Reference
Bahcecioglu, G., Hasirci, N., Bilgen, B., & Hasirci, V. (2019). A 3D
printed PCL/hydrogel construct with zone-specific biochemical
composition mimicking that of the meniscus. Biofabrication,
11 (2). doi:10.1088/1758-5090/aaf707
Bertassoni, L. E., Cecconi, M., Manoharan, V., Nikkhah, M., Hjortnaes,
J., Cristino, A. L., . . . Khademhosseini, A. (2014). Hydrogel
bioprinted microchannel networks for vascularization of tissue
engineering constructs. Lab Chip, 14 (13), 2202-2211.
doi:10.1039/c4lc00030g
Buchanan, G. L., Chieffo, A., Meliga, E., Mehran, R., Park, S. J.,
Onuma, Y., . . . Colombo, A. (2014). Comparison of percutaneous coronary
intervention (with drug-eluting stents) versus coronary artery bypass
grafting in women with severe narrowing of the left main coronary artery
(from the Women-Drug-Eluting stent for LefT main coronary Artery disease
Registry). Am J Cardiol, 113 (8), 1348-1355.
doi:10.1016/j.amjcard.2014.01.409
Chen, Y. C., Lin, R. Z., Qi, H., Yang, Y., Bae, H., Melero-Martin, J.
M., & Khademhosseini, A. (2012). Functional Human Vascular Network
Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels.Adv Funct Mater, 22 (10), 2027-2039. doi:10.1002/adfm.201101662
Cui, H., Nowicki, M., Fisher, J. P., & Zhang, L. G. (2017). 3D
Bioprinting for Organ Regeneration. Adv Healthc Mater, 6 (1).
doi:10.1002/adhm.201601118
Cui, H., Zhu, W., Huang, Y., Liu, C., Yu, Z. X., Nowicki, M., . . .
Zhang, L. G. (2019). In vitro and in vivo evaluation of 3D bioprinted
small-diameter vasculature with smooth muscle and endothelium.Biofabrication, 12 (1), 015004. doi:10.1088/1758-5090/ab402c
de Vries, M. R., Simons, K. H., Jukema, J. W., Braun, J., & Quax, P. H.
(2016). Vein graft failure: from pathophysiology to clinical outcomes.Nat Rev Cardiol, 13 (8), 451-470. doi:10.1038/nrcardio.2016.76
Dursun Usal, T., Yucel, D., & Hasirci, V. (2019). A novel GelMA-pHEMA
hydrogel nerve guide for the treatment of peripheral nerve damages.International journal of biological macromolecules, 121 , 699-706.
doi:10.1016/j.ijbiomac.2018.10.060
Elliott, M. B., & Gerecht, S. (2016). Three-dimensional culture of
small-diameter vascular grafts. J Mater Chem B, 4 (20), 3443-3453.
doi:10.1039/c6tb00024j
Esch, M. B., Post, D. J., Shuler, M. L., & Stokol, T. (2011).
Characterization of In Vitro Endothelial Linings Grown Within
Microfluidic Channels. Tissue Engineering Part A, 17 (23-24),
2965-2971. doi:10.1089/ten.tea.2010.0371
Freeman, S., Ramos, R., Alexis Chando, P., Zhou, L., Reeser, K., Jin,
S., . . . Ye, K. (2019). A bioink blend for rotary 3D bioprinting tissue
engineered small-diameter vascular constructs. Acta Biomater, 95 ,
152-164. doi:10.1016/j.actbio.2019.06.052
Hoelzl, K., Lin, S., Tytgat, L., Van Vlierberghe, S., Gu, L., &
Ovsianikov, A. (2016). Bioink properties before, during and after 3D
bioprinting. Biofabrication, 8 (3).
doi:10.1088/1758-5090/8/3/032002
Hong, H., Seo, Y. B., Kim, D. Y., Lee, J. S., Lee, Y. J., Lee, H., . . .
Park, C. H. (2020). Digital light processing 3D printed silk fibroin
hydrogel for cartilage tissue engineering. Biomaterials, 232 ,
119679. doi:10.1016/j.biomaterials.2019.119679
Jeong, S. I., Kim, S. Y., Cho, S. K., Chong, M. S., Kim, K. S., Kim, H.,
. . . Lee, Y. M. (2007). Tissue-engineered vascular grafts composed of
marine collagen and PLGA fibers using pulsatile perfusion bioreactors.Biomaterials, 28 (6), 1115-1122.
doi:10.1016/j.biomaterials.2006.10.025
Ji, S., Almeida, E., & Guvendiren, M. (2019). 3D bioprinting of complex
channels within cell-laden hydrogels. Acta Biomaterialia, 95 ,
214-224. doi:10.1016/j.actbio.2019.02.038
Jing, X., Mi, H. Y., Salick, M. R., Cordie, T. M., Peng, X. F., &
Turng, L. S. (2015). Electrospinning thermoplastic polyurethane/graphene
oxide scaffolds for small diameter vascular graft applications.Mater Sci Eng C Mater Biol Appl, 49 , 40-50.
doi:10.1016/j.msec.2014.12.060
Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A., & Lewis, J. A.
(2016). Three-dimensional bioprinting of thick vascularized tissues.Proc Natl Acad Sci U S A, 113 (12), 3179-3184.
doi:10.1073/pnas.1521342113
Kolesky, D. B., Truby, R. L., Gladman, A. S., Busbee, T. A., Homan, K.
A., & Lewis, J. A. (2014). 3D bioprinting of vascularized,
heterogeneous cell-laden tissue constructs. Adv Mater, 26 (19),
3124-3130. doi:10.1002/adma.201305506
Lesman, A., Rosenfeld, D., Landau, S., & Levenberg, S. (2016).
Mechanical regulation of vascular network formation in engineered
matrices. Adv Drug Deliv Rev, 96 , 176-182.
doi:10.1016/j.addr.2015.07.005
Liu, Y., & Chan-Park, M. B. (2010). A biomimetic hydrogel based on
methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell
culture. Biomaterials, 31 (6), 1158-1170.
doi:10.1016/j.biomaterials.2009.10.040
Miller, J. S., Stevens, K. R., Yang, M. T., Baker, B. M., Nguyen, D.-H.
T., Cohen, D. M., . . . Chen, C. S. (2012). Rapid casting of patterned
vascular networks for perfusable engineered three-dimensional tissues.Nature Materials, 11 (9), 768-774. doi:10.1038/nmat3357
Miller, J. S., Stevens, K. R., Yang, M. T., Baker, B. M., Nguyen, D. H.,
Cohen, D. M., . . . Chen, C. S. (2012). Rapid casting of patterned
vascular networks for perfusable engineered three-dimensional tissues.Nat Mater, 11 (9), 768-774. doi:10.1038/nmat3357
Morin, K. T., Smith, A. O., Davis, G. E., & Tranquillo, R. T. (2013).
Aligned human microvessels formed in 3D fibrin gel by constraint of gel
contraction. Microvasc Res, 90 , 12-22.
doi:10.1016/j.mvr.2013.07.010
Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and
organs. Nat Biotechnol, 32 (8), 773-785. doi:10.1038/nbt.2958
Nemeno-Guanzon, J. G., Lee, S., Berg, J. R., Jo, Y. H., Yeo, J. E., Nam,
B. M., . . . Lee, J. I. (2012). Trends in tissue engineering for blood
vessels. J Biomed Biotechnol, 2012 , 956345.
doi:10.1155/2012/956345
Norotte, C., Marga, F. S., Niklason, L. E., & Forgacs, G. (2009).
Scaffold-free vascular tissue engineering using bioprinting.Biomaterials, 30 (30), 5910-5917.
doi:10.1016/j.biomaterials.2009.06.034
Ozbolat, I. T., & Hospodiuk, M. (2016). Current advances and future
perspectives in extrusion-based bioprinting. Biomaterials, 76 ,
321-343. doi:10.1016/j.biomaterials.2015.10.076
Pattanaik, S., Arbra, C., Bainbridge, H., Dennis, S. G., Fann, S. A., &
Yost, M. J. (2019). Vascular Tissue Engineering Using Scaffold-Free
Prevascular Endothelial-Fibroblast Constructs. BioResearch open
access, 8 (1), 1-15. doi:10.1089/biores.2018.0039
Rodriguez, A. E., Pavlovsky, H., & Del Pozo, J. F. (2016).
Understanding the Outcome of Randomized Trials with Drug-Eluting Stents
and Coronary Artery Bypass Graft in Patients with Multivessel Disease: A
Review of a 25-Year Journey. Clin Med Insights Cardiol, 10 ,
195-199. doi:10.4137/CMC.S40645
Tocchio, A., Tamplenizza, M., Martello, F., Gerges, I., Rossi, E.,
Argentiere, S., . . . Lenardi, C. (2015). Versatile fabrication of
vascularizable scaffolds for large tissue engineering in bioreactor.Biomaterials, 45 , 124-131. doi:10.1016/j.biomaterials.2014.12.031
Tomasina, C., Bodet, T., Mota, C., Moroni, L., & Camarero-Espinosa, S.
(2019). Bioprinting Vasculature: Materials, Cells and Emergent
Techniques. Materials (Basel), 12 (17). doi:10.3390/ma12172701
Wang, W., Nie, W., Zhou, X., Feng, W., Chen, L., Zhang, Q., . . . He, C.
(2018). Fabrication of heterogeneous porous bilayered nanofibrous
vascular grafts by two-step phase separation technique. Acta
Biomater, 79 , 168-181. doi:10.1016/j.actbio.2018.08.014
Wu, W., DeConinck, A., & Lewis, J. A. (2011). Omnidirectional Printing
of 3D Microvascular Networks. Advanced Materials, 23 (24),
H178-H183. doi:10.1002/adma.201004625
Xu, L., Varkey, M., Jorgensen, A., Ju, J., Jin, Q., Park, J. H., . . .
Atala, A. (2020). Bioprinting small diameter blood vessel constructs
with an endothelial and smooth muscle cell bilayer in a single step.Biofabrication, 12 (4), 045012. doi:10.1088/1758-5090/aba2b6
Yamanaka, H., Yamaoka, T., Mahara, A., Morimoto, N., & Suzuki, S.
(2018). Tissue-engineered submillimeter-diameter vascular grafts for
free flap survival in rat model. Biomaterials, 179 , 156-163.
doi:10.1016/j.biomaterials.2018.06.022
Zhang, Y., Li, X. S., Guex, A. G., Liu, S. S., Muller, E., Malini, R.
I., . . . Spano, F. (2017). A compliant and biomimetic three-layered
vascular graft for small blood vessels. Biofabrication, 9 (2),
025010. doi:10.1088/1758-5090/aa6bae
Zhang, Y. S., Oklu, R., Dokmeci, M. R., & Khademhosseini, A. (2018).
Three-Dimensional Bioprinting Strategies for Tissue Engineering.Cold Spring Harbor Perspectives in Medicine, 8 (2).
doi:10.1101/cshperspect.a025718
Zoghbi, W. A., Duncan, T., Antman, E., Barbosa, M., Champagne, B., Chen,
D., . . . Wood, D. A. (2014). Sustainable development goals and the
future of cardiovascular health: a statement from the Global
Cardiovascular Disease Taskforce. Glob Heart, 9 (3), 273-274.
doi:10.1016/j.gheart.2014.09.003
Figure 1
Schematic showing the novel printing method to create a small diameter
tubular construct and the process of bioprinting a bionic vascular.
Figure 2
The analysis of GelMA hydrogel with different crosslinking times. (A)
Schematics of GelMA polymer structure connections with different
crosslinking times. (B) Gross images of GelMA with different
crosslinking time. (C) FTIR of GelMA, Long time crosslinking GelMA,
Short time crosslinking GelMA. (D) The SEM of the GelMA samples at 5s,
10s, 20s, 40s, 60s crosslinking time. (E) Pore size assessment of the
GelMA samples at 5s, 10s, 20s, 40s, 60s crosslinking time. (***,P < 0.001; NS, not significant) Scale bar:150 μm. (F,
G) Storage modulus and Complex viscosity of the GelMA samples at
different crosslinking times. (H, I) The storage modulus of the GelMA
samples at different crosslinking times varying with Angular frequency
and Strain. (J) The comparison of storage modulus and loss modulus of
the GelMA samples at 5s, 10s, 20s, 40s crosslinking time. (K, L) The
swelling ratio of the GelMA samples at different crosslinking times in
DPBS and DI water. (M) The residual mass of the GelMA samples at
different crosslinking times. (n=6)
Figure 3
The combining site of the samples with two-step crosslinking method and
the appearance of tubular structure. (A) Gross image of the construct
made by two-step crosslinking. Scale bar: 2mm. (B) The SEM of the
construct made by two-step crosslinking (The red arrow refers to the
combining site). Scale bar: 200μm. (C) The stress-strain curves of
one-step crosslinking structure and two-step crosslinking structure.
(n=6) (D, E) The tensile strain and Young’s Modulus of one-step
crosslinking structure and two-step crosslinking structure. (n=6, NS,
not significant). (E) The process of constructing a tubular structure.
Scale bar: 2mm. (F) The tubular structures with different diameter. (G)
6 cm length tubular structure. (H) SEM of tubular structure. (The red
arrow refers to the combining site). Scale bar: 200μm.
Figure 4
3D complex tubular structure made by two-step crosslinking method. (A,
B, C) Multiple curved, branched, and circular tubular structure with
single inlet/outlet. (D) Printed letter with tubular structure. All
structures were injected with a red ink for the approval of good sealing
and patency. Scale bar: 2mm.
Figure 5
Cell viability, proliferation, and histology of bionic vascular vessel.
(A) Live/dead staining of bionic vascular vessel (Day 1, Day 4 and Day
7). Scale bar: 200 μm. (B) Cell viability of bionic vascular. (C) Cell
proliferation by CCK-8 assay (n=4, **, P <
0.01;0.01***, P < 0.001; NS, not significant). (D, E)
The H&E staining and Masson staining.
Figure 6
Immunofluorescence and SEM of bionic vascular vessel. (A)
Immunofluorescence of bionic vascular vessel. (CD31, green; α-sma, red;
DAPI, blue). (B) SEM of bionic vascular vessel. HUVECs attached on the
intraluminal surface, and SMCs were distributed linearly within the wall
of the structure.
Figure support 1
The 1H-NMR of GelMA and Gelatin. The characteristic
resonance peak of the methacrylic acid group (5.5-6 ppm) appeared in
GelMA, which is missing in the Gelatin.
Figure 1