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Abstract1

1. Harmful algal blooms are increasing in both severity and frequency across the globe.2

Many bloom-forming species are capable of vertical motility and colony formation.3

The cyanobacterium Microcystis aeruginosa is a common example of such a species,4

yet current models poorly predict vertical distributions of M. aeruginosa.5

2. To couple the hydrodynamics, buoyancy, and the colony dynamics of Microcystis,6

we present a system of one-dimensional advection-diffusion-aggregation equations7

with Smoluchowski aggregation terms.8

3. Results indicate Smoluchowski aggregation accurately describes the colony dynam-9

ics of M. aeruginosa. Further, transport dynamics are strongly dependent on colony10

size, and aggregation processes are highly sensitive to algal concentration and wind-11

induced mixing. Both of these findings have direct consequences to harmful algal12

bloom formation.13

4. While the theoretical framework outlined in this manuscript was derived for M.14

aeruginosa, both motility and colony formation are common among bloom-forming15

algae. As such, this coupling of vertical transport and colony dynamics is a useful16

step for improving forecasts of surface harmful algal blooms.17

Keywords: harmful algal bloom, cyanobacteria, Microcystis aeruginosa, aggregation18

dynamics, vertical motility, theoretical biology19

1 Introduction20

Microcystis aeruginosa is a common toxin-producing cyanobacterium capable of forming21

harmful algal blooms (HABs). HABs threaten both ecological and public health, and22

they are expected to increase in distribution, frequency, and severity as a result of cli-23

mate change (O’neil et al., 2012). Predicting the timing of bloom formation has been24

challenging, but experts in the field have reached consensus on general trends leading25
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up to a HAB. A study of the record-breaking Lake Erie algae bloom of 2011 determined26

that—in addition to excessive nutrient loading—quiescent meteorological conditions al-27

lowed the bloom to form and proliferate to such a massive extent (Michalak et al., 2013),28

a finding that has been corroborated in many subsequent studies of cyanobacteria HABs29

(Wells et al., 2015). Using a Bayesian biophysical model with a high-frequency dataset,30

Del Giudice et al. (2021) were able to quantitatively show that quiescent conditions are31

not enough: high surface water temperatures and high irradiation are also necessary32

for bloom formation. Recently, it has been suggested that vertical heterogeneity of M.33

aeruginosa concentration is an important precursor to Microcystis surface bloom for-34

mation (Seegers et al., 2015; Xiao et al., 2018; Wilkinson et al., 2019). Therefore it is35

reasonable to assume improving models of M. aeruginosa vertical transport will likely36

lead to improved predictions of HAB timing.37

There are two key traits related to the ubiquity of M. aeruginosa: vertical motility and38

colony formation. Vertical motility is achieved through buoyancy regulation via intra-39

cellular gas vesicles. Typically, M. aeruginosa sinks to lower light intensities during the40

day and floats towards the water surface at night, although a critical water temperature41

threshold must be reached in order for cells to regain buoyancy (R. Thomas & Walsby,42

1985, 1986). Once that threshold is reached, increasing temperature increases buoyant43

velocity (You et al., 2018). Vertical motility gives M. aeruginosa a particular advan-44

tage in stratified lake environments, Stratified lakes are characterized by three distinct45

layers: the epilimnion or surface mixed layer is the hot, well-mixed surface layer; the hy-46

polimnion is the cold, well-mixed bottom layer; and the metalimnion is the intermediate47

layer of steep temperature gradient connecting the epilimnion to the hypolimnion. Using48

the three-dimensional ecological-hydrodynamic modeling software ELCOM-CAEDYM,49

Chung et al. (2014) were able to demonstrate a shallow mixed layer depth (close to the50

photic depth) favored buoyant cyanobacteria dominance, indicating lake thermal struc-51

ture controls algal population dynamics.52

Colony dynamics remain rather illusive, but colonies have been demonstrated to53

form in the presence of grazers, low to medium turbulence, and low nutrient conditions.54
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Colonies formed by reproduction and growth tend to be compact, whereas colonies that55

form by collisions tend to be fractal. There is also a well-documented progression from a56

unicellular morphology in the spring to a fractal colonial morphology in the summer (Xiao57

et al., 2018). In a field study, Cao and Yang (2010) found that large colonies didn’t ap-58

pear until May, but composed 90% of cells in a June surface bloom. They also calculated59

the mean number of cells in the surface bloom to be about 120 cells/colony. Between field60

work and experiments, Qin et al. (2018) found that wind promotes aggregation, creating61

heterogeneous size distributions in Microcystis populations.62

There are two threads of previous models to follow. There are models that describe63

aggregation processes of phytoplankton, and there are models that describe the vertical64

motility of M. aeruginosa. To describe the aggregation processes of phytoplankton, mod-65

els use Smoluchowski aggregation terms (Smoluchowski, 1917; Jackson, 1990; Ackleh &66

Miller, 2018). Because these models typically have applications in wastewater treatment67

or marine snow, the only transport considered is the loss of aggregates via sinking out68

of the surface mixed layer (Bonner et al., 2000; Teh et al., 2016; Engel et al., 2004). In69

contrast, Microcystis motility models relate individual cell density to light intensity with70

one-dimensional ordinary differential equations, which are then related to a Stokes ve-71

locity (Wallace et al., 2000). Turbulent transport has since been incorporated into these72

models (Medrano et al., 2013; Zhu et al., 2018). By combining their model with a princi-73

pal component analysis, Feng et al. (2018) demonstrated that turbulence-induced mixing74

explained over half of the variability of early surface bloom formation, but buoyancy reg-75

ulation was more important for bloom maintenance and formation of late-season blooms.76

Although the transport of different (fixed) colony sizes is investigated in these models,77

they do not incorporate aggregation dynamics, despite the well-documented progression78

from unicellular to colonial morphologies.79

In a previous field study, statistical methods were used to elucidate the reliance of80

Microcystis-dominated algal vertical distributions on lake thermal stratification variables81

(Taylor et al., 2021). Following the protocol discussed in Vinatier et al. (2011) which82

suggests using statistical and mechanistic models in an iterative manner to uncover forc-83
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ings of spatial heterogeneity, we propose a mechanistic model to analyze the effects of84

hydrodynamic and biological processes underlying the spatial patterns observed in the85

previous field study. In this paper, we couple the aggregation dynamics with lake hydro-86

dynamics and algal motility in a system of one-dimensional partial differential equations87

in an attempt to investigate the role of colony and motility dynamics on M. aeruginosa88

surface bloom formation.89

2 Methods90

2.1 Aggregation preliminaries91

The discrete aggregation dynamics for the concentration of an aggregate of size k, nk,92

were described by Smoluchowski (1917) as93

dnk

dt
=

1

2

∑
i+j=k

α(i, j)β(i, j)ninj −
∞∑
i=1

α(i, k)β(i, k)nink (1)94

where nk(z, t) is the concentration of an aggregate of size k, α(i, j) is the sticking prob-95

ability and β(i, j) is referred to as the aggregation, or coagulation, kernel of particles of96

size i and j (Fig. 1). Occasionally the product of α(i, j) and β(i, j) is referred to as97

the aggregation kernel, instead of just β(i, j). We leave the two parameters decoupled98

mainly for the sake of visualizing the process (Fig. 1), but also to conceptually differ-99

entiate the hydrodynamic drivers of β(i, j) (Eqns. 2-5) from the biological drivers of100

α(i, j) (Section 2.2.2). The first term on the right-hand side describes the formation of a101

k-sized aggregation, whereas the second term on the right-hand side describes the loss of102

a k-sized aggregation through the formation of a k+ i-sized aggregate. An infinitely-sized103

particle represents a loss of mass due to gelation. Eqn. 1 has had far-reaching applica-104

tions in addition to phytoplankton modeling, from aerosols to random graph theory and105

polymerization to planet formation (Aldous, 1999).106

While analytical solutions exist for some simple aggregation kernels (β(i, j) ∼ 1,107

β(i, j) ∼ i + j, and β(i, j) ∼ ij), realistic aggregation kernels are rarely analytically108
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Figure 1: Schematic of aggregation. Circles indicate the equivalent spherical diameter,
di, of the fractal aggregate of size i. (a) Two aggregates of size i and j collide. This
collision can either result in (b) aggregation and the formation of a i+ j sized aggregate,
or (c) collision without aggregation. Rate of collisions is controlled by β(i, j, z), but the
number of collisions that result in aggregation is controlled by α(i, j).

tractable. In the present context, β(i, j) is calculated as the sum of aggregation kernels109

for Brownian motion, βBr(i, j, z), turbulent shear, βTS(i, j, z), and differential settling,110

βDS(i, j, z), each respectively defined as (Ackleh & Miller, 2018; D. Thomas et al., 1999)111

βBr(i, j, z) =
2T (z)kB

(
di + dj

)2
3µ(z)

(
didj

) (2)112

113

βTS(i, j, z) =
4G(z)

(
di + dj

)3
3

(3)114

and115

βDS(i, j, z) = π
(
di + dj

)2|wi(z)− wj(z)| (4)116

such that117

β(i, j, z) = βBr(i, j, z) + βTS(i, j, z) + βDS(i, j, z) (5)118

where T (z) is the water temperature (K), kB is Boltzmann’s constant (1.38×10−23 m2 kg119

s−2 K−1), µ(z) is the dynamic viscosity of water (kg/m/s), G(z) =
(
ϵ
ν

) 1
2 is the turbulent120

shear rate (1/s), ϵ(z) is the rate of turbulent kinetic energy dissipation (m2/s3), and ν(z)121

is the kinematic viscosity of water (m2/s). The equivalent spherical diamater of a colony122

of size i, di (m), is given by123
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di =
i

1
Df d0
ϕ

(6)124

where Df = 2.5 is the fractal dimension (Nakamura et al., 1993), d0 = 5µm is the diameter125

of a single cell of M. aeruginosa (Xiao et al., 2018), and ϕ is the colony porosity that126

linearly decreases from ϕ = 1 for single cells and ϕ = 0.2 for colonies of size kmax (Medrano127

et al., 2013). Eqn. 2 is derived from thermodynamic principles of Brownian motion, Eqn.128

3 defines the rate of collisions for sub-Kolmogorov particles in turbulent flow (i.e., the129

largest aggregate diameter is smaller than the length scale of the smallest turbulent130

eddies), and Eqn. 4 describes collisions as a result of different-sized aggregates moving at131

different velocities. Aggregation due to Brownian motion is typically much slower than132

aggregation due to turbulent shear, and aggregation due to differential settling will be133

large for aggregates of drastically different sizes but will be small for aggregates of close134

to the same size.135

There are several assumptions of this formulation that should be addressed before136

continuing. We are assuming diffusion-limited aggregation rather than reaction-limited137

aggregation, meaning the aggregation process will be limited by diffusion due to Brownian138

motion and not by the sticking probability of collisions. This is reasonable for colony-139

forming species of algae in a system where the domain size is much larger than the140

aggregate sizes. We additionally assume there will be no disaggregation—colonies cannot141

split up once formed. This assumption is validated by the lab experiments of O’Brien142

et al. (2004), which demonstrated disaggregation of M. aeruginosa is negligible for the143

size range of aggregates being modeled subjected to expected field turbulence conditions.144

When aggregates consist of living organisms, it is possible for aggregates to increase in145

size through cell growth and reproduction in addition to particle collisions. However, it146

is hypothesized that the fractal colonies of M. aeruginosa are formed primarily through147

collisions, so we neglect aggregation due to cell growth (Xiao et al., 2018). Lastly, in148

order to facilitate the construction of a one-dimensional model, we assume aggregation is149

uniform over any given horizontal cross-section.150
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2.2 The mathematical model151

For the sake of generality, we aim to develop a reduced complexity model that (i) cir-152

cumvents any dynamics not explicitly needed to provide insight into the colony formation153

processes of M. aeruginosa, and (ii) can easily incorporate necessary subroutines and be154

incorporated into larger routines (Vedder, Ankenbrand, & Cabral, 2021). Let nk(z, t) be155

the number of colonies containing k cells of M. aeruginosa per unit volume (colonies/m3),156

t be time (s), z be depth (m), DZ(z) be the sum of molecular diffusion and turbulent dis-157

persion coefficients (m2/s), wk(z, t) be the buoyant velocity of a colony containing k cells158

of M. aeruginosa (m/s), β(i, j, z) be the Smoluchowski aggregation kernel for colonies of159

size i and j at a depth z defined by Eqn. 5 (m3/s), and kmax be the maximum number160

of cells in a single colony. If we assume nutrients are not limiting, then we suggest that161

the combined vertical transport and aggregation of a colony of size k can be described162

by the following advection-dispersion-reaction equation:163

∂nk

∂t
=

∂

∂z

(
DZ

∂nk

∂z

)
− ∂

∂z

(
wknk

)
+
1

2

∑
i+j=k

α(i, j)β(i, j, z)ninj−
kmax−k∑

i=1

α(i, k)β(i, k, z)nink

(7)164

with boundary conditions165

∂nk

∂z

∣∣∣∣∣
z=0

=
∂nk

∂z

∣∣∣∣∣
z=hmax

= 0 (8)166

and piecewise uniform initial conditions given by167

nk(z, 0) = n0
k(z) =


2.3× 107 colonies/m3 k = 1

0 k > 1

0 z > hML ∀k

(9)168

where z = 0 at the air-water interface, z = hmax at the lakebed, and hML is the width of169

the surface mixed layer. The no-flux boundary conditions ensure cells cannot leave the170

water column through atmospheric or soil exchange. Due to the seasonal progression of171
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M. aeruginosa from unicellular to colonial morphology, we begin simulations with only172

single cells. Since we are typically more interested in overall M. aeruginosa concentration173

profiles rather than the concentration profiles of any given colony size, we must convert174

concentrations of colonies of size k to total M. aeruginosa concentration by175

C(z, t) =
∑
k

knk(z, t) (10)176

where C(z, t) is the total concentration of M. aeruginosa (cells/m3). Note that we have a177

discrete number of total cells in the system, but both concentration and time are continu-178

ous. Using the aforementioned relationships for the aggregation kernel, appropriate form179

for the sticking probability and diffusion coefficient, and the specification of an expression180

for the settling velocity, wk(z, t), we can readily develop a numerical solution of Eqn. 7.181

2.2.1 System details182

For M. aeruginosa, the largest stable colony size is approximately 320 µm (O’Brien et al.,183

2004). Meaning for colonies of diameters smaller than 320 µm, we assume fragmentation is184

negligible for all reasonable environmental conditions. Using the aggregation parameters185

listed in Section 2.1, this diameter roughly corresponds to a colony of size k = 580186

cells/colony. This would mean Eqn. 7 is a system of 580 PDEs, which is—needless187

to say—rather computationally expensive. To explore the features of the model in a188

numerically efficient manner, we have cut off the colony size domain at kmax = 101189

cells/colony, which corresponds to a maximum colony diameter of d101 = 160 µm. This is190

approximately the mean colony size that Cao and Yang (2010) measured in a Microcystis191

HAB. Further, diameters larger than this size may exceed the Kolmogorov length scale,192

thereby compromising the validity of Stokes’ law and leading to the overestimation of193

buoyant velocities (Medrano et al., 2013).194

Recall M. aeruginosa typically thrives in stratified lake environments. As such, the195

model must incorporate depth-dependent water temperature, water density, and turbu-196

lence profiles. To get a sense of how the model behaves in field conditions, we used197
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data collected by a Self Contained Autonomous MicroProfiler (SCAMP) from Ramsey198

Lake (45.2073oN, 93.9969oW)—a stratified and eutrophic lake in Minnesota, USA with a199

history of M. aeruginosa blooms (Rao & Hsu, 2008). SCAMP records temperature fluctu-200

ations throughout the water column. Following the protocol in H.-L. Chen et al. (2001),201

estimated spectra were calculated using Batchelor curve fitting, which were then used to202

calculate turbulent kinetic energy dissipation rates. From this dataset, profiles for water203

temperature, DZ , and ϵ were constructed from field data under high wind conditions and204

low wind conditions (Fig. 2). To put these decisions in context, typical values of ϵ(z) in205

the field range from 10−11 to 10−6 m2/s3, and typical values of DZ(z) range from 10−6 to206

10−2 m2/s (Wüest & Lorke, 2003).207
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Figure 2: Smoothed field data. Low wind profiles for (a) temperature, (b) turbulent
dispersion coefficient, DZ , and (c) rate of turbulent kinetic energy dissipation, ϵ. High
wind profiles for (d) temperature, (e) turbulent dispersion coefficient, DZ , and (f) rate
of turbulent kinetic energy dissipation, ϵ. Note the differences in orders of magnitude for
DZ and ϵ under low wind and high wind conditions.

Since M. aeruginosa buoyancy is largely mediated by light intensity, we must also208

construct diurnal light profiles. We generated surface light intensities, I0(t), by209

I0(t) = Imax sin
πt

DL

(11)210

where Imax is the maximum surface light intensity and DL is the photoperiod. To best211

replicate previous models, values of Imax = 800 W/m2 and DL = 16 hours were chosen212

(Medrano et al., 2013). Depth-dependent light intensities, I(z, t), can then be calculated213
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by214

I(z, t) = I0(t)e
−kIz (12)215

where kI is the light attenuation coefficient (kI = 1.3 m−1 (Medrano et al., 2013)).216

2.2.2 Biological parameters217

Let us address the sticking probability, α(i, j). Previous models of Smoluchowski aggrega-218

tion have related α(i, j) to the fractal dimension of aggregates or to the estimated number219

of particles near the aggregate (Schmitt et al., 2000; Zidar, Kuzman, & Ravnik, 2018).220

This particularly situation warrants a more biological approach. M. aeruginosa uses ex-221

tracellular polysaccharides (EPS) as adhesive during the aggregation process; therefore,222

it is reasonable to assume sticking probability will increase with EPS content. Zhu et al.223

(2014) determined that, in field samples of M. aeruginosa, EPS content peaks at colony224

diameters between 100 and 150 µm. Using this, we define a function that gives the stick-225

ing probability of a colony of size k, αk = f(dk), which achieves a minimum value of226

αk = 0.5 at d1 = 5µm and a maximum value of αk = 1 at d95 = 125µm. To calculate227

the sticking probability for a collision between a colony of size i and size j, we define228

α(i, j) = max{αi, αj}. Larger colonies will therefore be ”stickier” than small colonies, so229

more of their collisions will result in aggregation.230

The buoyant velocity, wk, is calculated using subroutines described in previous models231

which (i) relate light intensity to individual cell density, then (ii) relate individual cell232

density to colony density using the fractal dimension of M. aeruginosa aggregates, then233

(iii) use the colony density to calculate a modified Stoke’s velocity (Wallace et al., 2000;234

Medrano et al., 2013; Nakamura et al., 1993) by235

wk =
gd2k

(
ρk
ρW

− 1
)

18ν
(13)236

where ρk is the density of a colony of size k. We expect sinking during the day (positive wk)237

and floating at night (negative wk), although velocity magnitudes and general transport238
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dynamics will vary across colony size. In experiments, You et al. (2018) recorded buoyant239

velocities of 10−6 m/s at 17.5oC and 10−5 m/s at 28oC for small colonies. For large240

colonies, buoyant velocities have been recorded as large as 10−3 m/s (Wallace et al.,241

2000).242

2.2.3 Numerical considerations243

Figure 3: Schematic of numerical scheme. Fluxes, qtop,i and qbot,i, are calculated as the sum
of diffusive and advective fluxes at grid cell interfaces, but concentrations are calculated
at grid cell node points. n∗

k,i depends on the sign of wk,i and is defined in Eqn. 15. Since
we can calculate the new concentration of a colony of size k in grid cell i at time step m
by nm+1

k,i = ∆t
∆z

(qtop,i − qbot,i) + ∆t(aggregation terms), conservation of mass is ensured by
setting qtop,i+1 = qbot,i. To satisfy boundary conditions, fluxes at the top of the first grid
cell and at the bottom of the last grid cell are defined to be zero for all time.

We are using an explicit forward in time upwind numerical scheme with fluxes defined244

at grid cell interfaces and concentrations defined at grid cell node points (Fig. 3). For a245

given grid cell i at time step m, the new concentration of colonies of size k in that grid246

cell is calculated as247

248

nm+1
k,i = nm

k,i +
∆t

∆z

(
Di− 1

2

∆z
(nm

k,i−1 − nm
k,i) + wm

k,i− 1
2
n∗m
k,i

)
. . .249

· · · − ∆t

∆z

(
Di+ 1

2

∆z
(nm

k,i − nm
k,i+1) + wm

k,i+ 1
2
n∗m
k,i+1

)
+∆t(aggregation terms) (14)250

251
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where the subscripts i ± 1
2

denote parameters defined at the top or bottom interface of252

grid cell i, the aggregation terms are defined by Eqns. 2-5, and253

n∗m
k,i =

 nm
k,i−1 wm

k,i ≥ 0

nm
k,i wm

k,i < 0
(15)254

by upwinding.255

Table 1 shows numerical parameter values used for all simulations. The time step,256

∆t, was chosen to be small enough to ensure stability of the numerical scheme, and the257

grid cell width, ∆z, was chosen to be small enough to minimize numerical dispersion of258

the upwind scheme while also maintaining stability. To address numerical dispersion,259

we tested the time to large colony appearance for the parameters described in Table 1260

against a finer grid size. In the base case simulation, large colonies appear in 13.4 days;261

if we instead use ∆z = 0.1m (and a correspondingly smaller time step of ∆t = 5s), large262

colonies appear in 16.1 days. This three day slowdown indicates that our scheme is not263

completely devoid of numerical dispersion. However, the goal of this manuscript is first264

and foremost to investigate the applicability of Smoluchowski aggregation to describe M.265

aeruginosa colony dynamics—not to solve the inverse problem of parameter estimation or266

make predictions with a real data set. In this sense, we feel that our choices of space and267

time step efficiently capture the correct physical behaviors and provide an appropriate268

order of magnitude prediction for the timing and appearance of large colony sizes.269

Table 1: Numerical parameters.
Variable Description Value
∆z grid cell width 0.2m
∆t time step 10 s
zmax maximum depth of domain 10 m

13
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Table 2: Base case simulation conditions.
Condition Description Further details
motility regulated by light-dependent buoyancy Eqn. 13
meteorological forcings constant high wind and lake thermal profile Fig. 2d-f
sticking probability α(i, j) ∈ [0.5, 1] with peak at d95 = 125µm Section 2.2.2
initial algal concentration only single cells in mixed layer Eqn. 9

3 Results270

3.1 Appearance and distribution of colonies271

We will start with the simplest simulation that still allows for investigation of important272

model features: six weeks of a repeating photoperiod and constant lake thermal and273

hydrodynamic profiles (Table 2). Field data indicate Microcystis can transition from a274

predominantly unicellular morphology to a predominantly colonial morphology over a275

monthly period, so a six-week simulation time was chosen to ensure aggregation would276

be evident. Using these conditions, Eqn. 13 predicted buoyant velocities ranging from277

-10−4 (floating) to 10−3 m/s (sinking) and Eqns. 2-5 predicted aggregation kernels in the278

range β(i, j, z) ∈ [10−13, 10−9] m3/s.279

The model demonstrates small colonies will diffuse throughout the mixed layer (Fig.280

4a-c), but large colonies exhibit diurnal migrations to a depth with a preferred low light281

intensity (Fig. 4d-e). In general, small colonies will lose mass as they aggregate into larger282

colonies, which gain mass. Medium-sized colonies never achieve high mass (Fig. 4c-d),283

and colonies of size k = 101 appear before colonies of size k = 67. This indicates large284

colonies aggregate with each other faster than they aggregate with small colonies, a finding285

consistent with coagulation kinetic theory (Smit et al., 1994). The overall concentration286

profile, C(z, t) (Eqn. 10), is mostly influenced by large colonies by approximately the287

fifth week of simulation (Fig. 4f).288

3.2 Factors affecting vertical distribution289

While advection is negligible for single cells and small colonies, motility plays a key role290

in the vertical distribution of large sized colonies (Fig. 5). The time it takes for large291
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Figure 4: Concentration profiles over six weeks of simulation during high wind conditions
(shown in Fig. 2(d)-(f)) for (a) n1(z, t), (b) n5(z, t), (c) n34(z, t), (d) n67(z, t), (e)
n101(z, t), and (f) C(z, t). Color bar changes scale for each subfigure. The wiggles visible
in (d)-(e) show the diurnal migration of large-sized colonies.

colonies to appear is approximately equivalent whether advection is on or off, but the292

inclusion of motility allows the large colonies to migrate to a preferred depth of low light293

intensity (Fig. 5a).294
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Figure 5: Differences in vertical distributions of large sized colonies between (a) the base
case simulation in Fig. 4 and (b) turning off advection by setting wk(z, t) ≡ 0.

We also see changes in vertical distributions when we change wind conditions (Fig.295

6). During high wind conditions, small colonies become uniformly distributed throughout296
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the mixed layer. During low wind conditions, smaller colonies (e.g., k = 34) are able to297

advect to a preferred depth of low light intensity, although their diurnal migrations are298

not as pronounced (compare Fig. 6b to Fig. 5a or Fig. 4e). In addition, wind also seems299

to significantly control the time it takes for colonies to appear.300
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Figure 6: Differences in vertical distributions of colonies of size k = 34 between (a) the
base case simulation in Fig. 4 and (b) low wind conditions (Fig. 2).

3.3 Factors affecting aggregation301
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Figure 7: Cell count, Nk(t), of various colony sizes for (a) the base case simulation
(Table 2), (b) low wind conditions (Fig. 2), (c) switching between high wind and low
wind conditions every day, and (d) switching between high wind and low wind conditions
every hour. Total number of cells is conserved for all simulations. Cell counts, Nk, were
calculated by Nk =

∑
z knk∆z.
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There are few situations less likely to occur than six weeks of the exact same meteo-302

rological conditions on repeat, so we must explore how the model behaves under different303

conditions. To this end, let us define304

Nk(t) =
∑
z

knk(z, t)∆z305

to be the total number of cells in a colony of size k. Since nk is a continuous variable and306

nk∆z is not necessarily greater than one, it is possible for Nk < k. We are more concerned307

when colonies of various sizes appear at some comparative concentration value than the308

actual concentration, so Nk(t) acts as a suitable marker for appearance of colonies. We309

can now rerun the simulation described in the previous Section 3.1 while changing one310

condition at a time to see how each individual change affects Nk(t) for various colony sizes311

(Figs. 7 and 8). Using low wind conditions (Fig. 2) dramatically reduces aggregation—in312

the entire six week simulation, the largest colony size achieved is k = 3 cells/colony (Fig.313

7b). Intermittent wind, either on a daily or hourly time scale, slowed down aggregation314

by a factor of approximately two (Fig. 7c-d). Setting the sticking probability, α(i, j), to315

be unity for all colony sizes allows the largest sized colonies to show up approximately316

five days before their appearance in the base case simulation, eventually becoming more317

abundant than the single cell population (Fig. 8b).318
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Figure 8: Cell count, Nk(t), of various colony sizes for (a) the base case simulation from
Fig. 4 and (b) enforcing all collisions result in aggregation by setting α(i, j) ≡ 1. Total
number of cells is conserved for all simulations.

Along with wind conditions, the speed of aggregation is highly sensitive to initial algal319

concentrations (Fig. 9). Let us define τk to be the time such that Nk(τk) = 1. As long320
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as initial algal concentrations are greater than 1× 107 cells/m3, then τk is approximately321

inversely proportional to initial concentrations within the mixed layer, n0
1.322

data

�101 ~ (n0
1  )

-1.2 (r2 = 0.99)

�101 ~ (n0
1  )

-1 (r2 = 0.97)

107 108

n0
1  (cells/m3)

10-1

100

101

102

�

1
0

1
 (

d
a

y
s
)

Figure 9: Initial concentration of singles cells within the mixed layer vs time to appearance
of colonies of size k = 101. Both x- and y-axes are log scale. Solid line shows the best fit,
with a slope of -1.2 (τ101 = 1.1 × 1010(n0

1)
−1.2). Dashed lines show an exactly inversely

proportional relationship between τ and n0
1 (τ101 = 2.7 × 108(n0

1)
−1). With a starting

concentration of 1×107 cells/m3, colonies of size k = 101 never appear within the 42-day
simulation period.

3.4 Summary of main results323

1. For constant high wind conditions and initial uniform single cell concentrations of324

107 cells/m3 within the surface mixed layer, colonies of size k = 101 appear in325

approximately two weeks and dominate in approximately five weeks.326

2. Large colonies exhibit diurnal migrations, with concentration peaks located around327

a depth of preferred low-light intensity.328

3. Low wind conditions inhibit aggregation.329

4. Intermittent wind conditions, which oscillate between high and low winds at some330

given frequency such that high wind conditions are achieved 50% of the time, slows331

the appearance of large colony sizes by a factor of two.332

5. Above an initial algal concentration of 107 cells/m3, there is a power-law dependence333

between the time to appearance of large colonies and initial algal concentration.334
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4 Discussion and conclusion335

Our results generally coincide with those of existing literature. Ackleh and Miller (2018)336

found aggregation rates on the order of 10−12 m3/s using Smoluchowski aggregation to337

model phytoplankton dynamics, which is in line with those calculated in our simulations338

(β(i, j, z) ∈ [10−13, 10−9] m3/s). Our model also predicts aggregation at a time scale that339

roughly corresponds with the field study by Cao and Yang (2010), wherein the dominant340

morphology of Microcystis transitioned from single cells to large colonies in about a341

month. The model of Medrano et al. (2013) showed that small colonies of M. aeruginosa342

are not able to overcome turbulent mixing, whereas large colonies exhibit notable daily343

migrations controlled by the photic depth. This is directly compatible with our model344

results, keeping in mind that the intensity of wind controls the minimum colony size345

capable of diurnal migrations (Figs. 4-6). If we define the sticking probability to be unity346

for all colony sizes, the largest sized colonies appear within a couple days, much faster347

than they appear in field conditions (Fig. 8). Relating the sticking probability to the348

extracellular polysaccharide content, which is in turn related to colony size, slows down349

aggregation to a rate consistent with field observations. These findings support the claim350

that Smoluchowski coagulation kinetics accurately describe the aggregation processes of351

M. aeruginosa.352

The model unveils two important dependencies of aggregation on wind speed and algal353

concentration. Colony size distributions are highly sensitive to wind-induced mixing (Fig.354

7), a phenomenon that was previously revealed in experiments and field work (Qin et al.,355

2018). Colonies of size k = 101 cells/colony appeared within 15 days during high wind356

conditions, but the largest colony size to appear during low wind conditions was k = 3357

cells/colony (Fig. 7a-b). Cutting the large wind events in half—either daily or hourly—358

slowed the appearance of the largest sized colonies by a factor of two (Fig. 7c-d). This359

implies that the speed of aggregation is directly proportional to the duration of large wind360

events, causing relatively short-lived wind events to lead to rapid aggregation (recall the361

dependence of β(i, j, z) on the turbulent shear rate in Eqn. 3). This observation has362

profound consequences on the subsequent formation of surface blooms. Shortly after363
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large wind events, the newly large colonies will be able to overcome turbulent mixing that364

the previously small colonies could not, leading to drastically different vertical transport365

results. Since blooms typically consist of large colonies, this also means short periods of366

mixing via large wind events could act as a necessary precursor to surface harmful algal367

bloom formation.368

In regards to the sensitivity of aggregation to the initial algal concentration, the in-369

versely proportional relationship between algal concentration and time to large colony370

appearance, τ101, has been documented in previous studies of marine snow. Jackson371

(1990) found their largest sized colonies appeared within half a day of algal concentra-372

tions reaching 108 cells/m3, a rate in line with the results described in this manuscript373

(Fig. 9). We relate τ101 to initial concentrations only, but that is simply because we374

have a conserved number of total cells in our system. If instead we had growth and/or375

decay terms, we could track τ101 as a function of instantaneous algal concentration. By376

maintaining conservation of mass, however, we can clearly see that any location in the377

water column with algal concentrations on the order of 107 cells/m3 will take over 10378

days to form large colonies, whereas locations with concentrations on the order of 108379

cells/m3 will have large colonies within a day.380

Since higher densities would lead to increased collisions, this finding is unsurprising381

from a physical standpoint; however, it does provide some important biological modeling382

insight. Regardless of wind conditions, aggregation will be negligible until algal con-383

centration exceed 107 cells/m3. After this threshold is reached, the rate of aggregation384

will increase as concentration increases. A large wind event later in the season—when385

algal concentrations are high—will therefore have dramatically different aggregation con-386

sequences than a large wind event in the beginning of the season, when algal concentra-387

tions are low. Further, non-uniform algal concentration profiles will lead to non-uniform388

aggregation. Any depth where there is a peak in algal concentration will also act as a hot389

spot for aggregation, leading to non-uniform colony size distributions within the water390

column.391

So far we have only discussed the mechanistic insight provided by the model into392
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the vertical distributions of M. aeruginosa, but it is important to remember the ecolog-393

ical consequences of this insight. Surface HABs are mostly comprised of large colonies.394

Because wind-induced mixing increases the rate of aggregation, we can think of large395

wind events as a necessary precursor to Microcystis bloom formation. Mainstream con-396

sensus on cyanobacteria HABs states that quiescent conditions are necessary for bloom397

formation (Michalak et al., 2013). While this may be true immediately preceding bloom398

formation, it is also true that there must be enough large wind events before the qui-399

escent period to encourage aggregation in order for a surface bloom to form. But the400

occurrence of large wind events is still not enough: these wind events must occur when401

algal concentrations exceed 108 cells/m3 in order for large colonies to form within a day.402

In addition to modeling concerns, this finding has implications for water quality manage-403

ment. If water samples are taken from well above the photic depth in a lake dominated404

by motile and colonial cyanobacteria, algal concentrations will likely be low and the av-405

erage colony size will likely be quite small, which may give the appearance that HAB406

formation is unlikely. Meanwhile, large colonies could be rapidly forming at subsurface407

algal concentration peaks near the photic depth, indicating a surface bloom is imminent.408

There are many further avenues of study for this model, both from an ecological and409

numerical perspective. One major ecological concern of M. aeruginosa is the ability to410

produce and release microcystins, a group of toxins that affect the liver. Microcystins are411

known to increase in extracellular concentration when Microcystis is stressed, and they412

also seem to have a relationship with extracellular polysaccharide content and colony size413

(Hu & Rzymski, 2019; Li et al., 2020; Rzymski et al., 2020; You, 2020). In fact, it is414

even hypothesized that microcystins can trigger colony formation via quorum-sensing pro-415

cesses. This raises two important questions: (1) How might the inclusion of microcystin416

processes improve the performance of this model, and (2) how might this model improve417

predictions of the spatial heterogeneity of extracellular microcystin concentrations? After418

all, M. aeruginosa is a threat to public health because they release microcystins. In this419

regard, the fundamental question is not necessarily where the Microcystis is, but where420

the microcystins are.421
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While this manuscript does not explicitly investigate any temperature dependencies,422

it is a worthwhile venture as climate change causes global surface water temperatures to423

warm faster than global air temperatures (Hansen et al., 2010). In experiments, Duan424

et al. (2018) found that Microcystis colony size significantly increased with increasing425

temperature. Although the aggregation kernel related to Brownian motion scales linearly426

with temperature (Eqn. 2), this thermodynamic dependency alone cannot explain this427

variability. For the strains of Microcystis being investigated in the experiments, it seems428

increased algal growth with increasing temperature is responsible for the increase in429

colony size. In deriving our model, we have previously assumed aggregation due to cell430

growth is negligible, but this may not be true during peak surface water temperature431

conditions. To account for cell growth in future iterations of this model, the method of432

Ackleh and Miller (2018) for calculating cell growth within a colony–where only a certain433

proportion of cells along the edge of the colony are able to reproduce new cells–should434

be incorporated into Eqn. 7.435

Keeping in mind that the goal is to improve predictions over a seasonal time scale,436

then it will be necessary to use our model as a subroutine in larger modeling software that437

can handle hydrodynamics, biogeochemical cycling, and algal life cycles (e.g., AEM3D438

(Hodges & Dallimore, 2016) or Delft3D-WAQ (Q. Chen & Mynett, 2006)). Since this439

model demonstrates aggregation is negligible except during high wind events at high440

algal concentrations, future models could also include a term that switches aggregation441

off when those conditions are not met. It would also be worthwhile to use these results442

to instead explore the evolution of the average colony size, d̄k, as a function of algal443

cell concentration and turbulence intensity. The model proposed in this manuscript is444

necessary to gain biological and physical insight into algal aggregation processes, but it445

may be possible to reduce some complexity once the system is understood. Aggregation446

processes mostly affect buoyant transport, which is governed by the colony diameter-447

dependent settling velocity described in Eqn. 13. By restructuring the modeling in this448

way, the system of k equations can be avoided and bulk parameters remain the focus,449

removing most of the numerical expense that would be added by incorporating Eqn. 7450
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as a subroutine in software like AEM3D.451

While the model described here has been derived for M. aeruginosa specifically due to452

their ubiquity and ecological importance, the modeling framework can easily be applied453

to any motile and colonial phytoplankton species. Different species have different motility454

and sticking mechanisms, so calculations of the advective velocity, wk(z, t), and sticking455

probability, α(i, j), will need to be tailored to each individual species. M. aeruginosa uses456

intracellular gas vesicles and buoyancy regulation mechanisms to achieve vertical motility,457

but many species of green algae use flagella to move about the water column, as an458

example. Despite these differences in subroutine calculations, the theoretical framework459

will remain largely unchanged from species to species and lake to lake. To promote the460

use of this model for different algal species, editable and annotated Matlab code used to461

simulate the base case scenario in Section 3.1 can be found at the Data Repository for462

the University of Minnesota (DRUM).463

In this paper, we have demonstrated that Smoluchowski aggregation accurately rep-464

resents the colony dynamics of M. aeruginosa, and the coupling of transport and colony465

dynamics is an important feature of M. aeruginosa population models in stratified lakes.466

We have identified ways to (i) incorporate this model into larger software in computa-467

tionally efficient ways, and (ii) extrapolate this theoretical framework to different algal468

species. Because M. aeruginosa are capable of rapid aggregation during high wind condi-469

tions with high algal concentrations, and because large colonies of M. aeruginosa behave470

differently than small colonies for similar hydrodynamic forcings, incorporating colony471

dynamics into M. aeruginosa models has the potential to dramatically improve HAB472

forecasts in M. aeruginosa dominated lakes.473
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