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Abstract. We study the role of symmetries in control systems by means

of geometric algebra approach. We discuss two specific control problems on
Carnot group of step 2 invariant with respect to the action of SO(3). We

understand geodesics as curves in suitable geometric algebras which allows us
to asses an efficient algorithm for local control.

1. Introduction

Geometric control theory uses geometric methods to control various mechanical
systems, [12, 5]. We use methods of sub–Riemannian geometry and Hamiltonian
concept, [2, 1]. As a reasonable starting point, we consider mechanisms moving in
the plane, typically wheeled mechanisms like cars, cars with trailers, robotic snakes,
etc., see e.g. [7, 10]. The movement of planar mechanisms is always invariant
with respect to the action of the Euclidean group SE(2). As prototypes of planar
mechanisms we choose those consisting of a body in the shape of a triangle and
three legs connected to the vertices of the body by joints which can be of various
types and combinations. Although such mechanisms have almost the same shape,
the configuration spaces may be very different. In particular, possible motions of
the mechanism induce a specific filtration in the configuration space. We present
two examples that carry the filtration (3, 6) and (4, 7), respectively, [10, 9].

To control mechanisms locally we consider the nilpotent approximations of the
original control systems, [4]. Although the appropriate configuration spaces have
the same filtration, they are endowed with more symmetries in general, [14]. We
always have symmetries generated by Lie algebra of right–invariant vector fields and
some additional symmetries that act non–trivially on the distribution. In nilpotent
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Figure 1. Generalized trident snakes

approximations of our control problems, there is a subgroup of symmetries which
is isomorphic to the Lie group SO(3), [11, 9]. This leads us to the idea of local
control in geometric algebra approach.

We reformulate the control problems in geometric algebras G3 and G4, [16, 17,
19]. We use the natural SO(3) invariant operation in geometric algebra to reduce
the set of geodesics to a simpler set of curves in geometric algebra, []. Namely, each
geodesic is a linear combination of orthogonal vectors, and SO(3) acts on geodesics
by the action on the appropriate orthonormal system of vectors. So it is sufficient
to study geodesics for one fixed orthonormal basis, i.e. we can study just geodesics
in the moduli space over the action of SO(3).

We present local control algorithm for finding geodesics through the origin and
arbitrary point in its neighbourhood. The algorithm is based on a problem how to
use rotors in order to compare two orthogonal bases. We provide an efficient method
to such comparison using geometric algebras. We demonstrate our algorithm on
two specific examples.

2. Nilpotent control problems

We focus on two control problems such that their symmetry groups contain
SO(3) as subgroups. The first system has the growth vector (3, 6) and the other
one has the growth vector (4, 7), [14, 9].

2.1. Control problems on a Carnot group of step 2. By nilpotent control
problems we mean invariant control problems on Carnot groups, particularly we
consider a Carnot group G of step 2 with filtration (m,n), [1, Section 13] or [15,
13]. If we denote local coordinates by (x, z) ∈ Rm ⊕ Rn−m, we can model the
corresponding Lie algebra c of vector fields

Xi = ∂xi
− 1

2

n−m∑
l=1

m∑
j=1

clijxj∂zl , j = 1, . . . ,m

Xm+j = ∂zj j = 1, . . . ,m− n,
(1)

where ckjl are the structure constants of Lie algebra g and the symbol ∂ stands for
partial derivative. We discuss the related optimal control problem

q̇(t) = u1X1 + · · ·+ umXm(2)
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for t > 0 and q in G and the control u = (u1(t), . . . , um(t)) ∈ Rm with the boundary
condition q(0) = q1, q(T ) = q2 for fixed points q1, q2 ∈ G, where we minimize

the cost functional 1
2

∫ T

0
(u2

1 + · · ·+ u2
m)dt. Solutions q(t) then correspond to sub–

Riemannian geodesics, i.e. admissible curves parametrized by constant speed whose
sufficiently small arcs are length minimizers.

We use Hamiltonian approach to this control problem and we follow [1, Sections
7 and 13]. Let us note that there are no strict abnormal extremals for step 2
Carnot groups, [1, Section 13]. Left–invariant vector fields Xi, i = 1, . . . ,m form
a basis of TG and determine left–invariant coordinates on G. Then we define the
corresponding left–invariant coordinates hi, i = 1, . . . ,m and wi, i = 1, . . . , n −m
on the fibres of T ∗G by hi(λ) = λ(Xi) and wi(λ) = λ(Xm+i), for an arbitrary
1–form λ on G. Thus we can use (xi, wi) as global coordinates on T ∗G.

It turns out that the geodesics are exactly the projections of normal Pontryagin
extremals, i.e. integral curves of left–invariant normal Hamiltonian

H =
1

2
(h2

1 + h2
2 + · · ·+ h2

m),(3)

on G. Assume that λ(t) = (xi(t), zi(t), hi(t), wi(t)) in T ∗G is a normal extremal.
Then the controls uj to the system (2) satisfy uj(t) = hj(λ(t)) and the system on
the base space is of the form

ẋi = hi, i = 1, . . . ,m

żj = −1

2

m∑
i=1

cjikhixk, j = 1, . . . , n−m
(4)

for q = (xi, zi). Using uj(t) = hj(λ(t)) and the equation λ̇(t) = ~H(λ(t)) for normal
extremals, we can write the system on fibres as

ḣi = −
m−n∑
l=1

m∑
j=1

clijhjwl, i = 1, . . . ,m,

ẇj = 0, j = 1, . . . , n−m,
(5)

where clij are the structure constants of the Lie algebra g for the basis Xi. We see
immediately that the solutions wi, i = 1, . . . , n−m are constants which we denote
by

w1 = K1, . . . , wn−m = Kn−m.(6)

If K1 = · · · = Kn−m = 0 then h(t) = h(0) is constant and the geodesic (xi(t), zi(t))
is a line in G such that zi(t) = 0. If at least one of Ki is non–zero, the first part of

the fibre system (5) forms a homogeneous system of ODEs ḣ = −Ωh with constant
coefficients for h := (h1, . . . , hm)T and the system matrix Ω. Its solution is given
by h(t) = e−tΩh(0), where h(0) is the initial value of vector h at the origin.

2.2. Left–invariant control problem with the growth vector (3, 6). In com-
pliance with the notation of (1), we consider three vector fields given on R6 with
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local coordinates (x1, x2, x3, z1, z2, z3) in the form

X1 = ∂x1
+
x3

2
∂z2 −

x2

2
∂z3 ,

X2 = ∂x2
+
x1

2
∂z3 −

x3

2
∂z1 ,

X3 = ∂x3
+
x2

2
∂z1 −

x1

2
∂z2 .

(7)

The only non–trivial Lie brackets are

X4 = [X1, X2] = ∂z3 , X5 = [X1, X3] = −∂z2 , X6 = [X2, X3] = ∂z1 .(8)

Together, these six fields determine a step 2 nilpotent Lie algebra m with multipli-
cation given by Table 1.

X1 X2 X3 X4 X5 X6

X1 0 X4 X5 0 0 0
X2 −X4 0 X6 0 0 0
X3 −X5 −X6 0 0 0 0
X4 0 0 0 0 0 0
X5 0 0 0 0 0 0
X6 0 0 0 0 0 0

Table 1. Lie algebra m

Then there is a Carnot group M such that the fields Xi, i = 1 . . . , 6 are left–
invariant for the corresponding group structure. When identified with R6 = R3⊕R3,
the group structure on M reads that

(x, z) · (x′, z′) = (x+ x′, z + z′ +
1

2
x× x′)(9)

for x = (x1, x2, x3) and z = (z1, z2, z3), where× stands for the vector product on R3.
In particular, M = 〈X1, X2, X3〉 forms a 3–dimensional left–invariant distribution
on M . We define the left–invariant sub–Riemannian metric gM onM by declaring
X1, X2, X3 orthonormal.

The geodesics of the control problem are solutions to the control system (4),(5),
with (m,n) = (3, 6) and the structure constants can be read off Table 1. Hence,

the fibre system is given by w1 = K1, w2 = K2, w3 = K3 and ḣ = −Ωh, where
K1,K2,K3 are constants, h := (h1, h2, h3)T and

Ω =

(
0 K1 K2

−K1 0 K3

−K2 −K3 0

)
.(10)

Its solution is given by the exponential h(t) = e−tΩh(0), where h(0) is the initial
value of vector h at the origin. We write an explicit formula for the general solu-
tion in terms of eigenvectors of (10). If at least one of constants Ki is non–zero,
the kernel of Ωw, i.e. zero eigenspace, is one–dimensional, generated by vector
(K3,K2,K1)T . Its orthogonal complement corresponds to the sum of eigenspaces

appropriate to the eigenvalues ±iK, where we denote K :=
√
K2

1 +K2
2 +K2

3 , and
is generated by vectors (−K1K3,−K1K2,K

2
2 +K2

3 )± i(K2,−K3, 0). Thus solution
to the fibre system can be written as

h(t) = (C1 cos(Kt)− C2 sin(Kt))v1 + (C1 sin(Kt) + C2 cos(Kt))v2 + C3v3,(11)
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where v1, v2, v3 is an eigenspace–adapted real orthonormal basis given by

v1 =
1

K
√
K2

2 +K2
3

 −K1K3

−K1K2

K2
2 +K2

3

 , v2 =
1√

K2
2 +K2

3

 K2

−K3

0

 , v3 =
1

K

K3

K2

K1


and C1, C2, C3 are constants that satisfy the level set condition H = 1/2, i.e.
‖h(t)‖ = 1, that reads C2

1 +C2
2 +C2

3 = 1. Let us note that the choice C1 = C2 = 0
leads to constant solutions that are irrelevant as control functions.

Let us emphasize that the base system (4) can be written in terms of vector
product as follows

ẋ = h,

ż =
1

2
x× h

(12)

for vectors x = (x1, x2, x3)T and z = (z1, z2, z3)T . Its general solution is obtained
by substituting (11) for h and by consequent direct integration. We are interested
in solutions passing through the origin, i.e. we impose the initial condition

xi(0) = 0, zi(0) = 0, i = 1, 2, 3.(13)

However, finding a geodesic towards a given point, leads to a problem of solving
non–trivial algebraic equations. Here we exploit intrinsic symmetries of the system
and geometric algebra approach, see Section 4.

2.3. Left–invariant control problem with growth vector (4, 7). Let us con-
sider four vector fields given on R7 with local coordinates (x, `1, `2, `3, y1, y2, y3) in
the form

Y0 = ∂x −
`1
2
∂y1
− `2

2
∂y2
− `3

2
∂y3

,

Y1 = ∂`1 +
x

2
∂y1 , Y2 = ∂`2 +

x

2
∂y2 , Y3 = ∂`3 +

x

2
∂y3 ,

(14)

The only non–trivial Lie brackets are

Y4 = [Y0, Y1] = ∂y1
, Y5 = [Y0, Y2] = ∂y2

, Y6 = [Y0, Y3] = ∂y3 .(15)

These fields then determine a step 2 nilpotent Lie algebra n with multiplication
given by Table 2.

Y0 Y1 Y2 Y3 Y4 Y5 Y6

Y0 0 Y4 Y5 Y6 0 0 0
Y1 −Y4 0 0 0 0 0 0
Y2 −Y5 0 0 0 0 0 0
Y3 −Y6 0 0 0 0 0 0
Y4 0 0 0 0 0 0 0
Y5 0 0 0 0 0 0 0
Y6 0 0 0 0 0 0 0

Table 2. Lie algebra n

There is a Carnot group N such that the fields Yi, i = 1, . . . , 7 are left–invariant
for the corresponding group structure. The group structure on N , when identified
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with R7 = R⊕ R3 ⊕ R3, yields

(x, `, y) · (x′, `′, y′) = (x+ x′, `+ `′, y + y′ +
1

2
(`× `′)).(16)

In particular, N = 〈Y0, Y1, Y2, Y3〉 forms a 4–dimensional left–invariant distribu-
tion on N . Moreover, there is a natural decomposition

N = 〈Y0〉 ⊕ 〈Y1, Y2, Y3〉(17)

of N into 1–dimensional distribution and 3–dimensional involutive distribution,
both left–invariant. We define the left–invariant sub–Riemannian metric gN on N
by declaring Y0, Y1, Y2, Y3 orthonormal.

We apply the same method as in previous section to discuss the control problem.
The geodesics of the control problem are solutions to the control system (4),(5),
with (m,n) = (4, 7) and the structure constants can be read off Table 2.3. Hence,
the first part of the fibre system (5) is given by w1 = K1, w2 = K2, w3 = K3, where
K1,K2,K3 are constants. Second part of the fibre system is in this case of the
explicit matrix form ḣ = −Ωh, where h := (h0, h1, h2, h3)T and

Ω =

(
0 K1 K2 K3

−K1 0 0 0
−K2 0 0 0
−K3 0 0 0

)
.(18)

Its solution is given by h(t) = e−tΩh(0), where h(0) is the initial value of vector h
at the origin and we write its explicit form in terms of the eigenvectors of (18). If
K1 = K2 = K3 = 0 then h(t) = h(0) is constant and the geodesic (x(t), `i(t), yi(t))
is a line in N such that yi = 0. If at least one of the constants Ki is non–zero,
the kernel of Ωw that corresponds to the eigenspace for the eigenvalue 0 is two–
dimensional and is generated by vectors (0,−K3, 0,K1)T and (0,−K2,K1, 0)T . Its
orthogonal complement corresponds to the sum of eigenspaces appropriate to the
eigenvalues ±iK, where we denote K :=

√
K2

1 +K2
2 +K2

3 , and is generated by
the eigenvectors (0,K1,K2,K3)T ± i(1, 0, 0, 0)T . Thus the solution to the vertical
system for non–zero K is in this case of the form

h0 = C1 cos(Kt)− C2 sin(Kt)

h̄ = (C1 sin(Kt) + C2 cos(Kt))r1 + Cr2

(19)

where h̄ = (h1, h2, h3)T and r1, r2 are orthogonal unit vectors given by

r1 =
1

K

(
K1

K2

K3

)
, r2 =

1

C

(
C3

(−K3
0
K1

)
+ C4

(−K2

K1
0

))
with C1, C2, C3, C4 being real constants and with the normalization factor C =√

(C3K3 + C4K2)2 +K2
1 (C2

3 + C2
4 ). The level set condition ‖h(t)‖ = 1 reads C2

1 +
C2

2 + C2
3 = 1. Let us note that the choice C1 = C2 = 0 leads to constant solutions

that are irrelevant as control functions. Thus we assume that at least one of the
constants C1, C2 is non–zero. Let us emphasize that vectors r1, r2 are orthonormal.
The base system (4) takes the explicit form of

ẋ = h0,

˙̀ = h̄,

ẏ =
1

2
(xh̄− h0`).

(20)
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As discussed above, we are interested in solutions passing through the origin, i.e.
we impose the initial condition

x(0) = 0, `i(0) = 0, yi(0) = 0, i = 1, 2, 3.(21)

By substitution of (19), the system (20) can be directly integrated. In section 4 we
show how to use symmetries of the system and geometric algebra approach to find
a geodesic towards a given point.

2.4. Symmetries of the control systems. Symmetries of the control systems
(2) coincide with symmetries of the corresponding left–invariant sub–Riemannian
structure (M,M, gM ) and (N,N , gN ), respectively. These are precisely automor-
phisms on groups preserving distributions and sub–Riemannian metrics. The group
SO(3) acts on R3 and preserves vector product which implies the following state-
ment.

Proposition 1. For each R ∈ SO(3), the map

(x, z) 7→ (Rx,Rz)(22)

maps geodesics of the system from Section 2.2 starting at the origin to geodesics
starting at the origin. For each R ∈ SO(3) the map

(x, `, y) 7→ (x,R`,Ry)(23)

maps geodesics of the system from Section 2.3 starting at the origin to geodesics
starting at the origin.

Proof. Follows from invariance of (12) and (20) with respect to the action of R ∈
SO(3). �

3. Geometric algebras Gm

Construction of the universal real geometric algebra is well-known, for details
see e.g. books [16, 17, 19] or paper [8]. We provide only a brief description in a
special case which we are going to use later. In general, geometric algebras are
based on symmetric bilinear form of arbitrary signature. Here, we deal with real
vector space Rm endowed with a positive definite symmetric bilinear form B only.

3.1. Geometric product. For an associated orthonormal basis (e1, . . . , em) of Rn

we use

B(ei, ej) =

{
1 if i = j

0 if i 6= j
where 1 ≤ i, j ≤ m.

Let us recall that the Grassmann algebra is an associative algebra with the anti-
symmetric outer product ∧ defined by the rule

ei ∧ ej + ej ∧ ei = 0 for 1 ≤ i, j ≤ m.

The Grassmann blade of grade r is eA = ei1 ∧ · · · ∧ eir , where the multi-index A
is a set of indices ordered in the natural way 1 ≤ i1 ≤ · · · ≤ ir ≤ m, and we put
e∅ = 1. Blades of grades 0 ≤ r ≤ m form the basis of the graded Grassmann algebra
Λ(Rm). Next, we introduce the inner product

ei · ej = B(ei, ej), 1 ≤ i, j ≤ m,
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leading to the so-called geometric product in the Clifford algebra

eiej = ei · ej + ei ∧ ej , 1 ≤ i, j ≤ m.

The respective definitions of inner, outer and geometric products are then extended
to blades of the grade r as follows. For inner product we put

ej · eA = ej · (ei1 ∧ · · · ∧ eir ) =

r∑
k=1

(−1)kB(ej , eik)eA\{ik},

where eA\{ik} is the blade of grade r − 1 created by deleting eik from eA. This
product is also called the left contraction in literature. For outer product we have

ej ∧ eA =

{
ej ∧ ei1 ∧ · · · ∧ eir if j /∈ A
0 if j ∈ A

and for geometric product we define

ejeA = ej · eA + ej ∧ eA.

Finally, these definitions are linearly extended to the whole vector space Λ(Rm).
Thus we get an associative algebra over this vector space, the so-called real Clifford
algebra, denoted by Gm. Note that this algebra is naturally graded; the grade zero
and grade one elements are identified with R and Rm, respectively.

3.2. Geometric algebra Gm. Euclidean geometric algebra Gm is generated by m
Euclidean basis vectors e1, e2, . . . , em by

e2
i = B(ei, ei) = 1 for all i = 1, . . . ,m.

The vectors in Rm with coordinates (x1, . . . , xn) are given by x = x1e1 + · · ·+xnen
and the square with respect to geometric product x2 = x2

1 + · · ·+ x2
n ∈ R coincides

with the square of the Euclidean norm of x. Vector x represents a one-dimensional
subspace (line) p in Rm defined by scalar multiples of x which in Gm is expressed
by formula u ∈ p⇔ u∧x = 0. In the same way, a plane π generated by two vectors
x and y is represented by x∧ y in the sense u ∈ π ⇔ u∧ x∧ y = 0. In general, any
r-dimensional subspace Vr ⊆ Rm is represented by a blade Ar of grade r such that

Vr = NO(Ar) = {x ∈ Rm : x ∧Ar = 0}(24)

holds. Such a representation is called the outer product null space (OPNS) repre-
sentation in literature. In particular, the whole space Rm is represented by a blade
of maximal grade, so called pseudoscalar. Similarly one defines the inner product
null space (IPNS) representation A∗m−r of Vr as a blade of grade m − r such that
x ·A∗m−r = 0 if and only if x ∈ Vr. The OPNS and IPNS representations are mutu-
ally dual with respect to duality on Gm defined by multiplication by pseudoscalar,
namely

A∗ = AI,

where A is a blade and I is a pseudoscalar. Indeed, one can show that (x ∧A)I =
x · (AI) for each vector x ∈ Rm, in particular x ∧A = 0 if and only if x ·A∗ = 0.

Remark 3.3. OPNS representations of G3 are summarized in Table 3. For exam-
ple in G3, a plane generated by vectors u, v has OPNS representation u ∧ v. Its
IPNS representation (u∧ v)∗ is vector perpendicular to the plane. More specifically
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for pseudoscalar I = e1 ∧ e2 ∧ e3 = e1e2e3 we receive the usual vector product in
geometric algebra form as

u× v = −(u ∧ v)I.(25)

grade name blades dimension objects
0 scalars 1 1 numbers
1 vectors e1, e2, e3 3 lines
2 bivectors e1 ∧ e2, e1 ∧ e3, e2 ∧ e3 3 planes
3 pseudoscalars e1 ∧ e2 ∧ e3 1 volume forms

Table 3. Blades of geometric algebra G3

3.4. Transformations in Gm. Let us have two vectors x, n ∈ ∧1Rm ⊂ Gm, such
that n · n = n2 = 1. The action of n on x by conjugation nxn is a reflection
with respect to the plane orthogonal to n, which can be proved by straightforward
computation

nx⊥n = (n ∧ x⊥)n = −(x⊥ ∧ n)n = −x⊥nn = −x⊥,

where x = x|| + x⊥ is the orthogonal decomposition with respect to n and with
the fact that nx||n = x||. Conjugation preserves grades of blades and is an out-
ermorphism n(u1 ∧ · · · ∧ ul)n = (nu1n) ∧ · · · ∧ (nuln) for any vectors u1, . . . , un.
Composition of two reflections is a rotation, so in Gm a rotation is represented by
conjugation with respect to geometric multiplication of two vectors. To find a rotor
between vectors x and y we have a nice formula at hand.

Lemma 1. Let x and y be unit vectors in Gm, i.e. x, y ∈ ∧1Gm, then the formula

Rxy = 1 + yx,(26)

where the bar symbol stands for normalization ū = u/
√
u · u, defines rotation in the

plane x ∧ y which maps vector x to y and acts trivially on (x ∧ y)∗.

Proof. Multiplication of two vectors x, y ∈ ∧1Rm ⊂ Gm, such that x2 = y2 = 1,
defines a multivector

xy = cos(θ)− sin(θ)(x ∧ y),

where θ is the angle between x and y. It is easy to see that (xy)(xy)∗ = xyyx = 1.
The classical property of this geometric algebra is that the conjugation by such
multivector xy represents rotation in the plane x ∧ y with respect to angle 2θ, see
Lemma 4.2 in [17] for more details.

Using standard trigonometric formulas we can verify this by straightforward
calculation

Rxy = 1 + yx =
1 + cos(θ) + (x ∧ y) sin(θ)√

(1 + cos(θ))2 + sin2(θ)
=

1 + cos(θ) + (x ∧ y) sin(θ)√
2 + 2 cos(θ)

=

√
1 + cos(θ)

2
+ (x ∧ y)

√
1− cos2(θ)

2(1 + cos(θ))
=

√
1 + cos(θ)

2
+ (x ∧ y)

√
1− cos(θ)

2

= cos(
θ

2
) + (x ∧ y) sin(

θ

2
).
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Finally (x ∧ y)∗ · x = x ∧ y ∧ x = 0 and (x ∧ y)∗ · y = 0 hold, so we compute

xy(x ∧ y)∗yx = xyyx(x ∧ y)∗ = (x ∧ y)∗

which proves the statement. �

3.5. Rotor construction. Let (x1, . . . , xn) and (y1, . . . , yn) be a pair of bases such
that the scalar products xi ·xj = yi ·yj are the same for all i, j = 1, . . . , n and these
bases have the same orientation, i.e. x1 ∧ · · · ∧ xn = y1 ∧ · · · ∧ yn. In the sequel, we
show how to find the explicit rotation R such that RxiR

∗ = yi for all i = 1, . . . n.
First, we define a complete flag {V } as an increasing sequence of subspaces of

vector space Rn:
{0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk = Rn,

such that dim(Vi) = i. We consider a complete flags {V } and {W} by setting
Vi = 〈x1, . . . , xi〉 = NO(x1 ∧ · · · ∧ xi) and Wi = 〈y1, . . . , yi〉 = NO(y1 ∧ · · · ∧ yi),
respectively.

Consequently, we map the complete flag {V } to the complete flag {W} in n
steps. In particular step j, we suppose Vi = Wi for i > j and we find rotations Ri

such that RiViR
∗
i = Wi for i > j − 1. The algorithm ends after n steps which is

formulated in the following lemma.

Lemma 2. Let (x1, . . . , xn) and (y1, . . . , yn) be a pair of bases such that xi · xj =
yi · yj for all i, j = 1, . . . , n and x1 ∧ · · · ∧ xn = y1 ∧ · · · ∧ yn. If {V } and {W} are
the corresponding complete flags, respectively, and if Vi = Wi for all i = 1, . . . , n,
then xi = yi for all i = 1, . . . , n.

Proof. If V1 = W1 and v1 · v1 = w1 ·w1 then v1 = w1. If v2 ∈W2 and w1 = v1 and
v2 · w1 = w2 · w1 and the orientation is the same (rotations preserve orientation)
then w2 = v2 etc. �

Each particular step is correctly defined because of the following lemma.

Lemma 3. Let us have two complete flags {V } and {W}, such that Vj = Wj, for
j > i. The rotor Ri between the hyperplanes Vi ⊕ V ⊥i+1 and Wi ⊕W⊥i+1 constructed
by equation (26) maps Vi to Wi.

Proof. By definition Vi ⊂ Vi+1, so V ⊥i+1 ⊂ V ⊥i and Vi ⊕ V ⊥i+1 is an orthogonal
decomposition of the hyperplane. Any rotation preserves orthogonal decomposition,
so it maps Vi to Wi because it acts as an identity on Vi+1 = Wi+1 and thus
V ⊥i+1 = W⊥i+1. �

All these properties can be used to formulate the following theorem with the
constructive proof.

Theorem 3.6. Let (x1, . . . , xn) and (y1, . . . , yn) be a pair of bases such that xi·xj =
yi · yj for all i, j = 1, . . . , n and x1 ∧ · · · ∧xn = y1 ∧ · · · ∧ yn. Then we can construct
a rotor R such that RxiR

∗ = yi for all j, i = 1, . . . n.

Proof. Let {V } and {W} be a pair of corresponding complete flags, respectively,
so Vi = NO(x1 ∧ · · · ∧ xi) and Wi = NO(y1 ∧ · · · ∧ yi). We construct a rotor
R = R1 · · ·Rn which maps the complete flag {V } to complete flag {W} so that
Vi = Wi for all i = 1, . . . n and the result follows by Lemma 2.

We define Rn as identity. As the next step, we find the rotation Rn−1 between
hyperplanes Vn−1 ∧ V ⊥n ∼= Vn−1 and Wn−1 ∧W⊥n ∼= Wn−1 which maps complete
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flag {V } to complete flag {RV R∗} in such a way that Wn−1 = RVn−1R, where
R = Rn−1Rn.

As an induction step, we consider the rotor R = Rj · · ·Rn such that RViR
∗ = Wi

for all indices i ≥ j. According to Lemma 3 the rotation Rj−1 between hyperplanes
(RVj−1R

∗)∧ (RVjR
∗)⊥ and Wj−1 ∧W⊥j maps complete flag {RV R∗} to complete

flag {RjRV R
∗R∗j} in such a way that Wi = RjRViR

∗R∗j for all i ≥ j − 1.
After n steps the rotor R = R1 · · ·Rn maps the complete flag {V } to the complete

flag {W} in such a way that Vi = Wi for all i = 1, . . . , n and so RxiR
∗ = yi for all

j, i = 1, . . . , n because of Lemma 2. �

The explicit construction in the proof of the theorem gives us the following
algorithm.

Algorithm 1. Calculate rotor R = R1 . . . Rn

Require: xi · xj = yi · yj and x1 ∧ · · · ∧ xn = y1 ∧ · · · ∧ yn
Ensure: yi = RxiR

∗

Vi ← x1 ∧ · · · ∧ xi
Wi ← y1 ∧ · · · ∧ yi
R← Id
for n > i > 0 do

Vi ← RViR
∗

HV ← Vi ∧W ∗i+1

HW ←Wi ∧W ∗i+1

Ri ← 1 + H̄∗V H̄
∗
W

R← RiR
end for

end

4. Nilpotent control problems in GA approach

In this section, we are using symmetries from SO(3) to define an equivalence
relation on the set of geodesics passing through the origin, see Proposition 1. We
find a convenient representative of any equivalence class and describe the moduli
space in the language of GA.

4.1. Geodesics of (3, 6). Since the vector product x × h coincides with the dual
of wedge product x∧h according to (25), the horizontal system (12) can be written
in the form

ẋ = h,

ż =
1

2
x ∧ h

(27)

where x ∈ ∧1R3 represents a line and z ∈ ∧2R3 represents a plane in R3. In this
way we see geodesics as curves in geometric algebra G3.

Proposition 2. Each sub–Riemannian geodesic satisfying the initial condition
xi(0) = 0, zi(0) = 0, i = 1, 2, 3 is equivalent to a curve in M ∼= ∧1R3 ⊕ ∧2R3 ⊂ G3
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and, up to the action of suitable R ∈ SO(3), it is of the form

q(t) = x(t) + z(t) = D(1− cos(Kt))e1 +D sin(Kt)e2 + C3Kte3

+D2(Kt− sin(Kt))e1 ∧ e2 − C3D(Kt− 2 sin(Kt) +Kt cos(Kt))e1 ∧ e3

− C3D(2−Kt sin(Kt)− 2 cos(Kt))e2 ∧ e3,

(28)

where K > 0 and D,C3 satisfy the level set equation D2 + C2
3 = 1.

Proof. The solution to the vertical system (11) can be rewritten as

h(t) = D sin(Kt)v̄1 +D cos(Kt)v̄2 + C3v3,(29)

where we denote D =
√
C2

1 + C2
2 , and v̄1, v̄2 form an orthonormal basis of the

kernel complement obtained by rotation of orthonormal vectors v1, v2, namely

v̄1 =
1√

C2
1 + C2

2

(−C1v1 + C2v2), v̄2 =
1√

C2
1 + C2

2

(C2v1 + C1v2).

The vectors v̄1, v̄2, v3 are orthonormal with respect to the Euclidean metric on R3

by definition. So, there is an orthogonal matrix R ∈ SO(3) that aligns vectors
v̄1, v̄2, v3 with the standard basis of R3. Thus we get

v̄1 = Re1, v̄2 = Re2, v3 = Re3,

where e1, e2 and e3 are elements of standard Euclidean basis of R3. According to
(22), rotor R defines a representative of geodesic class (RTx(t), RT z(t)) which is a
solution to (27) for h(t) = D sin(Kt)e1 + D cos(Kt)e2 + C3e3. The solution (28)
then follows by direct integration when the initial condition is applied. Equation
for the level set follows from the definition of D. �

The action of SO(3) on M ∼= R6 given by equation (22) defines a moduli space
M/SO(3). We see M as a subset of G3 and the group SO(3) is represented by
rotors instead of matrices, which act on M by conjugation. The action preserves
vector and bivector parts, scalar product, norm and dualisation. We can see the
elements of M as pairs consisting of lines and planes. The natural invariants are the
norms of lines’ directional vectors, norms of the planes’ normal vectors and angles
between these pairs of vectors. Square norm of the normal vector of the plane z∗ ·z∗
is −z · z. Scalar product between the directional vector of the line x and normal
vector of the plane z can be rewritten as (x ∧ z)∗ because (x · z∗)∗ = x ∧ z and
x · z∗ = (x ∧ z)∗. Altogether, we consider three invariants

• square of the the norm of the vector x, i.e. x · x,
• square of the the norm of the bivector z, i.e. z · z,
• element (x ∧ z)∗ ,

where · coincides with the inner product on G3. In particular, these invariant
elements form a coordinate system on the moduli space M/SO(3).

Proposition 3. Each geodesic starting at the origin defines a curve in the moduli
space M/SO(3), which is determined by invariants in the following way

x · x =− 2D2(cos(Kt)− 1) + C2
3K

2t2

z · z =−D2(−D2(cos(Kt))2 + (2K2t2 − 8)C2
3 cos(Kt)

− 2Kt(4C2
3 +D2) sin(Kt) + (2K2t2 + 8)C2

3 +D2(K2t2 + 1))

(x ∧ z)∗ =D2C3(K2t2 +K sin(Kt)t− 4 + 4 cos(Kt))

(30)
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Proof. Follows directly from (28). �

4.2. Geodesics of (4, 7). The base system (20) can be seen as a system in geo-
metric algebra G4

ẋ+ ˙̀ = h0 + h̄,

ẏ = x ∧ h̄+ ` ∧ h0,
(31)

where we assume that x and h0 are collinear with e1 and `, h̄ lie in the subspace
generated by e2, e3, e4. The form of the second equation implies that y is given by
the wedge product of e1 and a vector from this subspace. Hence the solution y(t)
can be viewed as a curve of planes in G4.

Proposition 4. Each sub–Riemannian geodesic on Carnot group N satisfying the
initial condition (13) is equivalent to a curve in N ∼= ∧1R4 ⊕ ∧2R4 ⊂ G4 and, up
to the action of suitable R ∈ SO(3), it is of the form

q(t) = x(t) + `(t) + y(t) = (C1 cos(Kt) + C2 sin(Kt)− C1)e1

+ (C1 sin(Kt)− C2 cos(Kt) + C2)e2 + Ce3

− (C2
1 + C2

2 )(tK − sin(Kt))e1 ∧ e2 −
C

K
((2C1 − C2Kt) sin(Kt)

− (C1Kt+ 2C2) cos(Kt) + 2C2 − tC1K)e1 ∧ e3,

(32)

where K > 0 and constants C1, C2, C satisfying the level condition C2
1 +C2

2 +C2 = 1.

Proof. According to the vertical system (19), the vector h̄(t) lies in the subspace
generated by vectors r1, r2 for any t. Since the vectors r1 and r2 are orthonormal,
there is an orthogonal matrix R ∈ SO(3) that aligns these vectors with the second
and third vector of the standard basis of R3, i.e

r1 = Re2, r2 = Re3.

Due to the symmetry of this system, see (23), this rotor defines a representative
of the geodesic class (x(t), RT `(t), RT y(t)) which is the solution to the horizontal
system (20) for

h̄(t) = (C1 sin(Kt) + C2 cos(Kt))e1 + Ce2

or, equivalently, a curve in R4 ⊕ Λ2R4 ∈ G4 given by the solution of (31). By
direct integration of this equation and by imposing the initial conditions, we get
the formula (32) for the solution. �

The action of SO(3) on N ∼= R7 given by (23), defines a moduli space N/SO(3).
We see N as a subset of G4 and the group SO(3) is represented by rotors instead of
matrices, which act on N by conjugation. The action preserves vector and bivector
part, the split x+`, scalar product, norm and dualisation. The orbits of this actions
are determined by natural invariants. For the same reason as in the case of (3, 6)
and due to the invariant split, we have three invariants as follows

• value of the coordinate x,
• square of the norm of the vector `, i.e. ` · `,
• square of the norm of the bivector y, i.e. y · y.

We need one more invariant for dimensional reasons but the element (`∧ y)∗ is not
scalar but vector. On the other hand, ` ∧ y is a multiple of blade e1e2e3, so the
value of (` ∧ y)e1e2e3 is scalar. As the last invariant we consider
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• value of (` ∧ y)e1e2e3.

These form the coordinate system on the moduli space N/SO(3).

Proposition 5. Each geodesic starting at the origin defines a curve in the moduli
space N/SO(3), which is determined by invariants in the following way

x = C1(cos(Kt)− 1) + C2 sin(Kt),

` · ` = C2t2 − C1
2(cos(Kt))2 − 2C1C2 sin(Kt) cos(Kt) + C2

2(cos(Kt))2

+ 2C2C1 sin(Kt)− 2C2
2 cos(Kt) + C1

2 + C2
2

y · y =
1

K2
((−C2t2C2

2 − (C1
2 + C2

2)2)K2 + 4C2C1C2Kt− 4C2C1
2)(sin(Kt))2

+ (−2C2(C1Kt+ 2C2)(KtC2 − 2C1) cos(Kt)

− 2t(−(C1
2 + C2

2)2K3 + C2K2tC1C2 − 2C2(tC2
2 + C1

2)K + 4C2C1C2)) sin(Kt)

− C2(C1Kt+ 2C2)2(cos(Kt))2 − 2C2t(KC1 − 2C2)(C1Kt+ 2C2) cos(Kt)

− t2((C1
2 + C2

2)2K4 + C2K2C1
2 − 4C2KC1C2 + 4C2C2

2),

(` ∧ y)∗ =
1

K
((−2C2KtC1 + 2C1

2 − 2C2
2)(cos(Kt))2+

((tKC1
2 − tKC2

2 + 4C1C2) sin(Kt) + 2C2
2(t+ 1)) cos(Kt)− 2C1C2(t+ 1) sin(Kt)

+ (t2K2 − 2t)C2
2 + 2C2KtC1 + (t2K2 − 2)C1

2)Ce4

(33)

Proof. Follows directly from (32). �

5. Examples

In the sequel, we present two examples of controls based on symmetries in geo-
metric algebra approach. We have the following scheme based on Algorithm 1.

(1) For the target point qt compute invariants of the chosen particular control
system (2).

(2) Solve the system of non–linear equations (30) or (33) in the moduli space.
(3) Find the family of curves (28) or (32) going from the origin to the same

point qf that belongs to the same SO(3) orbit of qt.
(4) Find R ∈ SO(3), such that R(qf ) = qt.
(5) Apply R on the set of curves (28) or (32) to get a family of curves going

from the origin to the target point qt.

The explicit calculations were acquired using a CAS system Maple similarly to the
paper [6].

5.1. Example in (3, 6). Our goal is to find the geodesic going from the origin to
the target point

qt = (xt, zt) = −e1 + e2 − 2e3 − e1 ∧ e2 − 6e1 ∧ e3 + 4e1 ∧ e3

using invariants (30) in the target point. We have

x · x = 6, z · z = −53, (x ∧ z)∗ = −16

and together with the level set condition we get the system with invariants at qt.
We solve the system numerically in Maple and present the solution with rounding
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up to four decimal digits

C3 = 0.3646, D = 1.1205,K = 0.8487(34)

t = 5.0410(35)

Using the constants (34), we get the geodesic in the moduli space from the origin
to the point qf in the form

q = (x, z) = −1.120(cos(0.8487t)− 1)e1 + 1.120 sin(0.8487t)e2 + 0.3094t e3

− 1.066 (−t+ 1.178 sin(0.8487t))e1 ∧ e2

+ 0.3467 (−t+ 2.357 sin(0.8487)− t cos(0.8487t))e1 ∧ e3

+ 0.3467 (t sin(0.8487t) + 2.357 cos(0.8487t)− 0.8170)e2 ∧ e3

and at the time t = 5.0410 we reach the point

qf = (xf , zf ) = 1.560e3 − 1.017e2 + 1.592e1

+ 6.5102e1 ∧ e2 − 1.7536e1 ∧ e3 − 2.7461e2 ∧ e3.
(36)

We are looking for the rotor which maps the multivector qt on multivector qf . We
consider complete flags

{0} ⊂ NO(xt) ⊂ NO(xt ∧ z∗t ) ⊂ NO(zt ∧ z∗t ) ∼= R3,

{0} ⊂ NO(xf ) ⊂ NO(xf ∧ z∗f ) ⊂ NO(zf ∧ z∗f ) ∼= R3.

We set Rn = R3 = id and map the plane xt ∧ z∗t to the plane xf ∧ z∗f by rotor

Rn−1 = R2 according to the formula (26). Explicitly,

R2 := 0.7402 + 0.54863e1 ∧ e2 + 0.20912e1 ∧ e3 + 0.3276e2 ∧ e3

and we can map the multivector qt on multivector qs = (xs, zs) = R2qtR2
∗ in such

a way that xs and zs lie in the plane xf ∧ z∗f . Explicitly,

qs = −0.9736e1 +0.6217e2−2.1599e3−4.7859e1∧e2 +2.9524e1∧e3 +4.6235e2∧e3.

Finally, we map the plane xs ∧ (xs ∧ zs)∗ to the plane xf ∧ (xf ∧ zf )∗ by rotor

Rn−2 = R1 = 0.1934− 0.8268e1 ∧ e3 + 0.52803e2 ∧ e3.

Altogether, we found rotor R = R1R2R3 and, when applied on (28), we got a
geodesic going from origin to the point qt in the form

q = (x, z) = (1.075 cos(0.8487 t) + 0.07650 t− 1.075− 0.1554 sin(0.8487 t))e1

+ (0.5879 sin(0.8487 t) + 0.2598 t+ 0.1575− 0.1575 cos(0.8487 t))e2

+ (−0.1496 t+ 0.2758 cos(0.8487 t) + 0.9411 sin(0.8487 t)− 0.2758)e3

+ (−0.2011 cos(0.8487 t) + 0.2912 cos(0.8487 t)t− 0.08533 sin(0.8487 t)t

+ 0.2011− 0.2242 t− 0.07897 sin(0.8487 t))e1 ∧ e2

+ (−0.1149 cos(0.8487 t)− 1.077 t− 0.04875 sin(0.8487 t)t+ 0.1149

+ 1.483 sin(0.8487 t)− 0.1819 cos(0.8487 t)t)e1 ∧ e3

− 0.04807 ((1.0 t+ 16.30) cos(0.8487 t) + (4.101 + 6.917 t) sin(0.8487 t)

− 4.481 t− 16.30)e2 ∧ e3.

In Figure 2 we present trajectories (x1, x2, x3) and (z1, z2, z3), respectively.
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Figure 2. Trajectories (x1, x2, x3) and (z1, z2, z3)

5.2. Example in (4, 7). Our goal is to find the geodesic going from the origin to
the target point

qt = (xt, `t, yt) = 2e1 − 3e2 + e3 + 3e4 + 4e1 ∧ e2 + 2e1 ∧ e3 + 2e1 ∧ e4

using invariants (33) at the target point. We have

x = 2, ` · ` = 19, y · y = −24, (` ∧ y)∗ · (` ∧ y)∗ = 440

and together with the level set condition we get the system with invariants at qt. We
solve the system numerically in Maple and we present the solution with constants
rounded up to four decimal digits as follows

C = 0.7370, C1 = −1.063, C2 = −0.0937,K = 0.6334,(37)

t = 5.887.(38)

Using the constants (37) we get a geodesic in the moduli space from the origin to
the point qf in the form

q = (x, `, y) = 2e1 + (−1.063 sin(0.6334t) + 0.09371 cos(0.6334t)− 0.0937)e2

+0.737e3t+ (−0.7835 cos(0.6334t)t− 0.2181 cos(0.6334t)− 0.0690 sin(0.6334t)t

+2.4737 sin(0.6334t)− 0.5654t)e1 ∧ e3 + (1.139 sin(0.6334t)− 0.7214t)e1 ∧ e2

(39)

and at the time t = 5.887 we reach the point

qf = (xf , `f , yf ) = 2e1 + 4.339e3 + 0.4173e2 − 0.4527e1 ∧ e3 − 4.878e1 ∧ e2.(40)

We are looking for the rotor which maps the multivector qt on multivector qf . We
consider complete flags

{0} ⊂ NO(`t) ⊂ NO(`t ∧ (`t ∧ yt)∗) ⊂ NO(`t ∧ y∗t ) ⊂ NO(yt ∧ y∗t ) ∼= R4,

{0} ⊂ NO(`f ) ⊂ NO(`f ∧ (`f ∧ yf )∗) ⊂ NO(`f ∧ y∗f ) ⊂ NO(yf ∧ y∗f ) ∼= R4.

First, we map the hyperplane `t∧y∗t to the hyperplane `f ∧y∗f , but these to coincide
with hyperplane orthogonal to e1, so R1 = id. The next step is to map hyperplane
(`t ∧ (`t ∧ yt)∗))∧ e1 to the hyperplane (`f ∧ (`f ∧ yf )∗))∧ e1 by rotor R2 according
to the formula (26). Explicitly,

R2 := 0.4167 + 0.6291e2 ∧ e3 + 0.6532e2 ∧ e4 − 0.06282e3 ∧ e4.
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As the last step, we map the hyperplane perpendicular to `t to hyperplane perpen-
dicular to `f by the rotor

R3 = 0.2179− 0.5337e2 ∧ e3 + 0.4483e2 ∧ e4 − 0.6831e3 ∧ e4

Altogether, we found the rotor R = R3R2R1 and, when applied on (39), we have
got a geodesic going from origin to the point qt in the form

q = (x, `, y) = −0.9(−1.181 + 1.181 cos(0.6334t) + 0.1041 sin(0.6334t))e1

+ (0.07147 + 0.8107 sin(0.6334t)− 0.07147 cos(0.6334t)− 0.4555t)e2

+ (0.4627 sin(0.6334t) + 0.04079− 0.04079 cos(0.6334t) + 0.2007t)e3

− 0.1000(−5.086 sin(0.6334t)− 5.435t+ 0.4484 cos(0.6334t)− 0.4484)e4

+ 0.1(0.4268 sin(0.6334t)t+ 4.843 cos(0.6334t)t+ 1.348 cos(0.6334t)

+ 8.996t− 23.98 sin(0.6334t))e1 ∧ e2.

In Figure 3 we present trajectories (x, `2, `3, `4) and (y1, y2, y3), respectively.

Figure 3. Trajectories (x, `2, `3, `4) and (y1, y2, y3)

6. Conclusion

We demonstrated the use of geometric algebra for controlling systems invariant
with respect to orthogonal transformations. The main contribution of GA lies
in a construction of a rotor between two bases of a vector space. We assessed
an algorithm and demonstrated its use on two particular examples with filtration
(3, 6) corresponding to a trident snake robot control, and (4, 7) corresponding to
a trident snake with flexible leg. All calculations were acquired using a Maple
packages Clifford, [18] and DifferentialGeometry, [3].
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