REFERENCES
1. Schlant RC, Adolph RJ, DiMarco JP, et al. Guidelines for
electrocardiography. A report of the American College of
Cardiology/American Heart Association Task Force on Assessment of
Diagnostic and Therapeutic Cardiovascular Procedures (Committee on
Electrocardiography). Circulation. 1992;85(3):1221-1228.
2. Hornick J, Costantini O. The Electrocardiogram: Still a Useful Tool
in the Primary Care Office. Med Clin North Am.2019;103(5):775-784.
3. Maron BJ, Friedman RA, Kligfield P, et al. Assessment of the 12-lead
ECG as a screening test for detection of cardiovascular disease in
healthy general populations of young people (12-25 Years of Age): a
scientific statement from the American Heart Association and the
American College of Cardiology. Circulation.2014;130(15):1303-1334.
4. Garvey JL, Zegre-Hemsey J, Gregg R, Studnek JR. Electrocardiographic
diagnosis of ST segment elevation myocardial infarction: An evaluation
of three automated interpretation algorithms. J Electrocardiol.2016;49(5):728-732.
5. Kudenchuk PJ, Maynard C, Cobb LA, et al. Utility of the prehospital
electrocardiogram in diagnosing acute coronary syndromes: the Myocardial
Infarction Triage and Intervention (MITI) Project. J Am Coll
Cardiol. 1998;32(1):17-27.
6. Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level
arrhythmia detection and classification in ambulatory electrocardiograms
using a deep neural network. Nat Med. 2019;25(1):65-69.
7. Ribeiro AH, Ribeiro MH, Paixão GMM, et al. Automatic diagnosis of the
12-lead ECG using a deep neural network. Nat Commun.2020;11(1):1760.
8. Siontis KC, Noseworthy PA, Attia ZI, Friedman PA. Artificial
intelligence-enhanced electrocardiography in cardiovascular disease
management. Nat Rev Cardiol. 2021;18(7):465-478.
9. Anthony HKaSKMaAJDaW-YKaZIAaRECaPAFa. An artificial
intelligence–enabled ECG algorithm for comprehensive ECG
interpretation: Can it pass the ‘Turing test’? Cardiovascular
Digital Health Journal. 2021;2(3):164-170.
10. Attia ZI, Friedman PA, Noseworthy PA, et al. Age and Sex Estimation
Using Artificial Intelligence From Standard 12-Lead ECGs. Circ
Arrhythm Electrophysiol. 2019;12(9):e007284.
11. Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial
intelligence-enabled ECG algorithm for the identification of patients
with atrial fibrillation during sinus rhythm: a retrospective analysis
of outcome prediction. Lancet. 2019;394(10201):861-867.
12. Ko WY, Siontis KC, Attia ZI, et al. Detection of Hypertrophic
Cardiomyopathy Using a Convolutional Neural Network-Enabled
Electrocardiogram. J Am Coll Cardiol. 2020;75(7):722-733.
13. Guglin ME, Thatai D. Common errors in computer electrocardiogram
interpretation. Int J Cardiol. 2006;106(2):232-237.
14. O’Shea K, Nash R. An introduction to convolutional neural networks.arXiv preprint arXiv:151108458. 2015.
15. Patel NJ, Deshmukh A, Pant S, et al. Contemporary trends of
hospitalization for atrial fibrillation in the United States, 2000
through 2010: implications for healthcare planning. Circulation.2014;129(23):2371-2379.
16. Chugh SS, Havmoeller R, Narayanan K, et al. Worldwide epidemiology
of atrial fibrillation: a Global Burden of Disease 2010 Study.Circulation. 2014;129(8):837-847.
17. Samuel M, Brophy JM. Challenges in Assessing the Incidence of Atrial
Fibrillation Hospitalizations. Can J Cardiol.2019;35(10):1291-1293.
18. Coyne KS, Paramore C, Grandy S, Mercader M, Reynolds M, Zimetbaum P.
Assessing the direct costs of treating nonvalvular atrial fibrillation
in the United States. Value Health. 2006;9(5):348-356.
19. Lloyd-Jones DM, Wang TJ, Leip EP, et al. Lifetime risk for
development of atrial fibrillation: the Framingham Heart Study.Circulation. 2004;110(9):1042-1046.
20. Go AS, Hylek EM, Phillips KA, et al. Prevalence of diagnosed atrial
fibrillation in adults: national implications for rhythm management and
stroke prevention: the AnTicoagulation and Risk Factors in Atrial
Fibrillation (ATRIA) Study. JAMA. 2001;285(18):2370-2375.
21. Lip GYH, Brechin CM, Lane DA. The global burden of atrial
fibrillation and stroke: a systematic review of the epidemiology of
atrial fibrillation in regions outside North America and Europe.Chest. 2012;142(6):1489-1498.
22. Morin DP, Bernard ML, Madias C, Rogers PA, Thihalolipavan S, Estes
NA. The State of the Art: Atrial Fibrillation Epidemiology, Prevention,
and Treatment. Mayo Clin Proc. 2016;91(12):1778-1810.
23. Yuan S, Larsson SC. No association between coffee consumption and
risk of atrial fibrillation: A Mendelian randomization study. Nutr Metab
Cardiovasc Dis. 2019 Nov;29(11):1185-1188. doi:
10.1016/j.numecd.2019.07.015. Epub 2019 Jul 27. PMID: 31558414. In.
24. Stewart S, Hart CL, Hole DJ, McMurray JJ. A population-based study
of the long-term risks associated with atrial fibrillation: 20-year
follow-up of the Renfrew/Paisley study. Am J Med.2002;113(5):359-364.
25. Hongo RH, Goldschlager N. Overreliance on computerized algorithms to
interpret electrocardiograms. Am J Med. 2004;117(9):706-708.
26. Shah AP, Rubin SA. Errors in the computerized electrocardiogram
interpretation of cardiac rhythm. J Electrocardiol.2007;40(5):385-390.
27. Bogun F, Anh D, Kalahasty G, et al. Misdiagnosis of atrial
fibrillation and its clinical consequences. Am J Med.2004;117(9):636-642.
28. Lindow T, Kron J, Thulesius H, Ljungström E, Pahlm O. Erroneous
computer-based interpretations of atrial fibrillation and atrial flutter
in a Swedish primary health care setting. Scand J Prim Health
Care. 2019;37(4):426-433.
29. Mant J, Fitzmaurice DA, Hobbs FD, et al. Accuracy of diagnosing
atrial fibrillation on electrocardiogram by primary care practitioners
and interpretative diagnostic software: analysis of data from screening
for atrial fibrillation in the elderly (SAFE) trial. BMJ.2007;335(7616):380.
30. Schläpfer J, Wellens HJ. Computer-Interpreted Electrocardiograms:
Benefits and Limitations. J Am Coll Cardiol.2017;70(9):1183-1192.
31. Madias JE. Computerized interpretation of electrocardiograms: Taking
stock and implementing new knowledge. J Electrocardiol.2018;51(3):413-415.
32. Novotny T, Bond R, Andrsova I, et al. The role of computerized
diagnostic proposals in the interpretation of the 12-lead
electrocardiogram by cardiology and non-cardiology fellows. Int J
Med Inform. 2017;101:85-92.
33. Anh D, Krishnan S, Bogun F. Accuracy of electrocardiogram
interpretation by cardiologists in the setting of incorrect computer
analysis. J Electrocardiol. 2006;39(3):343-345.
34. Yao X, Attia ZI, Behnken EM, et al. Batch enrollment for an
artificial intelligence-guided intervention to lower neurologic events
in patients with undiagnosed atrial fibrillation: rationale and design
of a digital clinical trial. Am Heart J. 2021;239:73-79.
35. Clifford GD, Liu C, Moody B, et al. AF Classification from a Short
Single Lead ECG Recording: the PhysioNet/Computing in Cardiology
Challenge 2017. Comput Cardiol (2010). 2017;44.
36. Smith SW, Walsh B, Grauer K, et al. A deep neural network learning
algorithm outperforms a conventional algorithm for emergency department
electrocardiogram interpretation. J Electrocardiol.2019;52:88-95.
37. Anthony HKaW-YKaZIAaMSCaPAFaPAN. A comprehensive artificial
intelligence–enabled electrocardiogram interpretation program.Cardiovascular Digital Health Journal. 2020;1(2):62-70.
38. Svennberg E, Friberg L, Frykman V, Al-Khalili F, Engdahl J,
Rosenqvist M. Clinical outcomes in systematic screening for atrial
fibrillation (STROKESTOP): a multicentre, parallel group, unmasked,
randomised controlled trial. Lancet. 2021;398(10310):1498-1506.
39. Svennberg E, Engdahl J, Al-Khalili F, Friberg L, Frykman V,
Rosenqvist M. Mass Screening for Untreated Atrial Fibrillation: The
STROKESTOP Study. Circulation. 2015;131(25):2176-2184.
40. Svendsen JH, Diederichsen SZ, Højberg S, et al. Implantable loop
recorder detection of atrial fibrillation to prevent stroke (The LOOP
Study): a randomised controlled trial. Lancet.2021;398(10310):1507-1516.
41. Fitzmaurice DA, McCahon D, Baker J, et al. Is screening for AF
worthwhile? Stroke risk in a screened population from the SAFE study.Fam Pract. 2014;31(3):298-302.
42. Swancutt D, Hobbs R, Fitzmaurice D, et al. A randomised controlled
trial and cost effectiveness study of systematic screening (targeted and
total population screening) versus routine practice for the detection of
atrial fibrillation in the over 65s: (SAFE) [ISRCTN19633732].BMC Cardiovasc Disord. 2004;4:12.
43. Menke J, Lüthje L, Kastrup A, Larsen J. Thromboembolism in atrial
fibrillation. Am J Cardiol. 2010;105(4):502-510.
44. Danias PG, Caulfield TA, Weigner MJ, Silverman DI, Manning WJ.
Likelihood of spontaneous conversion of atrial fibrillation to sinus
rhythm. J Am Coll Cardiol. 1998;31(3):588-592.
45. Risk factors for stroke and efficacy of antithrombotic therapy in
atrial fibrillation. Analysis of pooled data from five randomized
controlled trials. Arch Intern Med. 1994;154(13):1449-1457.
46. van Walraven C, Hart RG, Connolly S, et al. Effect of age on stroke
prevention therapy in patients with atrial fibrillation: the atrial
fibrillation investigators. Stroke. 2009;40(4):1410-1416.
47. Tereshchenko LG, Henrikson CA, Cigarroa J, Steinberg JS. Comparative
Effectiveness of Interventions for Stroke Prevention in Atrial
Fibrillation: A Network Meta-Analysis. J Am Heart Assoc.2016;5(5).
48. Romero JR, Morris J, Pikula A. Stroke prevention: modifying risk
factors. Ther Adv Cardiovasc Dis. 2008;2(4):287-303.
49. Jonas DE, Kahwati LC, Yun JDY, Middleton JC, Coker-Schwimmer M,
Asher GN. Screening for Atrial Fibrillation With Electrocardiography:
Evidence Report and Systematic Review for the US Preventive Services
Task Force. JAMA. 2018;320(5):485-498.
50. Martínez-Sellés M, Massó-van Roessel A, Álvarez-García J, et al.
Interatrial block and atrial arrhythmias in centenarians: Prevalence,
associations, and clinical implications. Heart Rhythm.2016;13(3):645-651.
51. Arboix A, Martí L, Dorison S, Sánchez MJ. Bayés syndrome and acute
cardioembolic ischemic stroke. World J Clin Cases.2017;5(3):93-101.
52. Rabinstein AA, Yost MD, Faust L, et al. Artificial
Intelligence-Enabled ECG to Identify Silent Atrial Fibrillation in
Embolic Stroke of Unknown Source. J Stroke Cerebrovasc Dis.2021;30(9):105998.
53. Alonso A, Roetker NS, Soliman EZ, Chen LY, Greenland P, Heckbert SR.
Prediction of Atrial Fibrillation in a Racially Diverse Cohort: The
Multi-Ethnic Study of Atherosclerosis (MESA). J Am Heart Assoc.2016;5(2).
54. Schnabel RB, Sullivan LM, Levy D, et al. Development of a risk score
for atrial fibrillation (Framingham Heart Study): a community-based
cohort study. Lancet. 2009;373(9665):739-745.
55. Alonso A, Krijthe BP, Aspelund T, et al. Simple risk model predicts
incidence of atrial fibrillation in a racially and geographically
diverse population: the CHARGE-AF consortium. J Am Heart Assoc.2013;2(2):e000102.
56. Christopoulos G, Graff-Radford J, Lopez CL, et al. Artificial
Intelligence-Electrocardiography to Predict Incident Atrial
Fibrillation: A Population-Based Study. Circ Arrhythm
Electrophysiol. 2020;13(12):e009355.
57. Khurshid S, Friedman S, Reeder C, et al. Electrocardiogram-based
Deep Learning and Clinical Risk Factors to Predict Atrial Fibrillation.Circulation. 2021.
58. Kashou AH, Rabinstein AA, Attia IZ, et al. Recurrent cryptogenic
stroke: A potential role for an artificial intelligence-enabled
electrocardiogram? HeartRhythm Case Rep. 2020;6(4):202-205.
59. Saver JL. CLINICAL PRACTICE. Cryptogenic Stroke. N Engl J
Med. 2016;374(21):2065-2074.
60. Li L, Yiin GS, Geraghty OC, et al. Incidence, outcome, risk factors,
and long-term prognosis of cryptogenic transient ischaemic attack and
ischaemic stroke: a population-based study. Lancet Neurol.2015;14(9):903-913.
61. Sacco RL, Ellenberg JH, Mohr JP, et al. Infarcts of undetermined
cause: the NINCDS Stroke Data Bank. Ann Neurol.1989;25(4):382-390.
62. Wolf ME, Grittner U, Böttcher T, et al. Phenotypic ASCO
Characterisation of Young Patients with Ischemic Stroke in the
Prospective Multicentre Observational sifap1 Study. Cerebrovasc
Dis. 2015;40(3-4):129-135.
63. Marini C, De Santis F, Sacco S, et al. Contribution of atrial
fibrillation to incidence and outcome of ischemic stroke: results from a
population-based study. Stroke. 2005;36(6):1115-1119.
64. Paciaroni M, Agnelli G, Caso V, et al. Atrial fibrillation in
patients with first-ever stroke: frequency, antithrombotic treatment
before the event and effect on clinical outcome. J Thromb
Haemost. 2005;3(6):1218-1223.
65. Sanna T, Diener HC, Passman RS, et al. Cryptogenic stroke and
underlying atrial fibrillation. N Engl J Med.2014;370(26):2478-2486.
66. Kernan WN, Ovbiagele B, Black HR, et al. Guidelines for the
prevention of stroke in patients with stroke and transient ischemic
attack: a guideline for healthcare professionals from the American Heart
Association/American Stroke Association. Stroke.2014;45(7):2160-2236.
67. Diener HC, Sacco RL, Easton JD, et al. Dabigatran for Prevention of
Stroke after Embolic Stroke of Undetermined Source. N Engl J Med.2019;380(20):1906-1917.
68. Hart RG, Connolly SJ, Mundl H. Rivaroxaban for Stroke Prevention
after Embolic Stroke of Undetermined Source. N Engl J Med.2018;379(10):987.
69. January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline
for the management of patients with atrial fibrillation: a report of the
American College of Cardiology/American Heart Association Task Force on
practice guidelines and the Heart Rhythm Society. Circulation.2014;130(23):e199-267.
70. Chen LY, Chung MK, Allen LA, et al. Atrial Fibrillation Burden:
Moving Beyond Atrial Fibrillation as a Binary Entity: A Scientific
Statement From the American Heart Association. Circulation.2018;137(20):e623-e644.
71. Swiryn S, Orlov MV, Benditt DG, et al. Clinical Implications of
Brief Device-Detected Atrial Tachyarrhythmias in a Cardiac Rhythm
Management Device Population: Results from the Registry of Atrial
Tachycardia and Atrial Fibrillation Episodes. Circulation.2016;134(16):1130-1140.
72. Rankin AJ, Tran RT, Abdul-Rahim AH, Rankin AC, Lees KR. Clinically
important atrial arrhythmia and stroke risk: a UK-wide online survey
among stroke physicians and cardiologists. QJM: An International
Journal of Medicine. 2014;107(11):895-902.
73. Freedman B, Boriani G, Glotzer TV, Healey JS, Kirchhof P, Potpara
TS. Management of atrial high-rate episodes detected by cardiac
implanted electronic devices. Nat Rev Cardiol.2017;14(12):701-714.
74. Kumbhani DJ, Cannon CP, Beavers CJ, et al. 2020 ACC Expert Consensus
Decision Pathway for Anticoagulant and Antiplatelet Therapy in Patients
With Atrial Fibrillation or Venous Thromboembolism Undergoing
Percutaneous Coronary Intervention or With Atherosclerotic
Cardiovascular Disease: A Report of the American College of Cardiology
Solution Set Oversight Committee. J Am Coll Cardiol.2021;77(5):629-658.
75. Perino AC, Fan J, Askari M, et al. Practice Variation in
Anticoagulation Prescription and Outcomes After Device-Detected Atrial
Fibrillation. Circulation. 2019;139(22):2502-2512.
76. Noseworthy PA, Kaufman ES, Chen LY, et al. Subclinical and
Device-Detected Atrial Fibrillation: Pondering the Knowledge Gap: A
Scientific Statement From the American Heart Association.Circulation. 2019;140(25):e944-e963.
77. Lopes RD, Alings M, Connolly SJ, et al. Rationale and design of the
Apixaban for the Reduction of Thrombo-Embolism in Patients With
Device-Detected Sub-Clinical Atrial Fibrillation (ARTESiA) trial.Am Heart J. 2017;189:137-145.
78. Kirchhof P, Blank BF, Calvert M, et al. Probing oral anticoagulation
in patients with atrial high rate episodes: Rationale and design of the
Non-vitamin K antagonist Oral anticoagulants in patients with Atrial
High rate episodes (NOAH-AFNET 6) trial. Am Heart J.2017;190:12-18.
79. Shashikumar SPaSAJaCGDaNS. Detection of Paroxysmal Atrial
Fibrillation Using Attention-Based Bidirectional Recurrent Neural
Networks. Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining; 2018.
80. Pereira T, Tran N, Gadhoumi K, et al. Photoplethysmography based
atrial fibrillation detection: a review. NPJ Digit Med. 2020;3:3.
81. Tison GH, Sanchez JM, Ballinger B, et al. Passive Detection of
Atrial Fibrillation Using a Commercially Available Smartwatch.JAMA Cardiol. 2018;3(5):409-416.
82. Poh MZ, Poh YC, Chan PH, et al. Diagnostic assessment of a deep
learning system for detecting atrial fibrillation in pulse waveforms.Heart. 2018;104(23):1921-1928.
83. Guo Y, Wang H, Zhang H, et al. Mobile Photoplethysmographic
Technology to Detect Atrial Fibrillation. J Am Coll Cardiol.2019;74(19):2365-2375.
84. Perez MV, Mahaffey KW, Hedlin H, et al. Large-Scale Assessment of a
Smartwatch to Identify Atrial Fibrillation. N Engl J Med.2019;381(20):1909-1917.
85. Lubitz SA, Faranesh AZ, Atlas SJ, et al. Rationale and design of a
large population study to validate software for the assessment of atrial
fibrillation from data acquired by a consumer tracker or smartwatch: The
Fitbit heart study. Am Heart J. 2021;238:16-26.
86. Bonomi AG, Schipper F, Eerikäinen LM, et al. Atrial Fibrillation
Detection Using a Novel Cardiac Ambulatory Monitor Based on
Photo-Plethysmography at the Wrist. J Am Heart Assoc.2018;7(15):e009351.
87. Veronese G, Germini F, Ingrassia S, et al. Emergency physician
accuracy in interpreting electrocardiograms with potential ST-segment
elevation myocardial infarction: Is it enough? Acute Card Care.2016;18(1):7-10.
88. Yasin OZ, Attia Z, Dillon JJ, et al. Noninvasive blood potassium
measurement using signal-processed, single-lead ecg acquired from a
handheld smartphone. J Electrocardiol. 2017;50(5):620-625.
89. Kashou AH, May AM, Noseworthy PA. Artificial Intelligence-Enabled
ECG: a Modern Lens on an Old Technology. Curr Cardiol Rep.2020;22(8):57.