References
Auld, J. R., Agrawal, A. A., & Relyea, R. A. (2010). Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proceedings of the Royal Society B: Biological Sciences, 277 (1681), 503-511.
Barton, K. (2020). MuMIn: Multi-model inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. and West, G.B. (2004). Toward a metabolic theory of ecology. Ecology, 85: 1771-1789. https://doi.org/10.1890/03-9000
Burton T., Lakka H.-K., Einum S. (2020). Acclimation capacity and rate change through life in the zooplankton Daphnia . Proc. R. Soc. B 287: 20200189. http://dx.doi.org/10.1098/rspb.2020.0189
Burton, T., Ratikainen, I. I., Einum, S. (2022). Environmental change and the rate of phenotypic plasticity. Glob Change Biol, in press. Preprint: https://doi.org/10.6084/m9.figshare.18741044.v1
Daufresne, M., Lengfellner, K., & Sommer, U. (2009). Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci, 106 , 12788-12793. https://doi.org/10.1073/pnas.0902080106
Einum, S., Ratikainen, I., Wright, J., Pélabon, C., Bech, C., Jutfelt, F., Stawski, C. and Burton, T. (2019), How to quantify thermal acclimation capacity?. Glob Change Biol, 25: 1893-1894. https://doi.org/10.1111/gcb.14598
Freitas, C., Olsen, E.M., Knutsen, H., Albretsen, J. and Moland, E. (2016), Temperature-associated habitat selection in a cold-water marine fish. J Anim Ecol, 85: 628-637. https://doi.org/10.1111/1365-2656.12458
Gabriel, W. (2005). How stress selects for reversible phenotypic plasticity. Journal of Evolutionary Biology, 18 (4), 873-883. doi:10.1111/j.1420-9101.2005.00959.x
Gabriel, W., Luttbeg, B., Sih, A., & Tollrian, R. (2005). Environmental tolerance, heterogeneity, and the evolution of reversible plastic responses. American Naturalist, 166 , 339-353.
Gunderson, A. R., & Stillman, J. H. (2015). Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proceedings of the Royal Society B: Biological Sciences, 282 (1808), 20150401. doi:10.1098/rspb.2015.0401
Harrison PM, Gutowsky LF, Martins EG, Patterson DA, Cooke SJ, Power M. (2016). Temporal plasticity in thermal-habitat selection of burbot Lota lota a diel-migrating winter-specialist. J Fish Biol. 2016 Jun;88(6):2111-29. doi: 10.1111/jfb.12990. Epub 2016 Apr 29. PMID: 27125426.
Kelly, M. W., Sanford, E., & Grosberg, R. K. (2012). Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proceedings of the Royal Society B: Biological Sciences, 279 (1727), 349-356. doi:doi:10.1098/rspb.2011.0542
Kurylyk, B. L., MacQuarrie, K. T. B., Linnansaari, T., Cunjak, R. A., and Curry, R. A. (2015) Preserving, augmenting, and creating cold-water thermal refugia in rivers: concepts derived from research on the Miramichi River, New Brunswick (Canada). Ecohydrol. , 8: 1095– 1108. doi: 10.1002/eco.1566.
Lande, R. (2009). Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation.Journal of Evolutionary Biology, 22 (7), 1435-1446.
Lande, R. (2014). Evolution of phenotypic plasticity and environmental tolerance of a labile quantitative character in a fluctuating environment. Journal of Evolutionary Biology, 27 (5), 866-875.
MacLean, H. J., Sørensen, J. G., Kristensen, T. N., Loeschcke, V., Beedholm, K., Kellermann, V., & Overgaard, J. (2019). Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species.Philosophical Transactions of the Royal Society B: Biological Sciences, 374 (1778), 20180548. doi:doi:10.1098/rstb.2018.0548
Padfield, D. & Matheson, G. (2020). nls.multstart: robust non-linear regression using AIC scores. R package version 1.2.0. https://CRAN.R-project.org/package=nls.multstart
Padilla, D. K., & Adolph, S. C. (1996). Plastic inducible morphologies are not always adaptive: The importance of time delays in a stochastic environment. Evolutionary Ecology, 10 (1), 105-117. doi:10.1007/BF01239351
Pereira, R. J., Sasaki, M. C., & Burton, R. S. (2017). Adaptation to a latitudinal thermal gradient within a widespread copepod species: the contributions of genetic divergence and phenotypic plasticity.Proceedings of the Royal Society B: Biological Sciences, 284 (1853), 20170236. doi:doi:10.1098/rspb.2017.0236
Phillips, B. L., Muñoz, M. M., Hatcher, A., Macdonald, S. L., Llewelyn, J., Lucy, V., & Moritz, C. (2016). Heat hardening in a tropical lizard: geographic variation explained by the predictability and variance in environmental temperatures. Functional Ecology, 30 (7), 1161-1168. doi:10.1111/1365-2435.12609
Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2022). nlme: Linear and Nonlinear Mixed Effects Models . R package version 3.1-155, https://CRAN.R-project.org/package=nlme.
R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Rohr, J.R., Civitello, D.J., Cohen, J.M., Roznik, E.A., Sinervo, B. and Dell, A.I. (2018), The complex drivers of thermal acclimation and breadth in ectotherms. Ecol Lett, 21: 1425-1439. https://doi.org/10.1111/ele.13107
Sgro, C. M., Overgaard, J., Kristensen, T. N., Mitchelll, K. A., Cockerell, F. E., & Hoffmann, A. A. (2010). A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia.Journal of Evolutionary Biology, 23 (11), 2484-2493. doi:10.1111/j.1420-9101.2010.02110.x
Siljestam, M., & Östman, Ö. (2017). The combined effects of temporal autocorrelation and the costs of plasticity on the evolution of plasticity. Journal of Evolutionary Biology, 30 (7), 1361-1371. doi:10.1111/jeb.13114
Sultan, S. E., & Spencer, H. G. (2002). Metapopulation structure favors plasticity over local adaptation. . The American Naturalist, 160 (2), 271-283. doi:10.1086/341015
Van Buskirk, J., & Steiner, U. K. (2009). The fitness costs of developmental canalization and plasticity. Journal of Evolutionary Biology, 22 (4), 852-860. doi:https://doi.org/10.1111/j.1420-9101.2009.01685.x
van Heerwaarden, B., Lee, R. F. H., Overgaard, J., & Sgrò, C. M. (2014). No patterns in thermal plasticity along a latitudinal gradient in Drosophila simulans from eastern Australia. Journal of Evolutionary Biology, 27 (11), 2541-2553. doi:10.1111/jeb.1251022
van Heerwaarden, B., Kellermann, V., & Sgrò, C. M. (2016). Limited scope for plasticity to increase upper thermal limits. Functional Ecology, 30 (12), 1947-1956. doi:10.1111/1365-2435.12687