References

  1. Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., … & IDF Diabetes Atlas Committee. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes research and clinical practice, 157, 107843.
  2. Maitra A, Abbas AK. Endocrine system. In: Kumar V, Fausto N, Abbas AK (eds). Robbins and Cotran Pathologic basis of disease (7th ed) 2005. Philadelphia, Saunders; 1156-1226.
  3. Neumiller, Joshua J., and Guillermo E. Umpierrez. ”2018 Standards of Care Update: Pharmacologic Approaches to Glycemic Management in People with Type 2 Diabetes.” Diabetes Spectrum 31.3 (2018): 254-260.
  4. American Diabetes Association. ”9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2020.” Diabetes Care 43.Suppl 1 (2020): S98.
  5. Dash, Ranjeet Prasad, R. Jayachandra Babu, and Nuggehally R. Srinivas. ”Comparative pharmacokinetics of three SGLT-2 inhibitors sergliflozin, remogliflozin and ertugliflozin: an overview.” Xenobiotica 47.11 (2017): 1015-1026.
  6. Garcia-Ropero, Alvaro, Juan J. Badimon, and Carlos G. Santos-Gallego. ”The pharmacokinetics and pharmacodynamics of SGLT2 inhibitors for type 2 diabetes mellitus: the latest developments.” Expert Opinion on Drug Metabolism & Toxicology 14.12 (2018): 1287-1302.
  7. American Diabetes Association. ”9. Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes—2021.” Diabetes Care 44.Supplement 1 (2021): S111-S124.
  8. Gorboulev V, Schurmann A, Vallon V et al (2012) Na+-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61:187–196
  9. Song P, Onishi A, Koepsell H, Vallon V (2016) Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin Ther Targets 20:1109–1125
  10. Rieg, Timo, and Volker Vallon. ”Development of SGLT1 and SGLT2 inhibitors.” Diabetologia 61.10 (2018): 2079-2086.
  11. Wiviott, Stephen D., et al. ”Dapagliflozin and cardiovascular outcomes in type 2 diabetes.” New England Journal of Medicine 380.4 (2019): 347-357.
  12. Hsia, Daniel S., Owen Grove, and William T. Cefalu. ”An update on SGLT2 inhibitors for the treatment of diabetes mellitus.” Current opinion in endocrinology, diabetes, and obesity 24.1 (2017): 73.
  13. Nespoux, Josselin, and Volker Vallon. ”SGLT2 inhibition and kidney protection.” Clinical Science 132.12 (2018): 1329-1339.
  14. Zelniker, Thomas A., et al. ”SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials.” The Lancet 393.10166 (2019): 31-39.
  15. Garcia-Ropero, Alvaro, Juan J. Badimon, and Carlos G. Santos-Gallego. ”The pharmacokinetics and pharmacodynamics of SGLT2 inhibitors for type 2 diabetes mellitus: the latest developments.” Expert Opinion on Drug Metabolism & Toxicology 14.12 (2018): 1287-1302.
  16. Goldenberg, Ronald M., et al. ”SGLT2 inhibitor–associated diabetic ketoacidosis: clinical review and recommendations for prevention and diagnosis.” Clinical Therapeutics 38.12 (2016): 2654-2664.
  17. Kim, Ju-Hyun, et al. ”In Vitro Metabolism of DWP16001, a Novel Sodium-Glucose Cotransporter 2 Inhibitor, in Human and Animal Hepatocytes.” Pharmaceutics 12.9 (2020): 865.
  18. Choi, Min-Koo, et al. ”Comparative Pharmacokinetics and Pharmacodynamics of a Novel Sodium-Glucose Cotransporter 2 Inhibitor, DWP16001, with Dapagliflozin and Ipragliflozin.” Pharmaceutics 12.3 (2020): 268.
  19. Rieg, Timo, et al. ”Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia.” American Journal of Physiology-Renal Physiology 306.2 (2014): F188-F193.
  20. Lu, Yasong, et al. ”Use of systems pharmacology modeling to elucidate the operating characteristics of SGLT1 and SGLT2 in renal glucose reabsorption in humans.” Frontiers in pharmacology 5 (2014): 274.
  21. Chen, Xia, et al. ”Pharmacokinetics, pharmacodynamics, and safety of single-dose canagliflozin in healthy Chinese subjects.” Clinical therapeutics 37.7 (2015): 1483-1492.
  22. Komoroski, B., et al. ”Dapagliflozin, a novel SGLT2 inhibitor, induces dose‐dependent glucosuria in healthy subjects.” Clinical Pharmacology & Therapeutics 85.5 (2009): 520-526.
  23. Sha, Sue, et al. ”Pharmacodynamic effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, from a randomized study in patients with type 2 diabetes.” PloS one 9.8 (2014): e105638.
  24. Kasichayanula, S., et al. ”Pharmacokinetics and pharmacodynamics of dapagliflozin, a novel selective inhibitor of sodium–glucose co‐transporter type 2, in Japanese subjects without and with type 2 diabetes mellitus.” Diabetes, Obesity and Metabolism 13.4 (2011): 357-365.
  25. Gilbert, Richard E., and Kevin E. Thorpe. ”Acute kidney injury with sodium‐glucose co‐transporter‐2 inhibitors: A meta‐analysis of cardiovascular outcome trials.” Diabetes, Obesity and Metabolism 21.8 (2019): 1996-2000.
  26. Sugiyama, Seigo, et al. ”Impact of dapagliflozin therapy on renal protection and kidney morphology in patients with uncontrolled type 2 diabetes mellitus.” Journal of clinical medicine research 10.6 (2018): 466.
  27. Satirapoj, Bancha, Pattharamon Korkiatpitak, and Ouppatham Supasyndh. ”Effect of sodium-glucose cotransporter 2 inhibitor on proximal tubular function and injury in patients with type 2 diabetes: a randomized controlled trial.” Clinical kidney journal 12.3 (2019): 326-332.
  28. Heyman, Samuel N., et al. ”Potential hypoxic renal injury in patients with diabetes on SGLT2 inhibitors: caution regarding concomitant use of NSAIDs and iodinated contrast media.” Diabetes Care 40.4 (2017): e40-e41.
  29. Szalat, Auryan, et al. ”Can SGLT2 inhibitors cause acute renal failure? Plausible role for altered glomerular hemodynamics and medullary hypoxia.” Drug safety 41.3 (2018): 239-252.
  30. van Meer, Leonie, et al. ”Renal effects of antisense-mediated inhibition of SGLT2.” Journal of Pharmacology and Experimental Therapeutics 359.2 (2016): 280-289.
  31. Kadokura, Takeshi, et al. ”Ipragliflozin (ASP1941), a selective sodium-dependent glucose cotransporter 2 inhibitor, safely stimulates urinary glucose excretion without inducing hypoglycemia in healthy Japanese subjects.” Diabetology International 2.4 (2011): 172-182.
  32. Chaplin, Steve. ”SGLT2 inhibitors and risk of genitourinary infections.” Prescriber 27.12 (2016): 26-30