References
Abdel-Gawad, F. K., Khalil, W. K. B., Bassem, S. M., Kumar, V., Parisi,
C., Inglese, S., Temraz, T. A., Nassar, H. F., & Guerriero, G. (2020).
The Duckweed, Lemna minor Modulates Heavy Metal-Induced Oxidative Stress
in the Nile Tilapia, Oreochromis niloticus. Water , 12 (11),
2983. https://doi.org/10.3390/w12112983
AWEL. (2006). Wasserqualitaet der Seen, Fliessgewaesser und des
Grundwassers im Kanton Zuerich . Baudirektion Kanton Zürich.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear
Mixed-Effects Models Using lme4. Journal of Statistical Software ,67 (1), 1–48. https://doi.org/10.18637/jss.v067.i01
Bundesamt für Umwelt BAFU. (2019). Zustand und Entwicklung
Grundwasser Schweiz . 138.
Callaway, R. M. (1995). Positive interactions among plants. The
Botanical Review , 61 (4), 306–349.
https://doi.org/10.1007/BF02912621
Callaway, R. M., Brooker, R. W., Choler, P., Kikvidze, Z., Lortie, C.
J., Michalet, R., Paolini, L., Pugnaire, F. I., Newingham, B.,
Aschehoug, E. T., Armas, C., Kikodze, D., & Cook, B. J. (2002).
Positive interactions among alpine plants increase with stress.Nature , 417 (6891), 844–848.
https://doi.org/10.1038/nature00812
Cardwell, A. J., Hawker, D. W., & Greenway, M. (2002). Metal
accumulation in aquatic macrophytes from southeast Queensland,
Australia. Chemosphere , 48 (7), 653–663.
https://doi.org/10.1016/s0045-6535(02)00164-9
Clatworthy, J. N., & Harper, J. L. (1962). The Comparative Biology of
Closely Related Species Living in the Same Area: V. Inter-and
intraspecific interference within cultures of Lemna spp. and Salvinia
Natans. Journal of Experimental Botany , 13 (2), 307–324.
Gaur, J. P., Noraho, N., & Chauhan, Y. S. (1994). Relationship between
heavy metal accumulation and toxicity in Spirodela polyrhiza (L.)
Schleid. And Azolla pinnata R. Br. Aquatic Botany , 49 (2),
183–192. https://doi.org/10.1016/0304-3770(94)90037-X
Gopal, B., & Goel, U. (1993). Competition and Allelopathy in Aquatic
Plant Communities. Botanical Review , 59 (3), 155–210.
Hart, S. P., Turcotte, M. M., & Levine, J. M. (2019). Effects of rapid
evolution on species coexistence. Proceedings of the National
Academy of Sciences , 116 (6), 2112–2117.
https://doi.org/10.1073/pnas.1816298116
Hicks, L. E. (1932). Flower Production in the Lemnaceae. The Ohio
Journal of Science , 32 (2), 16.
Jayasri, M. A., & Suthindhiran, K. (2017). Effect of zinc and lead on
the physiological and biochemical properties of aquatic plant Lemna
minor: Its potential role in phytoremediation. Applied Water
Science , 7 (3), 1247–1253.
https://doi.org/10.1007/s13201-015-0376-x
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017).
lmerTest Package: Tests in Linear Mixed Effects Models. Journal of
Statistical Software , 82 (13), 1–26.
https://doi.org/10.18637/jss.v082.i13
Lahive, E., O’ Halloran, J., & Jansen, M. A. K. (2011). Differential
sensitivity of four Lemnaceae species to zinc sulphate.Environmental and Experimental Botany , 71 (1), 25–33.
https://doi.org/10.1016/j.envexpbot.2010.10.014
Lahive, E., O’Callaghan, M. J. A., Jansen, M. A. K., & O’Halloran, J.
(2011). Uptake and partitioning of zinc in Lemnaceae.Ecotoxicology , 20 (8), 1992.
https://doi.org/10.1007/s10646-011-0741-y
Laird, R. A., & Barks, P. M. (2018). Skimming the surface: Duckweed as
a model system in ecology and evolution. American Journal of
Botany , 105 (12), 1962–1966. https://doi.org/10.1002/ajb2.1194
Landolt, E. (1986). Biosystematic investigation in the family of
duckweeds (“Lemnaceae”). Vol. 2: The family of “Lemnaceae” : a
monographic study. Volume 1 [Text/html,application/pdf].
https://doi.org/10.5169/SEALS-308748
Landolt, E. (1996). Duckweeds (Lemnaceae): Morphological and ecological
characteristics and their potential for recycling of nutrients. In J.
Staudemann, A. Schonborn, & C. Etnier (Eds.), Recycling the
Resource: Proceedings of the Second International Conference on
Ecological Engineering for Wastewater Treatment (Vols. 5–6, pp.
289–296). Trans Tech Publications Ltd.
https://www.webofscience.com/wos/alldb/full-record/WOS:000074669800042
Liu, Y., Xu, H., Yu, C., & Zhou, G. (2021). Multifaceted roles of
duckweed in aquatic phytoremediation and bioproducts synthesis.GCB Bioenergy , 13 (1), 70–82.
https://doi.org/10.1111/gcbb.12747
Megateli, S., Semsari, S., & Couderchet, M. (2009). Toxicity and
removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba.Ecotoxicology and Environmental Safety , 72 (6), 1774–1780.
https://doi.org/10.1016/j.ecoenv.2009.05.004
Peeters, E. T. H. M., Neefjes, R. E. M., & van Zuidam, B. G. (2016).
Competition between Free-Floating Plants Is Strongly Driven by
Previously Experienced Phosphorus Concentrations in the Water Column.PLoS ONE , 11 (9).
https://doi.org/10.1371/journal.pone.0162780
R Development Core Team. (2021). R: a language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna,
Austria. http://www.R-project.org.
Rout, G. R., & Das, P. (2009). Effect of Metal Toxicity on Plant Growth
and Metabolism: I. Zinc. In E. Lichtfouse, M. Navarrete, P. Debaeke, S.
Véronique, & C. Alberola (Eds.), Sustainable Agriculture (pp.
873–884). Springer Netherlands.
https://doi.org/10.1007/978-90-481-2666-8_53
Senevirathna, K. M., Crisfield, V. E., Burg, T. M., & Laird, R. A.
(2021). Hide and seek: Molecular barcoding clarifies the distribution of
two cryptic duckweed species across alberta. Botany .
https://doi.org/10.1139/cjb-2021-0058
Vaughan, D., & Baker, R. G. (1994). Influence of nutrients on the
development of gibbosity in fronds of the duckweed Lemna gibba L.Journal of Experimental Botany , 45 (270), 129–133.
Vaughan, D., DeKock, P. C., & Ord, B. G. (1982). The nature and
localization of superoxide dismutase in fronds of Lemna gibba L. and the
effect of copper and zinc deficiency on its activity. Physiologia
Plantarum , 54 (3), 253–257.
https://doi.org/10.1111/j.1399-3054.1982.tb00256.x
Wołek, J. (1972). A preliminary investigation on interactions
(competition, allelopathy) between some species of Lemna, Spirodela, and
Wolffia [Text/html,application/pdf].
https://doi.org/10.5169/SEALS-377679
Zayed, A., Gowthaman, S., & Terry, N. (1998). Phytoaccumulation of
Trace Elements by Wetland Plants: I. Duckweed. Journal of
Environmental Quality , 27 (3), 715–721.
https://doi.org/10.2134/jeq1998.00472425002700030032x
Table 1. Summary of the Type 3 ANOVA’s showing the influence of
the setting (isolated vs. mixed), the Zn concentration (factorial) and
the composition (isolated, pairing with species 1, pairing with species
2) on the three study species. Significant (<0.05) and
near-significant (<0.06) p-values are in bold. The linear
mixed models for setting and composition included position (outer vs.
inner) as random factor, the linear mixed model for concentration
included composition as random factor. Within species, interaction terms
were never significant and thus not shown here (but see Table S2).