism Undergoing Percutaneous Coronary Intervention or With Atherosclerotic Cardiovascular Disease: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol.2021;77(5):629-658.
75. Perino AC, Fan J, Askari M, et al. Practice Variation in Anticoagulation Prescription and Outcomes After Device-Detected Atrial Fibrillation. Circulation. 2019;139(22):2502-2512.
76. Noseworthy PA, Kaufman ES, Chen LY, et al. Subclinical and Device-Detected Atrial Fibrillation: Pondering the Knowledge Gap: A Scientific Statement From the American Heart Association.Circulation. 2019;140(25):e944-e963.
77. Lopes RD, Alings M, Connolly SJ, et al. Rationale and design of the Apixaban for the Reduction of Thrombo-Embolism in Patients With Device-Detected Sub-Clinical Atrial Fibrillation (ARTESiA) trial.Am Heart J. 2017;189:137-145.
78. Kirchhof P, Blank BF, Calvert M, et al. Probing oral anticoagulation in patients with atrial high rate episodes: Rationale and design of the Non-vitamin K antagonist Oral anticoagulants in patients with Atrial High rate episodes (NOAH-AFNET 6) trial. Am Heart J.2017;190:12-18.
79. Shashikumar SPaSAJaCGDaNS. Detection of Paroxysmal Atrial Fibrillation Using Attention-Based Bidirectional Recurrent Neural Networks. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; 2018.
80. Pereira T, Tran N, Gadhoumi K, et al. Photoplethysmography based atrial fibrillation detection: a review. NPJ Digit Med. 2020;3:3.
81. Tison GH, Sanchez JM, Ballinger B, et al. Passive Detection of Atrial Fibrillation Using a Commercially Available Smartwatch.JAMA Cardiol. 2018;3(5):409-416.
82. Poh MZ, Poh YC, Chan PH, et al. Diagnostic assessment of a deep learning system for detecting atrial fibrillation in pulse waveforms.Heart. 2018;104(23):1921-1928.
83. Guo Y, Wang H, Zhang H, et al. Mobile Photoplethysmographic Technology to Detect Atrial Fibrillation. J Am Coll Cardiol.2019;74(19):2365-2375.
84. Perez MV, Mahaffey KW, Hedlin H, et al. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N Engl J Med.2019;381(20):1909-1917.
85. Lubitz SA, Faranesh AZ, Atlas SJ, et al. Rationale and design of a large population study to validate software for the assessment of atrial fibrillation from data acquired by a consumer tracker or smartwatch: The Fitbit heart study. Am Heart J. 2021;238:16-26.
86. Bonomi AG, Schipper F, Eerikäinen LM, et al. Atrial Fibrillation Detection Using a Novel Cardiac Ambulatory Monitor Based on Photo-Plethysmography at the Wrist. J Am Heart Assoc.2018;7(15):e009351.
87. Veronese G, Germini F, Ingrassia S, et al. Emergency physician accuracy in interpreting electrocardiograms with potential ST-segment elevation myocardial infarction: Is it enough? Acute Card Care.2016;18(1):7-10.
88. Yasin OZ, Attia Z, Dillon JJ, et al. Noninvasive blood potassium measurement using signal-processed, single-lead ecg acquired from a handheld smartphone. J Electrocardiol. 2017;50(5):620-625.
89. Kashou AH, May AM, Noseworthy PA. Artificial Intelligence-Enabled ECG: a Modern Lens on an Old Technology. Curr Cardiol Rep.2020;22(8):57.