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1. Introduction

Matrices with all their minors nonnegative are called Totally Positive (TP) and matrices whose minors of the same order have

the same sign are called Sign Regular (SR). They arise in approximation theory, di�erential equations, statistics, combinatorics,

mechanics, computer-aided geometric design and economics, among other subjects (see [1], [2], [3] and [4]). An important

subclass of TP matrices are the Almost Strictly Totally Positive (ASTP) matrices, matrices whose minors are positive if and

only if all their diagonal entries are positive (see [5]). ASTP matrices contain Hurwitz matrices and B-splines collocation matrices.

In [6], the class of Almost Strictly Sign Regular (ASSR) matrices was introduced and characterized by a reduced number of

minors. ASSR matrices form a subclass of SR matrices including all ASTP matrices.

In [7], an algorithmic characterization of ASSR matrices is provided. It used the Neville elimination (NE) of a matrix, which

is an elimination procedure alternative to Gaussian elimination. Roughly speaking, NE makes zeros in a column of a matrix by

adding to each row an adequate multiple of the previous one (see [8] for more details), instead of using just a row with a �xed

pivot as in Gaussian elimination. So, NE transforms a nonsingular matrix into an upper triangular matrix. The entries of each

columns used to make zeros below them are called pivots of the NE. More results about NE and SR matrices can be seen in [9],

[10], [11], [12], [13], [14] and [15].

In this paper, we introduce the concept of depth of an ASSR matrix. At the end of Section 4, we see that strictly M-banded

ASSR matrices (see [16]) are included in the class of ASSR matrices with depth n �M. We also see in Section 4 that the use

of the depth of an ASSR matrix allows us to simplify the algorithms of [7] and to reduce its computational cost. If the matrix

has a high depth, then this reduction is considerable.

The paper is organized as follows. Section 2 contains basic notations and de�nitions concerning the zero pattern of a matrix.

Section 3 recalls de�nitions and some fundamental results on ASSR matrices. In Section 4 we introduce the concept of depth

of an ASSR matrix and prove that the depth of an ASSR matrix determines its initial signature. We also provide the mentioned

simpli�ed characterization and the corresponding algorithms. Section 5 include some numerical results and applications. Finally,

Section 6 summarizes the main conclusions of this work.

2. Basic notations and de�nitions

For k; n 2 N, with 1 � k � n, Qk;n denotes the set of all increasing sequences of k natural numbers not greater than n. If

A is a real n � n matrix and � = (�1; : : : ; �k), � = (�1; : : : ; �k) 2 Qk;n, then A[�j�] is by de�nition the k � k submatrix of

A containing rows �1; : : : ; �k and columns �1; : : : ; �k of A. In particular, when � = �, A[�] := A[�j�] is the corresponding
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principal submatrix. Besides, Q0
k;n denotes the set of increasing sequences of k consecutive natural numbers not greater than n

and if � 2 Q0
k;n, then detA[�] is a principal minor.

From now on, it will be frequently used the backward identity matrix n � n, Pn, whose element (i ; j) is de�ned as{
1 if i + j = n + 1;

0 otherwise:

Throughout this document, we will work with matrices whose zero and nonzero entries are grouped in certain positions. Then

we introduce the type-I and type-II staircase matrices.

De�nition 2.1 A real matrix A = (ai j)1�i ;j;�n is called type-I staircase matrix if it satis�es simultaneously the following conditions:

(a) ai i 6= 0, 8i 2 f1; : : : ; ng;

(b) ai j = 0; i > j ) akl = 0, if l � j , i � k;

(c) ai j = 0; i < j ) akl = 0, if k � i , j � l .

De�nition 2.2 A matrix A is called type-II staircase if PnA is a type-I staircase matrix.

Conditions introduced in de�nitions 2.1 and 2.2 produce a staircase structure for the zero pattern, which is set through the

following indices (see [5, 7]):

De�nition 2.3 For a matrix A = (ai j)1�i ;j�n, type-I staircase, we de�ne

i0 = 1; j0 = 1; (1)

and for k = 1; : : : ; `:

ik = max
{
i = ai jk�1 6= 0

}
+ 1 (� n + 1); (2)

jk = max fj � ik = aik j = 0g+ 1 (� n + 1); (3)

where l is given in this recurrent de�nition by j` = n + 1.

Analogously we de�ne

ĵ0 = 1; î0 = 1 (4)

and for k = 1; : : : ; r :

ĵk = max
{
j = â

ik�1 j
6= 0
}
+ 1 (� n + 1); (5)

îk = max
{
i � ĵk = a

î jk
= 0
}
+ 1 (� n + 1); (6)

where îr = n + 1.

Finally, we denote by I, J, Î and Ĵ the following sets of indices

I = fi0; i1; : : : ; i`g ; J = fj0; j1; : : : ; j`g ;

Î =
{̂
i0; î1; : : : ; îr

}
; Ĵ =

{̂
j0; ĵ1; : : : ; ĵr

}
;

thereby de�ning the zero pattern in the matrix A.

Note 2.4 Note that, if card(I) = 2 then ai j 6= 0 when 1 � j < i � n. In the same way, if card(Î ) = 2, then ai j 6= 0 when

1 � i < j � n.

So, if A is a type-II staircase matrix the zero pattern of A is the zero pattern of PnA.

To mark the positions of the matrix in which a new echelon starts, we de�ne the following indices.

De�nition 2.5 Let A be a real n � n matrix, type-I staircase, with zero pattern I, J, Î and Ĵ. Let be 1 � i ; j � n. If j � i we

de�ne

jt = max fjs = 0 � s � k � 1; j � js � i � isg ; (7)

being k the unique index satisfying that jk�1 � j < jk , and if i < j

ît = max
{̂
is = 0 � s � k 0 � 1; i � îs � j � ĵs

}
; (8)

being k 0 the only index satisfying that îk 0�1 � i < îk 0 .
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3. Almost strictly sign regular matrices

Next, we de�ne ASSR matrices, wich are matrices whose nontrivial minors of the same order have all the same strict sign. To

store the sign we are going to de�ne the vector of signatures.

De�nition 3.1 Given a vector " = ("1; "2; : : : ; "n) 2 R
n, we say that " is a signature sequence, or simply, is a signature, if

"i 2 f+1;�1g for all i � n.

ASSR matrices form a subclass of SR matrices. A matrix is SR if all its minors of the same order have the same sign. That is:

De�nition 3.2 A real matrix A = (ai j)1�i ;j;�n is said to be SR, with signature " = ("1; "2; : : : ; "n), if all its minors satisfy that

"m detA[�j�] � 0; �; � 2 Qm;n; m � n: (9)

In a staircase matrix there are some minors which are trivially zero due to the position of their zero entries. We are going to

distinguish those minors from those that do not verify that condition.

De�nition 3.3 Let A = (ai j)1�i ;j�n be a type-I (type-II) staircase matrix. A submatrix A[�j�], with �; � 2 Qm;n, is said to be

nontrivial if all its main diagonal (secondary diagonal) elements are nonzero.

The minor associated to a nontrivial submatrix (A[�j�]) is called nontrivial minor (detA[�j�]).

The nontrivial minors play an important role in ASSR matrices.

De�nition 3.4 A real matrix A = (ai j)1�i ;j�n is said to be ASSR, with signature " = ("1; "2; : : : ; "n), if all its nontrivial minors

detA[�j�] satisfy that

"m detA[�j�] > 0; �; � 2 Qm;n; m � n: (10)

Note 3.5 Observe that an ASSR matrix is SR, since the trivial minors are zero and the nontrivial minors satisfy the strict

inequality (9). Observe also that an ASSR matrix is nonsingular.

Next, we present the characterization given in [6] for ASSR matrices (see Theorem 10).

Theorem 3.6 Let A be a real n � n matrix and " = ("1; "2; : : : ; "n) be a signature. Then A is ASSR with signature " if and only

if A is a type-I or type-II staircase matrix, and all its nontrivial minors with �; � 2 Q0
m;n, m � n, satisfy

"m detA[�j�] > 0: (11)

A characterization of the ASSR matrices using the pivots of NE is given in [7]. This characterization uses the following results:

Theorem 3.7 Let B = (bi j)1�i ;j�n be a nonsingular type-I staircase matrix, with zero pattern de�ned by I, J, Î and Ĵ. If B is

ASSR with signature " = ("1; "2; : : : ; "n), then the NE of B can be performed without row exchanges and the pivots pi j satisfy,

for 1 � j � i � n,

pi j = 0 , bi j = 0; (12)

"j�jt "j�jt+1pi j > 0 , bi j 6= 0; (13)

where "0 = 1 and jt is de�ned in (7).

Theorem 3.8 Let B = (bi j)1�i ;j�n be a nonsingular type-II staircase matrix, with zero pattern de�ned by I, J, Î and Ĵ. If B is

ASSR with signature " = ("1; "2; : : : ; "n), then the NE of BT can be performed without row exchanges and the pivots qi j satisfy,

for 1 � i < j � n,

qi j = 0 , bi j = 0; (14)

"
i�̂it

"
i�̂it+1

pi j > 0 , bi j 6= 0; (15)

where "0 = 1 and ît is de�ned in (8).

From now on, we will denote by Ah = A[h; : : : ; n]. Note that A1 = A and An = (ann).

Note 3.9 Let A be a type-I (type-II) staircase matrix. Then, in relation to Ah (AT
h ) matrices, the next results are veri�ed:

1. Ah and AT
h are also type-I (type-II) staircase matrix for all h 2 f1; 2; : : : ; ng.
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2. If the zero pattern of A is given by I = fi0; : : : ; i`g, J = fj0; : : : ; j`g, Î = f̂i0; : : : ; îrg, Ĵ = f̂j0; : : : ; ĵrg, then the zero

pattern of Ah matrices is given by Ih = f1; ia � h + 1; : : : ; il � h + 1g, Jh = f1; ja � h + 1; : : : ; jl � h + 1g, Îh = f1; îb �

h + 1; : : : ; îr � h + 1g, Ĵh = f1; ĵb � h + 1; : : : ; ĵr � h + 1g,

where a = minfs = js � h + 1 � 2g and b = minfs = îs � h + 1 � 2g.

3. If A is ASSR matrix with signature " = ("1; "2; : : : ; "n) then Ah and AT
h are ASSR matrices with signature "0 =

("1; "2; : : : ; "n�h+1).

Finally, in the following result (Theorem 5 of [7]) a characterization of ASSR matrices, with "2 = 1, is presented:

Theorem 3.10 A nonsingular matrix A = (ai j)1�i ;j�n is ASSR with signature " = ("1; "2; : : : ; "n), with "2 = 1 if and only if for

every h = 1; : : : ; n � 1 the following properties hold simultaneously:

(i) A is type-I staircase;

(ii) the NE of the matrices Ah = A[h; : : : ; n] and AT
h can be performed without row exchanges;

(iii) the pivots ph
ij of the NE of Ah satisfy conditions corresponding to (12), (13), and the pivots qh

ij of the NE AT
h satisfy (14)

and (15);

(iv) for the positions (ih; jh) of matrix Ah:

� if ih � jh and ih � jh = iht � jht then "jh�jh
t

"jh�jh
t
+1 = "jh�1"jh ,

� if ih < jh and ih � jh = îht � ĵht then "
ih�̂ih

t

"
ih�̂ih

t
+1 = "ih�1"ih ,

where indices iht ; j
h
t ; î

h
t ; ĵ

h
t are given by conditions corresponding to (7) and (8).

4. Depth and characterization of ASSR matrices

In this section, the characterization of ASSR matrices obtained in Theorem 3.10 is simpli�ed. To that end, following the De�nition

2.3, we denote by r = card(I)� 1 and by s = card(Î)� 1. Observe that if r = 1 and s = 1, then A has not zero entries.

For further result, it is convenient to know the length of the longest diagonal with all elements nonzero and which is close to

zero entry.

De�nition 4.1 Let A an n � n matrix, type-I staircase with zero pattern give by I, J, Î, Ĵ. We de�ne, �L (�U) as the length of

the shortest diagonal below (above) the main diagonal without zero entries, that is:

�L :=

{
1 if r = 1;

max
k2f1;:::;r�1g

fn � (ik � jk)g if r > 1;

and

�U :=

{
1 if s = 1;

max
k2f1;:::;s�1g

fn � (̂jk � îk)g if s > 1:

To illustrate De�nition 4.1 let us look at the following example.

Example 4.2 Given the matrix

A =



1 2 10�4 0 0 0

2 6 6 8 0 0

0 6 21 30 9 0

0 8 30 48 42 28

0 10 39 82 172 176

0 0 0 28 176 259

 ;

the zero pattern bellow the main diagonal is I = f1; 3; 6; 7g and J = f1; 2; 4; 7g. We observe that �L = maxf6� (3� 2); 6�

(6� 4)g = 5 and 5 is the length of the shortest diagonal below the main diagonal without zero entries.

The zero pattern above the main diagonal is Î = f1; 2; 3; 4; 7g and Ĵ = f1; 4; 5; 6; 7g. We observe that �U = maxf6� (4�

2); 6� (5� 3); 6� (6� 4)g = 4 and 4 is the length of the shortest diagonal above the main diagonal without zero entries.

Considering the previous de�nition, the depth � of A is de�ned.

De�nition 4.3 Let A = (ai j)1�i ;j�n be a real matrix. We de�ne � the depth of A as,
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� if the matrix A is type-I staircase, then � = maxf�L; �Ug,

� if the matrix A is type-II staircase, then � is the depth of PnA.

Example 4.4 Let A be the matrix given in Example 4.2. Then � = maxf5; 4g = 5 and 5 is the length of the longest diagonal

close to a zero.

The next result shows that the depth � of an ASSR matrix determines the �rst � components of its signature.

Theorem 4.5 Let A = (ai j)1�i ;j�n be an ASSR type-I staircase matrix with depth �. If A is nonnegative, then its signature is

" = (1; 1; : : : ; 1; "�+1; : : : ; "n). If A is nonpositive, then its signature is " = (�1; 1; : : : ; (�1)��1; (�1)�; "�+1; : : : ; "n).

Proof: Observe that it is enough to see that

"k = ("1)
k 8 k 2 f1; 2; : : : ; �g:

Firstly we suppose that "1 = 1. If � = 1 the result holds.

We can suppose that � = �L because, otherwise, we can apply the same reasoning to At . Let m be such that � = �L =

n � (im � jm). The proof is performed by induction on k.

If k = 1 then "1 = 1 by hypothesis.

We suppose that "k = 1 for all k � `� 1 with ` � �, and we will prove that "k = 1 for k = `.

If ` � n + 2� im we consider the square matrix of order m

B = A[im � 1; : : : ; im + `� 2jjm � 1; : : : ; jm + `� 2]

then

detB = aim�1; jm�1 detA[im; : : : ; im + `� 2jjm; : : : ; jm + `� 2]:

Thus "` = "1"`�1. By hypothesis "1 = 1 and, by the induction hypothesis, "`�1 = 1, thus "` = 1.

If ` > n + 2� im we consider the square matrix of order m

B = A[n�`+1; : : : ; njn�(im�jm)�`+1; : : : ; n�(im�jm)]

then detB =

detA[n�`+1; : : : ; im � 1jn�(im�jm)�`+1; : : : ; jm � 1)] detA[im; : : : ; njjm; : : : ; n�(im�jm)]:

Thus "` = "`+im�n�1"n�im+1. By the induction hypothesis "`+im�n�1 = 1 and "n�im+1 = 1, thus "` = 1.

Therefore, in any case, "` = 1, and the result holds, that is, " = (1; 1; : : : ; 1; "�+1; : : : ; "n).

Suppose now that "1 = �1, then we de�ne B = "1A = �A. B is an ASSR matrix with signature "0 with "0k = (�1)k"k , and

�0 = �. Applying the previous reasoning to B, "0k = 1 for all k 2 f1; : : : ; �g and

"k = (�1)k"0k = ("1)
k :

So, the result holds, that is, " = (�1; 1; : : : ; (�1)��1; (�1)�; "�+1; : : : ; "n). 2

Example 4.6 Given the matrix

A =



�4 �16 �2 0 0 0

�8 �40 �44 �64 0 0

�2 �32 �133 �240 �60 0

0 �32 �184 �368 �248 �144

0 0 �36 �240 �972 �1344

0 0 0 �144 �1752 �13300


ASSR with signature " = (�1; 1;�1; 1;�1; 1) and � = 4. Then "1 = �1, "2 = (�1)2, "3 = (�1)3, "4 = (�1)4.

In [7] the authors establish the relationship between the signatures of A and PnA, that we are going to use.

Proposition 4.7 A matrix A is ASSR if and only if PnA is also ASSR. Furthermore, if the signature of A is " = ("1; "2; : : : ; "n),

then the signature of PnA is "0 = ("01; "
0
2; : : : ; "

0
n), with "0m = (�1)

m(m�1)
2 "m.

Taking into account the previous result, it is possible to determine the �rst � components of the signature vector for type-II

staircase ASSR matrices.
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Corollary 4.8 Let A be an n � n ASSR type-II staircase matrix with signature ". It is veri�ed that "k = (�1)
k(k+1)

2 ("1)
k for all

k 2 f1; : : : ; �g where � is the depth of the matrix A.

Proof: If we de�ne B = "1PnA and we call "0 its signature, then we have that "01 = 1 and B is type-I. By Theorem 4.5, "0k = 1

for all k 2 f1; : : : ; �g. Finally, using Proposition 4.7, we have "k = (�1)
k(k+1)

2 ("1)
k"0k = (�1)

k(k+1)
2 ("1)

k . 2

In order to simplify the relationship between the elements of the signature vector collected in equations (13) and (15), the

following auxiliary results are obtained.

Lemma 4.9 Let B = (bi j)1�i ;j�n be a type-I staircase nonsingular matrix, with zero pattern I, J, Î and Ĵ and depth �. Let

" = ("1; "2; : : : ; "n) be a signature vector with "2 = 1 and "k = ("1)
k for all k 2 f1; : : : ; �g. Then for all the pairs (i ; j) such that

1 � j � i � n it holds that

"j�jt "j�jt+1 = "j�1"j :

Proof:

� If jt = 1 then it is direct, "j�jt "j�jt+1 = "j�1"j .

� If jt > 1 then, by (7) there exists s such that j � js � i � is . So,

j � i � is + js = i � (is � js) � n � (is � js) � max
k2f1;:::;r�1g

fn � (ik � jk)g = �L � �:

Thus,

"j�jt "j�jt+1 = ("1)
j�jt ("1)

j�jt+1 = ("1)
2(jt�1)("1)

j�jt ("1)
j�jt+1 =

("1)
jt�1("1)

j�jt ("1)
jt�1("1)

j�jt+1 = ("1)
j�1("1)

j = "j�1"j :

2

By applying Lemma 4.9 to matrix BT , the next result is obtained.

Lemma 4.10 Let B = (bi j)1�i ;j�n be a type-I staircase nonsingular matrix, with zero pattern I, J, Î and Ĵ and depth �. Let

" = ("1; "2; : : : ; "n) be a signature vector with "2 = 1 and "k = ("1)
k for all k 2 f1; : : : ; �g. Then for all the pairs (i ; j) such that

1 � i < j � n it is verify that

"i�ît
"i�ît+1

= "i�1"i :

The following result provides a simpli�cation of the conditions given in Theorem 3.7.

Proposition 4.11 Let B = (bi j)1�i ;j�n be a nonsingular matrix ASSR with signature " = ("1; "2; : : : ; "n) and "2 = 1. Then the

NE of B can be performed without row exchanges and the pivots pi j satisfy, for any 1 � j � i � n,

pi j = 0 , bi j = 0; (16)

"j�1"jpi j > 0 , bi j 6= 0; (17)

where "0 = 1.

In addition, for j 2 f1; : : : ; �g the condition (17) can be expressed as

"1pi j > 0, bi j 6= 0:

Proof: As B is an ASSR matrix with "2 = 1, by Theorem 2 in [7], the matrix B is type-I staircase. We denote by � = (�1; : : : ; �n)

the signature, the zero pattern I, J, Î, Ĵ and � the depth of B.

By Theorem 3.7, we know that the NE of B can be performed without row exchanges and the pivots pi j satisfy (12) and

(13), for any 1 � j � i � n, that is

pi j = 0 , bi j = 0;

"j�jt "j�jt+1pi j > 0 , bi j 6= 0;

where "0 = 1 and jt is de�ned in (7).

So, (16) holds and we only have to prove that (13) and (17) are equivalent.

By Theorem 4.5, "k = ("1)
k for k � � and so the hypothesis of Lemma 4.9 holds. Therefore we have

"j�jt "j�jt+1 = "j�1"j :

Then, "j�1"jpi j = "j�jt "j�jt+1pi j > 0, and (17) holds.
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Finally, if 1 � j � �, then j � 1 < � and "j = ("1)
j and "j�1 = ("1)

j�1

"j�1"j = ("1)
j�1("1)

j = ("1)
2j�1 = "1:

Thus, the condition "j�1"jpi j > 0 is simpli�ed to "1pi j > 0 2

Analogously, by using Theorem 3.10, the conditions (14) and (15) can be simpli�ed:

Proposition 4.12 Let B = (bi j)1�i ;j�n be a nonsingular matrix ASSR with signature " = ("1; "2; : : : ; "n) where "2 = 1. Then, the

NE of BT can be performed without row exchanges and the pivots qi j satisfy, for any 1 � i < j � n,

qi j = 0, bi j = 0; (18)

"i�1"iqi j > 0, bi j 6= 0; (19)

where "0 = 1.

In addition, for indices i 2 f1; : : : ; �g the condition (19) can be expressed as

"1qi j > 0, bi j 6= 0:

Note 4.13 Let A be an n � n matrix, type-I staircase with depth �. Then, the depth, �h, of Ah veri�es, �h � � � h + 1.

The following theorem is a simpli�cation of Theorem 3.10 and the depth (�) of the matrix will play a key role.

Theorem 4.14 A nonsingular matrix A = (ai j)1�i ;j�n is ASSR with signature " = ("1; "2; : : : ; "n) and "2 = 1 if and only if A is

type-I staircase with depth �, "k = ("1)
k for all k 2 f1; 2; : : : ; �g, and for every h = 1; : : : ; n � � + 1 the following properties

hold simultaneously:

(i) the NE of the matrices Ah and AT
h can be performed without row exchanges;

(ii) the pivots ph
ij of the NE of Ah satisfy conditions corresponding to (16), (17), and the pivots qh

ij of the NE of AT
h satisfy

(18) and (19).

Proof: Let us start by assuming that the matrix A is ASSR with signature " = ("1; "2; : : : ; "n) with "2 = 1.

By Theorem 2 in [7], as "2 = 1, A is type-I staircase and, using Theorem 4.5, "k = ("1)
k for all k 2 f1; 2; : : : ; �g holds.

For each h 2 f1; : : : ; �g, we apply Theorems 4.11 and 4.12 to B = Ah, and conditions (i) and (ii) hold.

For the converse we assume that A is type-I staircase with depth �, "k = ("1)
k for all k 2 f1; 2; : : : ; �g, and for every

h = 1; : : : ; n � � + 1, (i)-(ii) hold and we shall prove that the matrix is ASSR.

The proof is based on Theorem 3.10, so we have to prove that the conditions (i)-(iv) of this theorem are full�lled.

� Condition (i) and (ii) of Theorem 3.10 are trivial by considering that A is type-I staircase and (i).

� Using the hypothesis (ii), "k = ("1)
k if 1 � k � � and Lemma 4.9, the condition (iii) of Theorem 3.10 is ful�lled.

� Finally, let us check the condition (iv) of the Theorem 3.10.

Given the matrix Ah, its depth �h and the signature vector "h = ("1; : : : ; "n�h+1). It is clear that "
h
k = "k = ("1)

k = ("h1)
k ,

so we are under the hypothesis of Lemma 4.9 and Lemma 4.10 and it is veri�ed, for the positions (ih; jh) of matrix Ah,

that:

{ if ih � jh and ih � jh = iht � jht then "jh�jh
t

"jh�jh
t
+1 = "jh�1"jh ,

{ if ih < jh and ih � jh = îht � ĵht then "
ih�̂ih

t

"
ih�̂ih

t
+1 = "ih�1"ih ,

where indices iht ; j
h
t ; î

h
t ; ĵ

h
t are given by conditions corresponding to (7) and (8).

The last part of the proof is that the conditions must hold for the matrices Ah with h 2 f1; : : : ; �g. To prove this, we take

the matrix B = �1A, whose signature veri�es that "k = 1 for all k 2 f1; : : : ; �g. So the matrix Bn��+1 with the signature

vector "0h = (1; : : : ; 1) veri�es the hypothesis of Theorem 3.3 in [5] and the matrix Bn��+1 it is ASTP. Thus the matrix

An��+1 = "1Bn��+1 is ASSR and the conditions (i)-(iv) are ful�lled for it and all its submatrices Ak with k 2 fn � � + 1; : : : ; ng.

Thus the conditions (i)-(iv) of Theorem 3.10 are ful�lled and the matrix A is ASSR with signature ". 2

Note 4.15 Notice that the previous result is a generalization of Theorem 6 of [16]. That result is applied to strictly M-banded

matrices, while the new proposal allows us to characterize any ASSR matrices of type-I staircase, taking into account their depth.

In fact, one can observe that a strictly M-banded type-I staircase matrix has depth n �M. On the other hand, we should take

advantage of this moment to correct the last condition of Theorem 6 of [16], which should be written as AM+1 = A[M + 1; : : : ; n].
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When the matrix A is type-II staircase, a result similar to the Theorem 4.14 is presented. For that, we consider the matrix

B = PnA and the submatrices Bh = B[h; : : : ; n] and BT
h with h 2 f1; : : : ; n � � + 1g being � the depth of A. So, the following

result is a consequence of Corollary 4.8 and applying Theorem 4.14 to B.

Theorem 4.16 A nonsingular matrix A = (ai j)1�i ;j�n is ASSR with signature " = ("1; "2; : : : ; "n) and "2 = �1 if and only if

B = PnA is type-I staircase with depth �, "k = (�1)
k(k�1)

2 ("1)
k for all k 2 f1; 2; : : : ; �g, and for every h = 1; : : : ; n � � + 1 the

following properties hold simultaneously:

(i) the NE of the matrices Bh and BT
h can be performed without row exchanges;

(ii) the pivots ph
ij of the NE of Bh satisfy conditions corresponding to (16), (17), and the pivots qh

ij of the NE BT
h satisfy (18)

and (19) for the signature vector �" = (�"1; : : : ; �"n) with �"k = (�1)
k(k�1)

2 "k .

Theorems 4.14 and 4.16 allow us to implement a fast algorithm to check if a matrix A is ASSR by performing the NE

algorithm to the submatrices Ah.

Algorithm 1 NE characterization

Input: A: matrix of order n and a signature vector "

Output: If matrix A is ASSR with signature ", TRUE else FALSE

1: Check that A is type-I staircase, calculate its depth � and check that "k = ("1)
k for k 2 f2; : : : ; �g

2: for h = 1 to n � � + 1 do

3: Apply NE to matrix Ah, checking that no row exchanges are needed and pivots ph
ij satisfy (16) and (17)

4: Apply NE to matrix AT
h , checking that no row exchanges are needed and pivots qh

ij satisfy (18) and (19)

5: end for

Algorithm 1 allows us to test if a type-I staircase matrix is ASSR using the simpli�cation obtained in Theorem 4.14. If we

consider a type-II staircase matrix, then we apply Theorem 4.16 and the following changes in Algorithm 1 should be considered:

1. Check that B = PnA is type-I staircase, calculate its depth � and check that "k = (�1)
k(k�1)

2 ("1)
k for k 2 f2; : : : ; �g

3. Apply NE to matrix Bh, checking that no row exchanges are needed and pivots ph
ij satisfy (16) and (17) for the signature

vector �" = (�"1; : : : ; �"n) with �"k = (�1)
k(k�1)

2 "k

4. Apply NE to matrix BT
h , checking that no row exchanges are needed and pivots qh

ij satisfy (18) and (19) for the signature

vector �" = (�"1; : : : ; �"n) with �"k = (�1)
k(k�1)

2 "k

It is possible to implement the algorithm so that the input argument is only the matrix and the output arguments are the

signature, the zero pattern and the depth in case the matrix is ASSR.

We have done it in these terms and we have applied it to the following examples.

Example 4.17 Given the matrix

A =



�1 �2 0 0 0 0

�2 �6 �6 �8 0 0

0 0 �21 �30 �9 0

0 0 �30 �48 �42 �28

0 0 �9 �42 �172 �176

0 0 0 �28 �176 �259

 ;

the algorithm returns the following results

� = 6; I = f1; 3; 6; 7g; J = f1; 3; 4; 7g; Î = f1; 2; 3; 4; 7g; Ĵ = f1; 3; 5; 6; 7g;

" = (�1; 1;�1; 1;�1; 1):

It should be noted that since the depth � is 6, NE elimination must only be applied to the matrices A1 = A and AT
1 = AT while

with the previous algorithms, it was necessary to apply the NE elimination to the matrices

fA1; A
T
1 ; A2; A

T
2 ; A3; A

T
3 ; A4; A

T
4 ; A5; A

T
5 g:

Example 4.18 Given the matrix

B =



�1 �2 0 0 0 0

�2 �6 �6 �8 0 0

0 0 �21 �30 �9 0

0 0 �30 �48 �42 �45

0 0 �9 �42 �172 �176

0 0 0 �28 �176 �259

 ;
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the algorithm returns the following results

� = 6; I = f1; 3; 6; 7g; J = f1; 3; 4; 7g; Î = f1; 2; 3; 4; 7g; Ĵ = f1; 3; 5; 6; 7g;

" = \false";

because the matrix is not ASSR, det(B[1; 2j1; 2]) = det

(
�1 �2

�2 �6

)
= 2 and det(B[4; 5j5; 6]) = det

(
�42 �45

�172 �176

)
=

�348. In this example the ASSR conditions fail when we apply the NE elimination to BT . At the beginning of the �fth step, we

get the matrix

(BT )(5) =



�1 �2 0 0 0 0

0 �2 0 0 0 0

0 0 �21 �30 �9 0

0 0 0 �5:1429 �29:1430 �28

0 0 0 0 �3 �17:3330

0 0 0 0 101:5000 116

 ;

it can be seen that the pivots of the �fth column must all be negative, however the pivot q56 = (BT )(5)[6j5] = 101:5 is positive.

5. Numerical experiments and applications

In this section we present a numerical experiment associated with a problem modeled through a di�erential equation. In this

sense, it should be noted that classic problems as:

� an elastic cord held at both ends with unitary tension and subjected to a transverse load of intensity f(x)

� an elastic bar held at both ends and subjected to axial load of intensity f(x) or

� the conduction of heat in a bar subjected to a distributed heat source f(x) with constant temperature at the ends

can be established from a di�erential equation in one dimension and of the second order of the type:

u00(t) + g(t)u(t) = f (t); t 2 [a; b];

u(a) = 0;

u(b) = 0:

The �nite element method consists of looking for the solution in a �nite dimensional vector space and reducing the problem to

calculating the coordinates of the solution with respect to a given base. This reduces the problem to a system of linear equations

in which the matrix of coe�cients, called the sti�ness matrix of the system, is a structured matrix. When applying the method

to certain cases, an ASSR matrix results. In these cases, high precision methods speci�cally designed for this type of matrices

can be used and a highly accurate solution is obtained.

We perform several experiments and, here, we show one. We solve the next di�erential equation

�u00(t) + 3000 u(t) = t sin(t + 2�=3); t 2 [1; 3];

u(1) = 0;

u(3) = 0:

Using 21 nodes in the equation, we obtain a tridiagonal linear system, A �X = b, where the matrix A (sti�ness matrix) is of

order 19

A =


220 40 0 � � � 0

40 220 40 � � � 0

0 40 220 � � � 0
...

...
...

. . .
...

0 0 0 � � � 220

 ;

and the matrix of constant terms is

bt =
(
�0:0060 �0:0184 �0:0326 �0:0485 �0:0657 �0:0841 �0:1033 �0:1231 �0:1431 �0:1630

�0:1824 �0:2010 �0:2183 �0:2342 �0:2481 �0:2597 �0:2689 �0:2751 �0:2783
)
:

Thus, applying Algorithm 1, it is possible to verify that the obtained matrix (sti�ness matrix) is an ASSR matrix with signature

sequence " = (1; 1; 1; : : : ; 1; 1). Next, we will use Neville's method to solve the resulting system, and we will analyze the error

made with respect to the exact solution of that system. It should be noted that the exact solution of the system has been

obtained using symbolic calculus in Matlab.

To carry out the Neville process (see [8]), the following algorithm have been implemented using Matlab:
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function [A Piv Ak] = Neville(A,n)

% Function to apply the Neville Elimination method to a square matrix.

% Input arguments:

% A ........ a square matrix

% n ......... the order of the matrix A (optional)

% Output arguments:

% A ......... the matrix we obtain at the end of the process

% Piv ....... Matrix with the pivots of the NE algorithm

% Ak ........ A 3-dimensional array with all the matrices A_k

% of the procedure A_1=Ak(:,:,1), A_2=Ak(:,:,2),...

if nargin < 2; n = size(A,2); end

Piv = zeros(n,n);

for j = 1:n

Ak(:,:,j) = A;

[I,bnd] = Pivoting(A(j:end,j),j,n);

A = A(I,:);

Piv(j:end,j) = A(j:end,j);

for i = bnd:-1:(j+1)

A(i,:) = A(i,:)-A(i,j)/A(i-1,j)*A(i-1,:);

end

end

In the next table, we compare the solution obtained by using the MatLab command (ML), this is X = A n b, the Neville

algorithm (NE) and the symbolic computation (SY) with the usual norms:

kMC-SYk kNE-SYk

1-norm 1.3993e-18 7.0473e-19

2-norm 5.1233e-19 3.0905e-19

1-norm 3.2526e-19 2.1684e-19

It can be seen that the combination between the presented algorithmic characterization shown and the Neville algorithm is

e�cient for this type of applications.

Finally, it should be noted that other e�cient tools that use NE to work with SR matrices can be found, for instance, in [15]

and [17]. In the �rst one, several algorithms (functions) have been implemented using Matlab to work with ASSR matrices. The

second includes a software package that can perform virtually all matrix computations with nonsingular TP matrices to high

relative accuracy (HRA), under certain conditions. HRA means that the relative errors of the computations are of the order of

machine precision, independently of the size of the condition number. If the sti�ness matrix (A) is a TP matrix, it is possible

to use the function TNBD, to computes the bidiagonal decomposition of the matrix A by performing NE, next, using function

TNSolve, we can solve the linear system A X=b using backward substitution.

6. Conclusions

It is shown that the new concept of depth (�) of an n � n staircase matrix A is a very useful tool to deal with ASSR matrices.

On the one hand, it determines the initial � components of the signature of A. In particular, if the depth is maximal, that is � = n

then the signature is completely determined. On the other hand, the depth can be used to simplify and reduce the computational

cost of the algorithm to check if a given matrix is ASSR with a given signature. This reduction increases with the depth of the

matrix.
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