References
Auld, J.R., Agrawal, A.A. & Relyea, R.A. (2010) Re-evaluating the costs
and limits of adaptive phenotypic plasticity. Proceedings of the
Royal Society B: Biological Sciences, 277, 503-511.
Barton, K. (2022). MuMIn: Multi-model inference. R package version
1.47.1. https://CRAN.R-project.org/package=MuMIn
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. & West, G.B.
(2004) Toward a metabolic theory of ecology. Ecology , 85,
1771-1789. https://doi.org/10.1890/03-9000
Burton, T., Lakka, H.-K. & Einum, S. (2020) Acclimation capacity and
rate change through life in the zooplankton Daphnia .Proceedings of the Royal Society B: Biological Sciences, 287,
20200189. http://dx.doi.org/10.1098/rspb.2020.0189
Burton, T., Ratikainen, I. I. & Einum, S. (2022) Environmental change
and the rate of phenotypic plasticity. Global Change Biology , 28,
5337-5345. https://doi.org/10.1111/gcb.16291
Daufresne, M., Lengfellner, K. & Sommer, U. (2009) Global warming
benefits the small in aquatic ecosystems. Proceedings of the
National Academy of Sciences , 106, 12788-12793.
https://doi.org/10.1073/pnas.0902080106
Einum, S., Ratikainen, I., Wright, J., Pélabon, C., Bech, C., Jutfelt,
F., Stawski, C. & Burton, T. (2019) How to quantify thermal acclimation
capacity?. Global Change Biology , 25,
1893-1894. https://doi.org/10.1111/gcb.14598
Freitas, C., Olsen, E.M., Knutsen, H., Albretsen, J. & Moland, E.
(2016) Temperature-associated habitat selection in a cold-water marine
fish. Journal of Animal Ecology , 85,
628-637. https://doi.org/10.1111/1365-2656.12458
Gabriel, W. (2005) How stress selects for reversible phenotypic
plasticity. Journal of Evolutionary Biology , 18, 873-883.
doi:10.1111/j.1420-9101.2005.00959.x
Gabriel, W., Luttbeg, B., Sih, A. & Tollrian, R. (2005) Environmental
tolerance, heterogeneity, and the evolution of reversible plastic
responses. American Naturalist , 166, 339-353.
Gunderson, A.R. & Stillman, J.H. (2015) Plasticity in thermal tolerance
has limited potential to buffer ectotherms from global warming.Proceedings of the Royal Society B: Biological Sciences , 282,
20150401. doi:10.1098/rspb.2015.0401
Harrison P.M., Gutowsky L.F., Martins E.G., Patterson D.A., Cooke S.J.
& Power M. (2016) Temporal plasticity in thermal habitat selection of
burbot Lota lota a diel-migrating winter-specialist.Journal of Fish Biology , 88, 2111-2129. doi: 10.1111/jfb.12990.
Epub 2016 Apr 29. PMID: 27125426.
Kelly, M.W., Sanford, E. & Grosberg, R.K. (2012) Limited potential for
adaptation to climate change in a broadly distributed marine crustacean.Proceedings of the Royal Society B: Biological Sciences , 279,
349-356. doi:doi:10.1098/rspb.2011.0542
Kielland, Ø.N., Bech, C. & Einum, S. (2017) No evidence for thermal
transgenerational plasticity in metabolism when minimizing the potential
for confounding effects. Proceedings of the Royal Society B:
Biological Sciences , 284, 20162494. doi:10.1098/rspb.2016.2494
Kurylyk, B.L., MacQuarrie, K.T.B., Linnansaari, T., Cunjak, R.A.
& Curry, R.A. (2015) Preserving, augmenting, and creating cold-water
thermal refugia in rivers: concepts derived from research on the
Miramichi River, New Brunswick
(Canada). Ecohydrology , 8, 1095– 1108.
doi: 10.1002/eco.1566.
Lande, R. (2009) Adaptation to an extraordinary environment by evolution
of phenotypic plasticity and genetic assimilation. Journal of
Evolutionary Biology , 22, 1435-1446.
Lande, R. (2014) Evolution of phenotypic plasticity and environmental
tolerance of a labile quantitative character in a fluctuating
environment. Journal of Evolutionary Biology , 27, 866-875.
MacLean, H.J., Sørensen, J.G., Kristensen, T.N., Loeschcke, V.,
Beedholm, K., Kellermann, V. & Overgaard, J. (2019) Evolution and
plasticity of thermal performance: an analysis of variation in thermal
tolerance and fitness in 22 Drosophila species.Philosophical Transactions of the Royal Society B: Biological
Sciences , 374, 20180548. doi:doi:10.1098/rstb.2018.0548
Michonneau, F., Brown, J.W. & Winter, D.J. (2016) rotl: an R package to
interact with the Open Tree of Life data. Methods in Ecology and
Evolution , 7, 1476-1481. doi:10.1111/2041-210X.12593
OpenTree et al. Open Tree of Life Synthetic
Tree. https://doi.org/10.5281/zenodo.3937741
Padfield, D. & Matheson, G. (2020) nls.multstart: robust non-linear
regression using AIC scores. R package version 1.2.0.
https://CRAN.R-project.org/package=nls.multstart
Padilla, D.K. & Adolph, S.C. (1996) Plastic inducible morphologies are
not always adaptive: The importance of time delays in a stochastic
environment. Evolutionary Ecology , 10, 105-117.
doi:10.1007/BF01239351
Paradis, E. & Schliep, K. (2019) ape 5.0: an environment for modern
phylogenetics and evolutionary analyses in R. Bioinformatics , 35:
526-528.
Pottier, P., Burke, S., Zhang, R.Y., Noble, D.W.A., Schwanz, L.E. et
al. (2022). Developmental plasticity in thermal tolerance: Ontogenetic
variation, persistence, and future directions. Ecology
Letters , 25, 2245-2268. doi:
10.1111/ele.14083
Pereira, R.J., Sasaki, M.C. & Burton, R.S. (2017) Adaptation to a
latitudinal thermal gradient within a widespread copepod species: the
contributions of genetic divergence and phenotypic plasticity.Proceedings of the Royal Society B: Biological Sciences , 284,
20170236. doi:doi:10.1098/rspb.2017.0236
Phillips, B.L., Muñoz, M.M., Hatcher, A., Macdonald, S.L., Llewelyn, J.,
Lucy, V. et al. (2016) Heat hardening in a tropical lizard: geographic
variation explained by the predictability and variance in environmental
temperatures. Functional Ecology , 30, 1161-1168.
doi:10.1111/1365-2435.12609
R Core Team (2021) R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.
Rohr, J.R., Civitello, D.J., Cohen, J.M., Roznik, E.A., Sinervo, B. &
Dell, A.I. (2018) The complex drivers of thermal acclimation and breadth
in ectotherms. Ecology Letters , 21,
1425-1439. https://doi.org/10.1111/ele.13107
Seebacher, F., White, C. & Franklin, C. (2015) Physiological plasticity
increases resilience of ectothermic animals to climate
change. Nature Climate Change , 5, 61–66.
https://doi.org/10.1038/nclimate2457
Sgro, C.M., Overgaard, J., Kristensen, T.N., Mitchelll, K.A., Cockerell,
F.E., & Hoffmann, A.A. (2010) A comprehensive assessment of geographic
variation in heat tolerance and hardening capacity in populations ofDrosophila melanogaster from eastern Australia. Journal of
Evolutionary Biology , 23, 2484-2493.
doi:10.1111/j.1420-9101.2010.02110.x
Siljestam, M. & Östman, Ö. (2017) The combined effects of temporal
autocorrelation and the costs of plasticity on the evolution of
plasticity. Journal of Evolutionary Biology , 30, 1361-1371.
doi:10.1111/jeb.13114
Sultan, S.E. & Spencer, H.G. (2002) Metapopulation structure favors
plasticity over local adaptation. The American Naturalist , 160,
271-283. doi:10.1086/341015
Van Buskirk, J. & Steiner, U.K. (2009) The fitness costs of
developmental canalization and plasticity. Journal of Evolutionary
Biology , 22, 852-860.
doi:https://doi.org/10.1111/j.1420-9101.2009.01685.x
van Heerwaarden, B., Lee, R.F.H., Overgaard, J. & Sgrò, C.M. (2014) No
patterns in thermal plasticity along a latitudinal gradient inDrosophila simulans from eastern Australia. Journal of
Evolutionary Biology, 27, 2541-2553. doi:10.1111/jeb.1251022
van Heerwaarden, B., Kellermann, V. & Sgrò, C.M. (2016) Limited scope
for plasticity to increase upper thermal limits. Functional
Ecology , 30, 1947-1956. doi:10.1111/1365-2435.12687
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor
package. Journal of Statistical Software , 36 , 1-48.
https://doi.org/10.18637/jss.v036.i03