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Abstract

We study the following coupled fractional Schrodinger system:

(—A)%u = Mu+  |ulP?u+ Briful" Pulv[= inRY,
(—=A)*v = Xgv + pg|v|9™ 20 + Broful ™t |v|"2 "2 in RV,

with prescribed mass

/u2:a and /v2:b.
RN RN

Here, a,b > 0 are prescribed, N > 2s,s > % 24 % < p,q,r1+1re <2F =
NQfN%, and pq, po, B are all positive constants. We first show that if 5 > 0
sufficiently large, a mountain pass-type normalized solution exists provided
2 < N <4sand 2+ % < p,q,r1 + 12 < 2%. Then we also prove that if
2 < N < 4s,p = q = r1 + 19 = 2% the nonexistence of positive solution to

the system.
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1 Introduction

In this paper, we consider the following nonlinear equations involving the fractional
Laplace operator:

(=A)SWy — iy [ U P20 — Bry [ U412 [ Wy 720y
1002 = (—A)* Wy — po|Ws |92y — Bro| Uy |7 [Ty|"272Ws,

1.1
. (1.1)
Ui(z,t) -0, as |z| = 400, j=1,2,

where 0 < s < 1, N > 2s, i is the imaginary unite and 8 > 0 is a coupling constant.
The differential equations involving fractional Laplace operator appear in many fields
such as physics and mathematical finances (see [1, 2, 6]), and it can be construed as the
infinitesimal generators of Lévy stable diffusion processes. System (1.1) with s = 1
possesses numerous physical motivations, such as it appears as models in the research
of Bose-Einstein condensation or the incoherent solitons in nonlinear optics (see e.g.
[5, 15]). To obtain solitary wave solutions of the system (1.1), one makes the ansatz

Uy (z,t) = e~ Mly(x) and Wy(z,t) = e~ P2ly(z),

where A\, A2 € Rand and u,v € H*(R") are time-independent real valued functions.
Note that a couple (¥, ¥s) is a solution of (1.1) iff a couple of (u,v) is a solution of
(1.2)

(=A)*u = Au+ mufP"?u+ Briful Pufo[? inRY,
(—A)*v = A + po|v|97 20 + Bra|u|™ [v]"2 "2 in RV, (1.2)
u,v € H¥(RN),

where the fractional Laplacian operator (—A)? is defined as

(—A)u(z) = *% /RN wo + ) +|:|(J$+;y) — 2u(x)dy, Ve RV,

The studies on nonlinear coupled system with s = 1, mainly on the fixed frequency
case, i.e., —A1, —Ag > 0 are prescribed, see e.g. [3, 13, 27] and references therein.
In recent years, the problem involving the fractional Laplace operator have been ex-
tensively studied, considerable attentions have been paid to search for solutions of
(1.2) having prescribed mass; and in that case (A1, \2) € R? is a part of the un-
known quantities appearing as Lagrange multipliers. In the literature such solutions
are called normalized solutions. As we observe that system (1.1) is conservation of
masses: [on [P1(t, 2)|2de = [on [ulPdz and [y |®o(t, x)Pde = [pn [v]*da for all
t > 0. From a physics point of view, prescribed mass represents the law of conserva-
tion of mass. Hence, it has particularly meaningful for finding normalized solutions.
Many works about the normalized solutions of Schrodinger equations can be further
referred to [7, 20, 21, 28, 29]. Soave in [28] well dealed with the existence of normal-
ized ground states for the scalar nonlinear Schrédinger equation with combined power
nonlinearities. More specifically, Soave obtained the constraint Palais-Smale sequence



of I satisfying the additional condition which is the key ingredient to obtain the bound-
edness of Palais-Smale sequence, and gave a fine classification about the nonexistence
and existence of normalized solutions. Luo and Zhang in [26] extended it to the scalar
fractional Schrédinger equation and proved some existence and nonexistence result-
s about normalized solutions. When s = 1, T. Gou and L. Jeanjean in [17] solved
the normalized solutions of Sobolev subcritical cases. Li and Zou in [23] considered
the system with critical and subcritical nonlinearities when the dimension N = 3,4,
and obtained the existence of positive normalized solutions. Schrddinger system can
also be referred to [8, 9, 10, 11, 18]. We know that the fractional Laplace problem
is non-local, which is more challenging than the Laplace problem. Here, we have to
emphasize that the system (1.2) considered by Liu and Zou in [24] when the nonlinear
coupling terms are replaced by Sv and [u respectively. In this paper, we study the
existence of normalized solutions of the nonlinear coupling terms system (1.2).

A natural method to obtain solutions of (1.2) satisfying the normalized conditions

/ u?=a and/ v? =, (1.3)
RN RN

consists in searching for critical points (u,v) € H*(RY) x H*(RY) of the C! energy
functional

1 s s I H T1|,|T2
o) = [ 30808 =80 50f?) = Eule — E2Jufs = glafn o], 1

under the constraint
S x Sy 1= { (w0) € H®Y) x H'(RY) : / fuf2 = a,/ WP =0} ()
RN RN

where
_ 2
/RN (—A)2u? = //Rw ded% (1.6)

HY(RY) = {u e L2(RY) : /RN I(—A)Suf? < +oo}

and

is a Hilbert space endowed with the norm ||u|? =[5 [|(=A)2u|? + v?]. Particularly,
the parameters A1, A2 appear as the Lagrange multipliers. We would like to point out
that many difficulties will be encountered in this process: in the mass-supercritical case,
it is difficult to obtain the existence and boundedness of the Palais-Smale sequence,
the weak limit of the Palais-Smale sequence might not be on S, x Sp (even in the
radial space), due to the fact of the embedding H*(RY) — L?(RY) and H(RY) —
L?(RY) are not compact. Consequently, it becomes much more sophisticated to find
the normalized solutions of (1.2) comparing with the study of (1.2) of fixed frequency
(A1, A2) € RZ,



Since the scalar setting will of course be relevant when solving systems, it is neces-
sary to recall a few results of the scalar fractional Schrodinger equation. Fixed a > 0,
> 0, solving the problem

(—A)u = \u+ plulP~2u  in RV,
u> 0, (1.7)

fRN ‘u|2 =a,

is equivalent to searching for the critical points of the functional ,, , : H*(RY) — R

1 S
T =5 [ 18R =5 . (1.8

constrained on S,. In this direction, the L?-critical exponent for fractional NLS equa-

tion is denoted by
S 4s
pi= N
Observe that I, , is not bounded from below on S, if p < p < 27, which makes one

to introduce the L2-Pohozaev manifold

Prra = {u €Sai | (—A)5u)? = %mg}, (1.9)

wherey, = Y225, = {u € H5(RY), [on [ul? = a}. Letmy, . (a) = inf 1, (u).

Itis well known from the Pohozaev identity (see [14, Appendix]) of (1.7) that P,, o con-
tains all nontrivial solutions of (1.7). We thus have the following definition of ground
states of (1.7).

Definition 1.1. We say ug is a ground state of (1.7) on S, if ug is a critical point of
Iy uls, (w) with I, | s, (uo) = mp,u(a).

We are now in the position to present our main results.

Theorem 1.1. Assume that 3 < s <1,2 < N <ds, 11,79 > 1, p < p,q,11 + 712 <

2% = NQiVQS and iy, pa, B> 0, then there exists 5y > 0 sufficiently large, such that for

any 8 > Bo, (1.2)-(1.3) has a positive radially symmetric normalized solution (ug, o)
with A1 < 0, A < 0.

Remark 1.1. We deduce from Remark 3.1 and Proposition 3.4 that the critical point
of mountain pass-type (ug, vo) is also a ground state of (1.2)-(1.3) in the sense of

I's(ug,v0) =0 and I(ug,vo) = inf I(u,v),
(u,v)EPap

where Pq y, is given by (3.2).



Remark 1.2. The nonlinear coupling terms of system (1.2) are replaced by Sv and
Bu respectively, under assumptions of Theorem 1.1, [24, Theorem 1.3] has proved the
existence of positive radially symmetric normalized solution.

Theorem 1.2. (Nonexistence). Assume that % <s<1,2< N <d4s, uy,u2, 8 >0,
r1,72 > land p = q = r1 + 19 = 2%, then (1.2)-(1.3) has no positive solution.

Notation. The usual norm in the Lebesgue space LP := LP(RY) is denoted by |ul,.
D1, Dy - -+ will represent positive constants (possibly different). We write H instead
of H?, ,(R™), that is the space of radially symmetric functions in H*(R™). For conve-
nience, we denote H = H*(RY) x H*(RN), H, = H x H?, Sq, = So N HE(RY),
S =S4 %xSp, Sp = Sq,r X Spr. |||| denotes the norm of H or H®. u* denotes the sym-
metric decreasing rearrangement of u € H?, Recall that (see [25]) for 1 < p,q < 400,

|u*lp = |ul, and / IUI”Ivqu/ (lul™)P (ol ")
RN RN

2 Preliminary results

In this section, we shall present some results for the proof of our main Theorems 1.1-
1.2. Letu € H*(RY) and 2 < p < 27, the fractional Gagliardo-Nirenberg-Sobolev
(GNS) inequality([16]) is

s N(p-2) p_ N(®»-2)
[l < G TR i e
RN RN RN
For notational convenience, we set 7y, := N(;:Q) , and then

>2 ifp<p<2t
Pl Zors ifp =2,

By (2.1) and Holder inequality, we have that, for any (u,v) € S,

p Blup< o[ 1R+ ([ 1-a)ie)E,
Ry ICNETERY SRS

2.2)

and

g / ol <l ol
® (2.3)

rAr

<Cu( [ IR P+ ([ I-a)i)E,

where Cy = C(N, s,p,a,p1), Co = C(N,s,q,b,u2) and C5 = C(N, 8,711,742, a,b).
Recall that (see [4, Section 9]), for any u € H*(RY),

(jul* (@) ~ ul*(y W)
//]RzN |£L’ - y|N+28 d d < //]1§2N |:L' — y|N+25 T TNtes 4 dy (24)




Lemma 2.1. Assume that N > 25,0 < s < landp < p < 2%, i > 0, then for any
a > 0, problem (1.7) admits a unique positive solution uy, ,, o € Py, q. Moreover,

mp u(a) = uieng,,, Tea]é(Ip,M(T*u) = 719?2 I(u) = I, u(up p,a) >0,

and my, ,(a) is strictly decreasing with respect to a > 0.

Proof. Since the Lemma can be proved following closely the method of [26, Theorem
1.2] (also see [31, Lemma 2.4]), we only provide the summary of the proof. It follows
from [16, Theorem 3.4] that @), is the unique positive radial ground state solution of
(2.5)

(=A)u+u=|uf2u inRY. (2.5)

We obtain that the unique positive solution of (1.7) formulated as follows,

S 1
Up,pa =P P2R QN@(Ex)a
with k, € satisfying
—Xe?* =1,
K2TPe2s =1, (2.6)
2 _
po e 2N Q3 = a,

and then

Mp, (@) =Ip u(Up,pua)

1 S s
=(= — — —A)2 ol?
(2 p’yp) RNl )2 Up,p,
1 s S Prp—ps | pratas
SRR NS
2 PYp M’YpCN,p,s

The last equality means that m,, ,(a) > 0 is strictly decreasing with respect to a >
0. O

Lemma 2.2, Let 2 < N < 4s, % < s < 1 and suppose (u,v) € H is a nonnegative
solution of (1.2) with 2 < p,q,r < 2%, then u 2 0 reads A1 < 0; v = 0 reads A2 < 0.

Proof. Since u 2 0 satisfies
(—=A)*u = M\u+ puP ™ + Briu 1",

it yields that the right hand side is nonnegative if A\; > 0. We claim have that u =
0. Indeed, it is a standard method to combine [22, Proposition 3.1] and the Kelvin
transform u(x) centered at O, it is not difficult to check that this contradicts to u €
L?(RY). Therefore,we infet that A; < 0. The proof of the other part is identical. [

We will need the following version of Brézis-Lieb Lemmas (see [12]) in the work-
ing space H and H*(R™) respectively. Since their proofs are standard, we would like
to drop them.



Lemma 2.3. If{(uy, v,)} C H is a bounded sequence, up to a subsequence, (uy,, v,) —
(u,v) a.e. in RN, thenfor2 < p < 2* andry,r9 > 1, 2 <1y + 19 < 2%, we have

lim [tnl? — ul? = |u, — ulP =0,
n—-+oo RN

and

lim [tn " |On]™ = |un — u|™ vn — 0] — ul" o] = 0.
n—-+4+oo RN

Lemma 2.4. If {u,} C H*(RY) is a bounded sequence, up to a subsequence, u,, — u
a.e.in RN, then

i (e = Il = [, = ullf. ) =0,
Jim (Jfunl 32 = llull32 = llun — ull32) = 0.

Furthermore, we also have that

lim [(=2)2un|* = [(=A) 2 uf® = [(=A) % (un — u)|*] = 0.

n—-—+o0o RN

3 Proof of Theorem 1.1

In this section, we deal with the purely mass supercritical case p < p,q,r < 2%,
11, b2, 8 > 0 and prove Theorem 1.1. We denote by & the fiber map

O(7,u,v) =Py (T) = I(H(T,u,v))

6257

B s eTpr
Sl SRR AICNEEEE ey TR
RN P RN

eria q TTY 71 T2
- pe | ||t =eTB [ ful™ u]",
q RN RN

where (u,v) € Sand 7 € R and

Nt
2

THu(z):=e % ule"x), forae x € RY,

H(r,u,v) i =7 % (u,v) = (T *u, T *v).

Obviously, ®(7,u, v) is a C'* functional. In additional, setting the L?-Pohozaev mani-
fold

Pop = {(u,v) €S| Plu,v) = 0}7 3.2)
with
Pluo) = [ =)0 + (-a)iof M2y
RN S
20 e L, luf ol (33)
s s
Observe that <I’zu7v)(7') = sP(1 % (u,v)).



Lemma 3.1. Let (u,v) € S, be arbitrary but fixed. Then the following hold.
(D) S fan (=) Fu? + |(=A) 502 = 0, T(H(r,u,v)) = 0F as 7 — —oo;

@) S o [(=A)3u? + [(~A)i02 = fo0, I(H(r,u,v)) — —c0 as T —
+o0.

Proof. The first limit of (1), (2) are obviously holds. The second limit of (1), (2) are
the consequence of (3.1) and pyy, ¢vq, ryr > 2s. O

Lemma 3.2. There exists K(a,b) > 0 sufficiently small such that

0< sup I(u,v)< inf I(u,v)
(u,v)€A; (u,v)€A>

with

{A1 = {(0,0) €8 fon |(=A)5ul +|(-A) 80 < K(a,0)},
Ag = {(0,0) € 8, ¢ o |(~A)3ul’ + |(~A) 50 = 2 (a,1)}.

Proof. Let K > 0 be arbitrary but fixed, and for any (u,v) € S, satisfying [ :=
Jan [(=A)2u? 4+ |[(—A)20]? < K, we see that, for K > 0 sufficiently small,

PYp qavp TYr

1
I(u,0) 251 = Cil'3 = Col'sF — C3BI3 >0 (3.4)

is a consequence of (2.1) and py,,, ¢y, ™Y > 2s. For another thing, (u1,v1), (ug, v2) €
S, such that [; = 2K and I < K, here I; = [pn [(=A)2ug|? + |(—A)2v1]? and
lo = [en [(=A)2us? 4 [(—A)2vs|2. Tt yields from (2.3)-(2.4) that

1 Pp 49g Ty
I(’U,l, Ul) — I(’LLQ, ’Ug) 25(11 — lg) — 011125 — 02l125 — Cgﬁll%

1
>-K
_4 )
for K > 0 small enough. In summary, we can obtain the desired results by taking a
suitable sufficiently small positive number K (a, b). O

Remark 3.1. By Lemmas 3.1, 3.2, we know that there exists (
that (i1, 9) € Ay and [n |(—A)20)* + |(=A)20[* > 2K (a,b
I(G,0) > 0> I(a,0). Let us define

@,0),(a,0) € S, such
) with the property that

[.= {h = (a,1,02) € (0,1, R x S,) : h(0) € {0} x Ay, h(1) € {0} x 10},
where I° := {(u,v) € S, : I(u,v) < 0}, and

¢p(a,b) == inf sup ®(h(t)).
hel te[0,1]



Let
D= {heC(0,1,5): h(0) € A1, h(1) € I°},

and
b) := inf I(h(t)).

cpla,b) := inf nax, (h(t))
We claim that c5(a,b) = ég(a,b). Indeed, since T' C T, we firstly have that cs(a, b) >
¢g(a,b). Forany h € T, we can write it into h(t) = (h1(t), ha(t)) € R x S,.. Since
hy(t) * hy(t) € T, the opposite inequality is also holds. It follows from Lemma 3.2 and
(2.3)-(2.4) that, gonging if necessary we can choose a smaller K = K (a,b), for any
(u,v) € Ay,

Y

Plu,v) > 1— 172" — Cyl = — C3Bl >0, (3.5)

and
0 < I(u,v) < cg(a,b),

where l = [on [(—A)2ul? + |[(—A) 20|

Lemma 3.3. For every (u,v) € S, the functional ®, ,,)(T) has a unique critical point
T(u,v)» Which is a strict maximum point at the positive level and T(y ) * (u,v) € Py
Moreover,

(1) @y, (7) is strictly increasing in (—00, T(y,v))-
(2) The map (u,v) € S = T,y € Ris of class C.
(3) P(u,v) <0 iff 7(u) <0

Proof. Let Py, = {(u,v) € Sa x Sp: @7 (0) = O}, where @, ,,)(7) is given by

(u,v)

(3.1). We firstly claim that Pg’b = @. By negation, we assume that (u, v) € Pg’b, then

(pyp — 25)7pu1\u|5 + (qvq — 28)’}/qu2|’l}|3 + (ry, — 25)r'yT6/N |u|™ o] = 0.
R

Since pyp, ¢7yg, TYr > 2s, this implies (u, v) = (0,0), we get a contradiction. Similarly
to [26, Lemma 6.5], we can also infer that P, ; is a smooth of codimension 3 in H.
The rest proof can argue in the same way as that of [26, Lemma 6.14], so we drop the
details.

O

Proposition 3.4. The following properties of cg(a,b) hold.

(1) 6lim cg(a,b) =0.

—+0oo

2) cgla,b) = inf  I(u,v).
(2) cs(a,b) (u,v)epa,,,( )



Proof. (1) We apply Remark 3.1, 7, > 2s and let ho(t) := [(1 — t)71 + t72] % (4, D),
yielding that hg € I" and

cg(a,b) < max I(ho(t))

te[0,1]
7_25 R .
gmax[ / |(,A)§ﬁ|2 + |(—A)56|2 _ 57_7"%/ |ﬁ|7“1|f[;"f2}
>0 L 2 JpN RN

1, o
<D(B)mf7—23—>0 as B — +00.

(2) Define
P, -t €[0,1] =+ Pla(t) * (41(), ¢a()) € R (3.6)

for all h = (a,11,%2) € T it then yields from (3.5) that P; (0) > 0. We claim that
P; (1) < 0. If the claim is false, then P; (1) > 0, this implies from Lemma 3.3(1), (3)
that Th(1) > (0 and

I(1h1(1),92(1)) = Dy (1) 462 (1)) (0) > Py (1), (1)) (—00) = 07,

we get a contradiction. We then deduce from the continuity of P; that there exists
7;, € (0,1) such that P; (13) = 0, i.e., iL(Til) € Pap. Then

O(h(t)) > I(h(1;)) > inf I
Jnax (h(t)) = I( (Th))ﬂu,vlfém,b (u,v),

this implies that cz(a, b) > ( i)nfp I(u,v). In summary, we conclude that, for any
u,v)EPa b

heTlandt e (0,1),

h(t) N Pap # 0. (3.7

On the other hand, for all (u, v) € P, p, we have that (Ju|*, |v|*) € S, and P(Ju|*, |v|*) <

P(u,v) = 0. Then 7, := T(jyJ= jo|+) < 0 = Ty, and I(u,v) > (7 x (u,v)) >

I(Te % (Jul*, |v|*)) = ma]%l(T * (ul*, |v|*)) is a consequence of Lemma 3.3. For
TE

70 < —land 71 > 1, we know that |y« jv|=)(t) := (0, [(1 =)0 +t71]* (Jul*, [v]*))
is a path in I" with

I > I * 1ol*)) > T(veture oper () > b).
(u,v) > max (7 (Jul*, [v]*)) > nax, (Y(ful*[v]*)(t)) = cs(a, b)

Hence the reverse inequality follows. Furthermore, by Lemma 3.2,

cg(a,b) = inf I > sup 1. (3.8)
Pa*b fflul"

O

Lemma 3.5. There exists a Palais-Smale sequence {(u,,v,)} C S, for I|s at the
level cg(a, b) with the properties of u,, ,v,, — 0 and P(uy,v,) — 0.

n»-n

10



Proof. Set
F:=T, A:={h([0,1)): heT}, F:=P,pand B= {0} x A; U{0} x I°.

We firstly claim that F is homotopy-stable family with extended boundary B. Indeed,
for any h(t) € Aand n € C([0,1] x S,,S,), n(1,h(t)) € F is a consequence of
n(L,h(t)) € C([0,1],S,), n(1,h(0)) = h(0) € {0} x Ay and n(1,h(1)) = h(1) €
{0} x IY. It yields from (3.5), (3.7) and (3.8) that

ANF\B=AN(F\B)=ANF #0.

Note that, for any & € I, we have that || € I' and 7i)nf I< m{ax}[(|ﬁ(t)\) <
b t€[0,1

m[ax} I(h(t)), the first inequality is a consequence of Proposition 3.4(2). So, we can
tef0,1

take a minimizing sequence {/,,([0,1]), b, = (cvn, 17, 9%} for ® at the level cg(a, b)
with the properties that o, (t) = 0,97 > 0,¢5 > 0 for all ¢ € [0, 1]. We thus derive
from [19, Theorem 3.2 ] that there exists a sequence {(7,,, Un, U )} C R X S, such that

D (T, Un, Un) — cg(a, b),
arq)(%nu anaﬁn) — 0, Ha(uv)q)(%na ﬂnvﬁn)HTinSawagn Sy, — 0, (39)

7] 4 dist((@n, 0, (41'([0,1]), 95 ([0, 1]))) = 0, (3.10)

as n — o0o. So, from now on let (uy,,vy,) = T * (Up, Un), we then see from (3.10)
that u,,, v, — 0 a.e. in R™. For any (1, ¢2) € Ty, Sa.r X Ty, Sp.r, We then see that
((=Tn) * 1, (—Tn) * @2) € T, Sar % Tp, Sy follows from

0:/ unapldx:/ ﬂneigngpl(e_%x)dx,
RN RN

0:/ vngogdx:/ ﬁne%"@g(e_%x)dx.
RN RN

11



This together with (3.9)-(3.10) implies that
r (unavn 9017902]

—N7n _F —N%p _z
I B o e el OO
R2N |£C — |N+23

—N7pn _7~_n 1\;7” _Tn
+6257'n /‘/RQN Un L _'Un(y))(e @2(6 (L') € 802( y))dxdy

o =y

NTpn

_ efmp"/p'ul/ |an|p_2ﬂn6%gp1(€_ﬁl'x>d$
]RN

—N7p

—e%”‘”‘?,ug/ [T |9 2 0pe 2 (e T a)de
RN

—N#p

_e%nr%rl/ |u |r1 2u e 2 (pl(e_%naj>|’l~)n|7“2d$
RN

—67:"’T’YT’I"2/ |t | [0 |72 2D = wo(e” ™) dx
]RN

=0(i,,,5,) ®(Tns U, On) [(=Tn) * p1, (=Tn) * 02
=on(DII((=7n) x 1, (=Tn) * p2)l|m = 0n(1),

and
Py, vy) = 80z, ®(Tn, Un, Un) = on(1).
where 0, (1) — 0 as n — oo. Hence, {(u,,vy)} gives our desired results.

O

Lemma 3.6. The Palais-Smale sequence {(un,vy,)} C Sy in Lemma 3.5 is bounded
in H,.

Proof. Let pr, == [on|(—A)2un|? +](=A)2v, |2 It follows from P(uy,v,) — 0
that

o= iy Lot 5 [ el Fo,(). @D

Since I(un,v,) — cg(a,b), there exists a constant D > 0 such that
D >c(a,b) 4+ 0,(1)

DY — 2s p , 9 — 2s q "r— 2s / 1 o
- 2Sp l’l’1|u’ﬂ|p + 2sq /'I“2|U’I’L|q + 28 /8 RN Iun‘ |U'ﬂ| °

Three coefficients on the right side are positive number, it implies the boundedness of
is together with (3.11) implies that {(u,,, v,)} is
bounded in H. O
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Remark 3.2. We derive from Lemma 3.6 that there exists a nonnegative (ug,vg) € H,
such that, up to a subsequence,
(Unavn) 4\(“03”0) in Hrv
(tn,vp) = (ug,v0) in LP x LY, and L" x L", and a.e. in RY. (3.12)

It then follows from the Lagrange multipliers rule and the fact that I|'s(uy,v,) — 0
that there exists a sequence {(\7,A\3)} C R x R with

I’ (wn, vn) — AP (up, 0) — A5 (0,v,) — 0 in H*, (3.13)

Now, take (uy,0) and (0, vy,) as test functions in (3.13), we conclude the boundedness
of (AT AR). Hence, there exists (A1, A2) € R x R such that, going if necessary to a
subsequence, (N7, A5) — (A1, A2).

Setting ¢o(a, 0) := my, ,, (a) and ¢ (0, b) := myq ,, (D).

Remark 3.3. Foranya,b > 0, it yields from Proposition 3.4(1) that there exists Sy > 0
sufficiently large such that cg(a,b) < min{co(a,0),co(0,b)} for any 5 > Bo.

Lemma 3.7. Assume that 8 > By > 1, then (uy,v,) — (ug,vo) in H,.. Moreover,
(uo, vo) is a positive solution of system (1.2) with A1 < 0, A2 < 0.

Proof. First we claim ug,vg # 0. Arguing by contradiction, suppose '(uo,vo) =
(0,0). It then follows from (3.12) that lim [oy [(—A)2u,|* + |[(=A)2v,[* = 0,
n—oo
and cg(a,b) = lim I(uy,v,) = 0. This clearly contradicts to cg(a,b) > 0. There-

n—oo
fore, in what follows, we split two cases to show that ug > 0 and vy > 0.
Case 1. If up = 0, v9 = 0. We derive from the maximum principle (see [30,
Proposition 2.17]) that ug > 0. Observe that ug > 0 is a radially symmetric solution of

(1.7) with parameters p, j11, a1, where 0 < a1 = |ug|3 < a and ¢y(a, 0) < co(ag,0) =
I(ug,0). It follows from Lemmas 2.3-2.4 and Remark 3.3 that

cgla,b) = lim I(up,v,) = lim I(u, — ug,vy) + I(ug,0)

n— oo n—oo
1 S s
>3 lim [ [(=A)2 (un — ) + [(=A)2vn]* + co(a, 0)
n—oo RN
ZCO(CL,O)

a contradiction.

Case 2. If ug = 0, vo 2 0. Analogously as case 1, vg > 0 is a radially symmetric
solution of (1.7) with parameters g, ji2, b1, where by = |vg|3 < b and co(0,b) <
¢o(0,b1) = 1(0,v0). It also yields that

cg(a,b) = lim I(un,vy) = lim I(up,v, —vo) + I(0,v0)
n—oo n—oo

200(07 b)
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a contradiction.

Therefore, we derive that ug, vg > 0. It then follows from Remark 3.2 that (ug, vo)
is a positive solution of systems (1.2). This together with P(ug,vg) = 0 implies that

)\1|UO|§ + )\2|v0|§ :(lsp — 1)M1|UO|Z + (% — 1)u2|vo|3
(- l)rﬁ/ lug|" [vo|2. (3.14)
S RN

Using P(uy,,v,) — 0 and Remark 3.2-(3.12),(3.13), we see that

— 1 n 2 n 2
Ata+Azb = lim Ay [unlz + Az |vnl3

S O (GO E TN e I T e
RN RN

n—-+oo
— ot} = piafval)
(%~ 1)fuolg + (2 = Dpafenlg + (2 = 18 [ Juol™ ™
s s s RN
This together with (3.14), yielding that

M (luol3 — @) + Az(Jvol3 — b) = 0. (3.15)

Then A1, A2 < O follows from Lemma 2.2, we thus have that (u,, v,) — (ug,vo) in
L?(RY) x L?(RY). We apply (3.12)-(3.13), yielding that

Wl

uo|?® — Ai|uo|?,

i [ 1P - Ml = [ 1-a)

n—oo RN

and
i [ 1A = daloal = [ 1=8)Fuof? = daluol.
n—oo RN ]RN
It is easy to see that (u,,, v,) — (ug,vo) in H,. O

Proof of Theorem 1.1. Theorem 1.1 follows from Lemmas 3.5-3.7, then we finish the
proof. O

4 Proof of Theorem 1.2

Lemma 4.1. Ler 2 < N < 4s, % < s < 1 and suppose i1, pa, B > 0,71 + 19 = 2},
then
(=A)°u = Mu+ p|u
(=A)*v = Agv + pglv
u,v € H¥(RY),

2720 4 Bry|ul™ 2ulv|"2 in RV,
202y 4 Braju|™ [v|m2 "2 in RV, 4.1

has no positive solution.
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Proof. Arguing by contradiction, we may assume without loss of generality that (uy, v1)
be a positive solution of the system (4.1) and satisfy |u;|3 = a, |v1|3 = b. We have by
Lemma 2.2 that A\; < 0 and A5 < 0. Observe that
% - H2 / [v1
RN

o / | o] 42)
RN

2!

0= P(u1,v1) :/

RN

(=AY sug2 + [(—A)F0n 2 — gy / iy
RN

and
/ \<7A>%ul|2+|<fA>%v1|2:A1/ WHQ/ |v1|2+u1/ "
]RN RN RN ]RN
t iz / o + B2 / "o 72, (43)
RN ]RN

the last equality is a consequence of the weak solution definition. It then yields from
(4.2)-(4.3) that

23

0>A1/ IU1|2+A2/ [v1)? = MA@+ Xab =0
RN RN

a contradiction. O
Proof of Theorem 1.2. By Lemma 4.1, we finish the proof of Theorem 1.2. a
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