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Abstract. In this paper, we introduced a new fractional derivative operator based on Lonezo-
Hartely function, which is called G-function.With the help of the operator, we solved a fractional
diffusion equations.Some applications related to the operator is also discussed as form of corollaries.

1. Introduction

If we study the fractional calculus and its generalization of derivative operator Dv[f(x)] to non
integer values of v, we approach the theory of differential calculus. That field is a growing field
and day by day new research comes in our notice. It has been observe that almost in every field
fractional calculus have a significant role. Due to it’s nature of applicability it become the favourite
field of researcher. In liturateur We can see the areas which have deep connection with fractional
calculus like mathematical modeling, viscoelasticity, chaos fractals, electrical, electronics, heat
transfer, physics, chemistry, biology and many more see( [6]– [9]).

In the field of research and technology mathematical modeling is quite important. And in recent
time it has been observe that fractional differential equation plays an important role to describing
the physical phenomena. Fractional differential operator is a generalization of ordinary differential
operator of arbitrary order ( [1], [16], [18]). Many operators are defined in literature time to time,
which shows their importance in different fields. Out of these operator, it has been observe that
effective memory function of fractional order derivative plays a significant role to describing various
scientific phenomena.

Special roles in the applications of fractional calculus operators are played by the transcenden-
tal functions like Mittag-Leffler function, Miller-Ross function and their generalization,Rabotnov
function,Lorenzo-Hartley function and many more. These function are used to propose the new
non-singular derivative operator.The general fractional derivatives via the special kernels have the
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properties, such as memory and integro-differential representations with the non-singular behav-
iors, were developed in [10]. As we study the Yang’s paper [11] based on generalised operator
and having the application of relaxation phenomenon. It has been observe that operators of Frac-
tional calculus are used to describe mechanics, intermediate processes, phenomena in physics and
many more different fields (see [13], [22]– [24]). The Lorenzo–Hartley’s function is used to model
a anomalous relaxation in dielectrics [3],of fractional order. Y. Feng and J. Liu, [12] describe the
diffusion equation using a new fractional derivative within the Miller-Ross kernel. Yang in 2019 [4]
examined the anomalous heat transfer model having fractional-order derivative with Rabotnov
fractional-exponential kernel.
The main idea of this paper is to propose a fractional diffusion equation ( [14]– [15]) within gen-
eral fractional derivative via the Lorenzo-Hartley kernel. Analytical solution of proposed diffusion
equation of fractional order, within the Lorenzo-Hartley kernel, under the consideration of all the
parameters, is concluded in this paper and so further, we can also use Miller Ross function kernel,
the Robotnov and Hartley’s functions kernel and Erdelyi’s function kernel by putting the particular
values of the parameters to find the respective solution for the diffusion equation.

2. Mathematical Preliminaries and Definitions

Definition 1. [19] Let v, µ ∈ R,a ∈ C, n ∈ N ∪ {0}, The R-Function is given by

Rv,µ[a, c, τ ] =
∞∑
n=0

(a)n(τ − c)(n+1)v−1−µ

Γ((n+ 1)v − µ)
, ℜ(v) > 0. (2.1)

Definition 2. [20] The Lorenzo-Hartley’s function is introduced by Lorenzo and Hartley. It is a
simple generalization of R-function.

Gv,µ,d(a, c, τ) =
∞∑
k=0

(d)ka
k(τ − c)(k+d)v−µ−1

k!Γ((k + d)v − µ)
, ℜ(vd− µ) > 0, (2.2)

where (d)k =

{
1, k = 0

d(d+ 1)(d+ 2)...(d+ k − 1), d ̸= 0 , k ∈ N

}
.

As we study the liturature we found that the Lorenzo-Hartley function is also related to well-known
special functions like Mittag-Leffler functions, the Robotnov and Hartley’s functions, Agarwal func-
tion, the R-function and Erdelyi’s function. Recently, Chaurasia and Pandey [5], generalized some
fractional kinetic equations in computable forms by using the Lorenzo-Hartley’s G-function.

Definition 3. [19] Hartley and Lorenzo introduced the Rabotnov function. That function is studied
by Robotnov for the application of solid mechanics.

Rv[a, τ ] =

∞∑
n=0

anτ ((n+1)ν−1)

Γ((n+ 1)ν)
, ℜ(v) > 0. (2.3)

The relationship with G-function is given by,

Gv,0,1(−b, 0, τ) =

∞∑
n=0

(1)n(−b)nτ (n+1)v−1

n!Γ((n+ 1)v)
= Rv[−b, τ ]. (2.4)

Definition 4. [10] We have the Mittag-Leffler function

Ev[τ ] =

∞∑
n=0

τn

Γ(nv + 1)
, ℜ(v) > 0.
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Mittag-Leffler function with the argument (−aτu) is given by,

Ev[−aτv] =

∞∑
n=0

(−a)nτvn

Γ(nv + 1)
, ℜ(v) > 0. (2.5)

The relationship with the G-function is given by

Gv,v−1,1(−a, 0, τ) = Gv,v−1,1(−a, 0, τ) =
∞∑
n=0

(1)n(−1)nan(τ)(n+1)v−(v−1)−1

n!Γ((n+ 1)v − (v − 1))
= Ev[−aτv]. (2.6)

Definition 5. [21] We have the definition of Generalized Mittag-Leffler Function,

Eδ
v,w(τ) =

∞∑
k=0

(δ)k
Γ(kv + w)

τk

k!
, ℜ(v) > 0, ℜ(w) > 0. (2.7)

The relation with the G-function is given by,

Gv,−µ,δ(−a, τ − θ) = (τ − θ)δv+µ−1
∞∑
k=0

(δ)k(−a)k(τ − θ)kv

k!Γ((k + δ)v + µ)
= Eδ

v,vδ+µ(−a(τ − θ)v), (2.8)

where, ℜ(v) > 0, ℜ(µ) > 0, ℜ(δ) > 0.

Remark 1.

(1) [19] The Mittag-Leffler function is generalized by Agarwal, known as Agarwal function, as
follows

Eu,v [τ ] =
∞∑
n=0

τn+
v−1
u

Γ(nu+ v)
, ℜ(v) > 0. (2.9)

The relationship with the G-function is given by

Gu,u−v,1(1, 0, τ
1/u) =

∞∑
n=0

(1)n1
nτ(n+

v−1
u )

n!Γ(nu+ v)
=

∞∑
n=0

τ(n+
v−1
u )

Γ(nu+ v)
, ℜ(v) > 0, (2.10)

Eu,v [τ ] = Gu,u−v,1(1, 0, τ
1/u). (2.11)

(2) [19] Erdelyi function is the generalization of the Mittag-Leffler function where the powers
of t are integer

Eu,v [τ ] =

∞∑
n=0

τn

Γ(nu+ v)
, ℜ(v),ℜ(u) > 0. (2.12)

The relationship with the G-function is given by,

Gu,u−v,1(1, 0, τ) =

∞∑
n=0

(1)n1
nτ (nu+v−1)

n!Γ(nu+ v)
= τ (v−1)

∞∑
n=0

τ (nu)

Γ(nu+ v)
,

= τ (v−1)Eu,v [τ
u] .

(2.13)

(3) [17] Miller and Ross function is given by

Mv[τ, a] =

∞∑
n=0

anτ (n+v)

Γ(n+ v + 1)
, ℜ(v) > 0. (2.14)
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The relation with the G-function is,

G1,−ν,1(a, 0, τ) =
∞∑
n=0

(1)n(a)
nτ (n+ν)

n!Γ(n+ ν + 1)
= Mv[τ, a], ℜ(v) > 0. (2.15)
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Remark 2.

(1) The fractional integral of order α, α ⩾ 0 of Riemann-Lioville type of continuous real func-
tion f in [a, b] is defined as

aIτ
αf(τ) =

1

Γ(α)

τ∫
a

(τ − s)α−1f(s)ds, τ ∈ [a, b]. (2.16)

(2) The fractional derivative of order α, α ⩾ 0 of Riemann-Lioville type of continuous real
function f in [a, b] is defined as

aD
α
τ f(τ) = Dm

aI
(−m+α)
τ f(τ), τ ∈ [a, b] and m ∈ N. (2.17)

(3) We have the Laplace transform of fractional derivative

L[Dα
τ f(x, τ); s] = sαF (x, s)−

m−1∑
r=0

sα−r−1f (r)(x, 0), (2.18)

where function f(x, τ) is continuous function and α ∈ R+.

3. New General fractional operator using Lorenzo Hartley kernel

Let v ∈ R, 0 < v < 1 and a ∈ C. Define the function Xv ( with c=0 in Lorenzo Hartley
function) as follows

Xv(−a(τ − θ)v) = Gv,−µ,δ(−a, τ − θ) =
∞∑
k=0

(δ)k(−a)k(τ − θ)(k+δ)v+µ−1

k!Γ((k + δ)v + µ)
, ℜ(vδ + µ) > 0. (3.1)

The definition of the general fractional derivative (GFD) and general fractional integral (GFI)
within Xv are as follows:

(1) Let v ∈ R, 0 < v < 1, −∞ < r, l < ∞, and a ∈ C. The left-sided GFI within Xv

function in the Riemann-Liouville sense is defined by,

LHIa,vl+ Ω(τ) =

τ∫
l

Xv(−a(τ − θ)v)Ω(θ)dθ, (3.2)

and the right sided GFI within the Xv function in Riemann-Liouville seance is defined by,

LHIa,vr−Ω(τ) =

r∫
τ

Xv(−a(τ − θ)v)Ω(θ)dθ. (3.3)

GFI within the Xv function in the Riemann-Liouville sense is defined by,

LHIa,v0+Ω(τ) =

τ∫
0

Xv(−a(τ − θ)v)Ω(θ)dθ. (3.4)

(2) Let v ∈ R, 0 < v < 1, −∞ < r, l < ∞, and a ∈ C. The left-sided GFD within the Xv

function of Riemann-Liouville sense is defined by,

RL
LHDa,v

l+ Ω(τ) =
d

dτ

τ∫
l

Xv(−a(τ − θ)v)Ω(θ)dθ =
d

dτ
LHIa,vl+ Ω(τ). (3.5)
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For n, the left-sided GFD within the Xv function of Riemann-Liouville sense is defined by,

RL
LHDa,n,v

l+ Ω(τ) =
dn

dτn

τ∫
l

Xv(−a(τ − θ)v)Ω(θ)dθ =
dn

dτn
LHIa,vl+ Ω(τ). (3.6)

The Right-sided GFD within the Xv function of Riemann-Liouville sense is defined by,

RL
LHDa,v

r−Ω(τ) = − d

dτ

r∫
τ

Xv(−a(τ − θ)v)Ω(τ)dτ = − d

dτ
LHIa,vr−Ω(τ). (3.7)

For n, the right-sided GFD within the Xv function of Riemann-Liouville sense is defined
by,

RL
LHDa,n,v

r− Ω(τ) = − dn

dτn

r∫
τ

Xv(−a(τ − θ)v)Ω(θ)dθ = − dn

dτn
LHIa,vr−Ω(τ). (3.8)

GFD within the Xv function of Riemann-Liouville sense is defined by,

RL
LHDa,n,v

0+ Ω(τ) =
dn

dτn

t∫
0

Xv(−a(τ − θ)v)Ω(θ)dθ =
dn

dτn
LHIa,v0+Ω(τ). (3.9)

Remark 3.

(1) GFI within the Rabotnov function of Riemann-Liouville sense is defined by,

RbI
a,v
0+Ω(τ) =

τ∫
0

Rv(−a(τ − θ)v)Ω(θ)dθ. (3.10)

GFD within the Rabotnov function of Riemann-Liouville sense is defined by,

RL
Rb D

a,n,v
0+ Ω(τ) =

dn

dτn

τ∫
0

Rv(−a(τ − θ)v)Ω(θ)dθ =
dn

dτn
RbI

a,v
0+Ω(τ). (3.11)

(2) GFI within the Miller-Ross function of Riemann-Liouville sense is defined by

MIa,v0+Ω(τ) =

τ∫
0

Mv(−a(τ − θ)v)Ω(θ)dθ. (3.12)

GFD within the Miller Ross function of Riemann-Liouville sense is defined by,

RL
M Da,n,v

0+ Ω(τ) =
dn

dτn

τ∫
0

Mv(−a(τ − θ)v)Ω(θ)dθ =
dn

dτn
LHIa,v0+Ω(τ). (3.13)

(3) GFI with in the Erdelyi’s function of Riemann-Liouville sense is defined by,

ErI
1,v
0+Ω(τ) =

τ∫
0

Eu,v((τ − θ)v)Ω(τ)dτ. (3.14)

GFD within the Erdelyi’s function of Riemann-Liouville sense is defined by,

RL
ErD

1,n,v
0+ Ω(τ) =

dn

dτn

τ∫
0

Eu,v((τ − θ)v)Ω(θ)dθ =
dn

dτn
ErI

1,v
0+Ω(τ). (3.15)



7

4. Some Integral transform of New PRR LC Fractional Operator

In this section, we defined few theorems based on the new PRR LC fractional operator as follows:

Theorem 1. Let v ∈ R, 0 < v < 1 and a ∈ C. Then the Laplace transform of LHIa,v0+Ω(τ) is
given by

L
[
LHIa,v0+Ω(τ)

]
=

s−µ

(sv + a)δ
Ω(s). (4.1)

Proof. To find the Laplace transform of LHIa,v0+Ω(τ), we have

LHIa,v0+Ω(τ) =

τ∫
0

Xv(−a(τ − θ)v)Ω(θ)dθ, (4.2)

Xv(−a(τ − θ)v) =

∞∑
k=0

(δ)k(−a)k(τ − θ)(k+δ)v+µ−1

k!Γ((k + δ)v + µ)
, (4.3)

L
[
LHIa,v0+Ω(τ)

]
= L

 τ∫
0

Xv(−a(τ − θ)v)Ω(θ)dθ

 . (4.4)

Using Convolution theorem for Laplace transform is given by

L

 τ∫
0

Xv(−a(τ − θ)v).Ω(θ)dθ

 = L (Xv(−aτv) ∗ L (Ω(τ)) , (4.5)

L [Xv(−aτ)v)] =
∞∑
k=0

(δ)k(−a)kL(τ)(k+δ)v+µ−1

k!Γ((k + δ)v + µ)
, (4.6)

L [Xv(−aτ)v)] =
s−µ

(sv + a)δ
, (4.7)

L
[
LHIa,v0+Ω(τ)

]
=

s−µ

(sv + a)δ
Ω(s). (4.8)

■

Theorem 2. Let v ∈ R , 0 < v < 1 and a ∈ C. Then the Sumudu transform of LHIa,v0+Ω(τ) is
given by,

S
[
LHIa,v0+Ω(τ)

]
=

uµ+vδ

(1 + auv)δ
Ω(u). (4.9)

Proof. Let v ∈ R , 0 < v < 1 and a ∈ C. Then the Sumudu transform of LHIa,v0+Ω(τ) is given by,

S
[
LHIa,v0+Ω(τ)

]
=

uµ+vδ+1

(1 + auv)δ
Ω(1/u). (4.10)

The Sumudu transform of (4.10) can be calculated as follows.
We have

LHIa,v0+Ω(τ) =

τ∫
0

Xv(−a(τ − θ)v)Ω(θ)dθ, (4.11)
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Xv(−a(τ − θ)v) =

∞∑
k=0

(δ)k(−a)k(τ − θ)(k+δ)v+µ−1

k!Γ((k + δ)v + µ)
. (4.12)

Hence

S
[
LHIa,v0+Ω(τ)

]
= S

 τ∫
0

Xv(−a(τ − θ)v)Ω(θ)dθ

 . (4.13)

Using Convolution theorem for Sumudu transform is given by,

S

 t∫
0

Xv(−a(τ − θ)v).Ω(θ)dθ

 = uS (Xv(−aτv) ∗ S (Ω(τ)) , (4.14)

S [Xv(−aτ)v)] =
∞∑
k=0

(δ)k(−a)kS(τ)(k+δ)v+µ−1

k!Γ((k + δ)v + µ)
, (4.15)

S [Xv(−aτ)v)] =
uµ+vδ−1

(1 + auv)δ
. (4.16)

Hence

S
[
LHIa,v0+Ω(τ)

]
=

uµ+vδ

(1 + auv)δ
Ω(u). (4.17)

■

Theorem 3. Let v ∈ R, 0 < v < 1 and a ∈ C. Then the Laplace transform of RL
LHDa,n,v

0+ g(τ), is
given by,

L
(
RLDa,n,v

0+ g(τ)
)
=

sn−µ

(sv + a)δ
−

n−k−1∑
k=0

Dk

 t∫
0

Xv.g(τ)dτ

∣∣∣∣∣∣
τ=0

, (4.18)

where k=0,1,2,3,...

Proof. The Laplace transform of fractional derivative is given by (2.18) where g(τ) is continuous
function and α ∈ R+.
For the new operator,

L
(
RLDa,n,v

0+ g(τ)
)
= snL

 τ∫
0

Xv.g(τ)dτ

−
n−k−1∑
k=0

Dk

 τ∫
0

Xv.g(τ)dτ

∣∣∣∣∣∣
τ=0

, (4.19)

where k=0,1,2,3,...

L
(
RLDa,n,v

0+ g(τ)
)
=

sn−µ

(sv + a)δ
−

n−k−1∑
k=0

Dk

 t∫
0

Xv.g(τ)dτ

∣∣∣∣∣∣
τ=0

. (4.20)

■
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5. Application of the new Generalized fractional derivative to Fractional
diffusion equation

Theorem 4. Let the following time fractional diffusion equation,

RL
LHDa,v

0+Y (x, τ) =
∂2

∂x2
Y (x, τ), (5.1)

associated with the initial and boundary conditions given by,

Y (x, 0) = 0,

Y (0, τ) = δ(θ),

Y (x, τ) → 0 as x → ∞, τ > 0,

(5.2)

where δ is Kronecker delta. Then the solution of the diffusion equation (5.1) is

Y (x, τ) =

∞∑
n=0

(−x)n

n!
Gv,(1−µ)n/2,δn/2(−a, 0, τ). (5.3)

Proof. On taking Laplace transform,

L
(
RL
LHDa,v

0+Y (x, τ)
)
=

∂2

∂x2
Y (x, s). (5.4)

By equation (4.20),

s.
s−µ

(sv + a)δ
Y (x, s)− 0 =

∂2

∂x2
Y (x, s), (5.5)

⇒

(
∂2

∂x2
− s1−µ

(sv + a)δ

)
Y (x, s) = 0. (5.6)

On solving this we get,

Y (x, s) = Aex
√

s1−µ(sv+a)−δ

+Be−x
√

s1−µ(sv+a)−δ

, (5.7)

and since Y (x, s) → 0 as x → ∞, s > 0,

⇒ Aex
√

s1−µ(sv+a)−δ

= 0,

⇒ A = 0, B = 1,

⇒ Y (x, s) = e−x
√

s1−µ(sv+a)−δ

.

(5.8)

⇒ Y (x, s) =
∞∑
n=0

(−x)n

n!

(√
s1−µ

(sv + a)δ

)n

=
∞∑
n=0

(−x)n

n!

(
s1−µ

(sv + a)δ

)n/2

, (5.9)

L−1 (Y (x, s)) = L−1

 ∞∑
n=0

(−x)n

n!

(
s1−µ

(sv + a)δ

)n/2
 . (5.10)
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Now consider the following G-function,

Gv,1−µ,δ(−a, c, τ) =

∞∑
k=0

(δ)k(−a)k(τ − c)(k+δ)v+µ−1−1

k!Γ((k + δ)v + µ− 1)
,

L [Gv,1−µ,δ(−a, c, τ)] = L

[ ∞∑
k=0

(δ)k(−a)kτ − c)(k+δ)v+µ−1−1

k!Γ((k + δ)v + µ− 1)

]
,

= e−cs
∞∑
k=0

(δ)k(−a)kL(τ)(k+δ)v+µ−1−1

k!Γ((k + δ)v + µ− 1)
,

= e−css1−µ−vδ svδ

(sv + a)δ
.

(5.11)

L [Gv,1−µ,δ(−a, 0, τ)] =
s1−µ

(sv + a)δ
, c = 0, (5.12)

Gv,(1−µ)n/2,δn/2(−a, 0, τ) = L−1

(
s1−µ

(sv + a)δ

)n/2

. (5.13)

The solution of the diffusion equation is given by

Y (x, τ) =
∞∑
n=0

(−x)n

n!
Gv,(1−µ)n/2,δn/2(−a, 0, τ). (5.14)

Also, with ℜ(v) > 0, ℜ(µ) > 0, ℜ(δ) > 0. We can write the solution in terms of Mittag-Leffler
Function as,

Y (x, τ) =

∞∑
n=0

(−x)n

n!
(τ)

(vδ−1+µ)n
2

−1E
δn
2

v,
(vδ−1+µ)n

2

(−aτv), ℜ(vδ − µ) > 0, (5.15)

where,

Gv,−µ,δ(−a, τ) = τ)δv+µ−1Eδ
v,vδ+µ(−aτv),

⇒ Gv,(1−µ)n/2,δn/2(−a, τ) = (τ)δv+µ−1E
δn/2
v,(vδ+1−µ)n/2(−aτv).

(5.16)

■

Corollary 1. For the values, µ = 0 and δ = 1, the solution of diffusion equation (5.1) for GFD
(3.11) within the Rabotnov kernel is given by,

Y (x, τ) =
∞∑
n=0

(−x)n

n!
Gv,n/2,n/2(−a, 0, τ). (5.17)

In terms of Mittag-Leffler function solution is given by

Y (x, τ) =

∞∑
n=0

(−x)n

n!
(τ)

(v−1)n
2

−1E
n
2

v,
(v−1)n

2

(−aτv), ℜ(v) > 0. (5.18)

Corollary 2. For the values, v=1, µ = v and δ = 1 the solution of the diffusion equation (5.1) for
GFD (3.13) within Miller-Ross kernel is given by

Y (x, τ) =
∞∑
n=0

(−x)n

n!
G1,−vn/2,n/2(−a, 0, τ)]. (5.19)

And in terms of Mittag-leffler function,
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Y (x, τ) =
∞∑
n=0

(−x)n

n!
(τ)

n(1−v)
2

−1E
n/2
1,(1−v)n/2(−aτv). (5.20)

Corollary 3. For the values, v=u, µ = v − u , a = −1 and δ = 1 the solution of the diffusion
equation (5.1) for GFD (3.15) within the Erdelyi’s kernel given by,

Y (x, τ) =

∞∑
n=0

(−x)n

n!
τ1−vGu,(u−v)n/2,n/2(1, 0, τ)]. (5.21)

6. Graphical Representation

The followings are the graphical representation of solution of diffusion equation (5.1) with different
values of µ, (fixing δ = 1, v=1)
For, µ = 0.2
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Now , the graph for analytical solution of diffusion equation with the ordinary derivative operator
in calculus is shown below
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The graphs are effectively showing the difference in solution of diffusion equation via fractional
calculus and ordinary calculus.
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7. Conclusion

In this paper, a new definition of general fractional operator is proposed. We also discuss the
solution of diffusion equation, with the help Laplace transform. We found the solution for the
diffusion equation in terms of transcedental functions which is effectively shown in graphs and
comparison done with respect to the ordinary derivative operator.
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