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Abstract

We study the following coupled fractional Schrödinger system:{
(−∆)su = λ1u+ µ1|u|p−2u+ βr1|u|r1−2u|v|r2 in RN ,
(−∆)sv = λ2v + µ2|v|q−2v + βr2|u|r1 |v|r2−2v in RN ,

with prescribed mass ∫
RN

u2 = a and
∫
RN

v2 = b.

Here, a, b > 0 are prescribed, N > 2s, s > 1
2 , 2 + 4s

N < p, q, r1 + r2 ≤ 2∗s =
2N
N−2s , and µ1, µ2, β are all positive constants. We first show that if β > 0
sufficiently large, a mountain pass-type normalized solution exists provided
2 ≤ N ≤ 4s and 2 + 4s

N < p, q, r1 + r2 < 2∗s . Then we also prove that if
2 ≤ N ≤ 4s, p = q = r1 + r2 = 2∗s the nonexistence of positive solution to
the system.
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1 Introduction
In this paper, we consider the following nonlinear equations involving the fractional
Laplace operator:

i∂Ψ1

∂t = (−∆)sΨ1 − µ1|Ψ1|p−2Ψ1 − βr1|Ψ1|r1−2|Ψ2|r2Ψ1,

i∂Ψ2

∂t = (−∆)sΨ2 − µ2|Ψ2|q−2Ψ2 − βr2|Ψ1|r1 |Ψ2|r2−2Ψ2,

Ψj = Ψj(x, t) ∈ R, j = 1, 2, (x, t) ∈ RN × R,
Ψj(x, t)→ 0, as |x| → +∞, j = 1, 2,

(1.1)

where 0 < s < 1, N > 2s, i is the imaginary unite and β > 0 is a coupling constant.
The differential equations involving fractional Laplace operator appear in many fields
such as physics and mathematical finances (see [1, 2, 6]), and it can be construed as the
infinitesimal generators of Lévy stable diffusion processes. System (1.1) with s = 1
possesses numerous physical motivations, such as it appears as models in the research
of Bose-Einstein condensation or the incoherent solitons in nonlinear optics (see e.g.
[5, 15]). To obtain solitary wave solutions of the system (1.1), one makes the ansatz

Ψ1(x, t) = e−iλ1tu(x) and Ψ2(x, t) = e−iλ2tv(x),

where λ1, λ2 ∈ R and and u, v ∈ Hs(RN ) are time-independent real valued functions.
Note that a couple (Ψ1,Ψ2) is a solution of (1.1) iff a couple of (u, v) is a solution of
(1.2) 

(−∆)su = λ1u+ µ1|u|p−2u+ βr1|u|r1−2u|v|r2 in RN ,
(−∆)sv = λ2v + µ2|v|q−2v + βr2|u|r1 |v|r2−2v in RN ,
u, v ∈ Hs(RN ),

(1.2)

where the fractional Laplacian operator (−∆)s is defined as

(−∆)su(x) = −1

2

∫
RN

u(x+ y) + u(x− y)− 2u(x)

|y|N+2s
dy, ∀ x ∈ RN .

The studies on nonlinear coupled system with s = 1, mainly on the fixed frequency
case, i.e., −λ1,−λ2 > 0 are prescribed, see e.g. [3, 13, 27] and references therein.
In recent years, the problem involving the fractional Laplace operator have been ex-
tensively studied, considerable attentions have been paid to search for solutions of
(1.2) having prescribed mass; and in that case (λ1, λ2) ∈ R2 is a part of the un-
known quantities appearing as Lagrange multipliers. In the literature such solutions
are called normalized solutions. As we observe that system (1.1) is conservation of
masses:

∫
RN |Φ1(t, x)|2dx =

∫
RN |u|

2dx and
∫
RN |Φ2(t, x)|2dx =

∫
RN |v|

2dx for all
t > 0. From a physics point of view, prescribed mass represents the law of conserva-
tion of mass. Hence, it has particularly meaningful for finding normalized solutions.
Many works about the normalized solutions of Schrödinger equations can be further
referred to [7, 20, 21, 28, 29]. Soave in [28] well dealed with the existence of normal-
ized ground states for the scalar nonlinear Schrödinger equation with combined power
nonlinearities. More specifically, Soave obtained the constraint Palais-Smale sequence
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of I satisfying the additional condition which is the key ingredient to obtain the bound-
edness of Palais-Smale sequence, and gave a fine classification about the nonexistence
and existence of normalized solutions. Luo and Zhang in [26] extended it to the scalar
fractional Schrödinger equation and proved some existence and nonexistence result-
s about normalized solutions. When s = 1, T. Gou and L. Jeanjean in [17] solved
the normalized solutions of Sobolev subcritical cases. Li and Zou in [23] considered
the system with critical and subcritical nonlinearities when the dimension N = 3, 4,
and obtained the existence of positive normalized solutions. Schrödinger system can
also be referred to [8, 9, 10, 11, 18]. We know that the fractional Laplace problem
is non-local, which is more challenging than the Laplace problem. Here, we have to
emphasize that the system (1.2) considered by Liu and Zou in [24] when the nonlinear
coupling terms are replaced by βv and βu respectively. In this paper, we study the
existence of normalized solutions of the nonlinear coupling terms system (1.2).

A natural method to obtain solutions of (1.2) satisfying the normalized conditions∫
RN

u2 = a and
∫
RN

v2 = b, (1.3)

consists in searching for critical points (u, v) ∈ Hs(RN )×Hs(RN ) of the C1 energy
functional

I(u, v) =

∫
RN

1

2
(|(−∆)

s
2u|2 + |(−∆)

s
2 v|2)− µ1

p
|u|p − µ2

q
|v|q − β|u|r1 |v|r2 , (1.4)

under the constraint

Sa × Sb :=
{

(u, v) ∈ Hs(RN )×Hs(RN ) :

∫
RN
|u|2 = a,

∫
RN
|v|2 = b

}
, (1.5)

where ∫
RN
|(−∆)

s
2u|2 =

∫∫
R2N

(u(x)− u(y))2

|x− y|N+2s
dxdy, (1.6)

and
Hs(RN ) :=

{
u ∈ L2(RN ) :

∫
RN
|(−∆)

s
2u|2 < +∞

}
is a Hilbert space endowed with the norm ||u||2 =

∫
RN [|(−∆)

s
2u|2 + u2]. Particularly,

the parameters λ1, λ2 appear as the Lagrange multipliers. We would like to point out
that many difficulties will be encountered in this process: in the mass-supercritical case,
it is difficult to obtain the existence and boundedness of the Palais-Smale sequence,
the weak limit of the Palais-Smale sequence might not be on Sa × Sb (even in the
radial space), due to the fact of the embedding Hs(RN ) ↪→ L2(RN ) and Hs

r (RN ) ↪→
L2(RN ) are not compact. Consequently, it becomes much more sophisticated to find
the normalized solutions of (1.2) comparing with the study of (1.2) of fixed frequency
(λ1, λ2) ∈ R2.
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Since the scalar setting will of course be relevant when solving systems, it is neces-
sary to recall a few results of the scalar fractional Schrödinger equation. Fixed a > 0,
µ > 0, solving the problem

(−∆)su = λu+ µ|u|p−2u in RN ,
u > 0,∫
RN |u|

2 = a,

(1.7)

is equivalent to searching for the critical points of the functional Ip,µ : Hs(RN )→ R

Ip,µ(u) :=
1

2

∫
RN
|(−∆)

s
2u|2 − µ

p

∫
RN
|u|p, (1.8)

constrained on Sa. In this direction, the L2-critical exponent for fractional NLS equa-
tion is denoted by

p̄ := 2 +
4s

N
.

Observe that Ip,µ is not bounded from below on Sa if p̄ < p < 2∗s , which makes one
to introduce the L2-Pohozaev manifold

Pµ,a :=
{
u ∈ Sa :

∫
RN
|(−∆)

s
2u|2 =

µγp
s
|u|pp

}
, (1.9)

where γp = N(p−2)
2p , Sa = {u ∈ Hs(RN ),

∫
RN |u|

2 = a}. Letmp,µ(a) = inf
Pµ,a

Ip,µ(u).

It is well known from the Pohozaev identity (see [14, Appendix]) of (1.7) thatPµ,a con-
tains all nontrivial solutions of (1.7). We thus have the following definition of ground
states of (1.7).

Definition 1.1. We say u0 is a ground state of (1.7) on Sa if u0 is a critical point of
Ip,µ|Sa(u) with Ip,µ|Sa(u0) = mp,µ(a).

We are now in the position to present our main results.

Theorem 1.1. Assume that 1
2 ≤ s < 1, 2 ≤ N ≤ 4s, r1, r2 > 1, p̄ < p, q, r1 + r2 <

2∗s = 2N
N−2s and µ1, µ2, β > 0, then there exists β0 > 0 sufficiently large, such that for

any β ≥ β0, (1.2)-(1.3) has a positive radially symmetric normalized solution (u0, u0)
with λ1 < 0, λ2 < 0.

Remark 1.1. We deduce from Remark 3.1 and Proposition 3.4 that the critical point
of mountain pass-type (u0, v0) is also a ground state of (1.2)-(1.3) in the sense of

I|′S(u0, v0) = 0 and I(u0, v0) = inf
(u,v)∈Pa,b

I(u, v),

where Pa,b is given by (3.2).
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Remark 1.2. The nonlinear coupling terms of system (1.2) are replaced by βv and
βu respectively, under assumptions of Theorem 1.1, [24, Theorem 1.3] has proved the
existence of positive radially symmetric normalized solution.

Theorem 1.2. (Nonexistence). Assume that 1
2 ≤ s < 1, 2 ≤ N ≤ 4s, µ1, µ2, β > 0,

r1, r2 > 1 and p = q = r1 + r2 = 2∗s , then (1.2)-(1.3) has no positive solution.

Notation. The usual norm in the Lebesgue space Lp := Lp(RN ) is denoted by |u|p.
D1, D2 · · · will represent positive constants (possibly different). We write Hs

r instead
ofHs

rad(RN ), that is the space of radially symmetric functions inHs(RN ). For conve-
nience, we denote H = Hs(RN )×Hs(RN ), Hr = Hs

r ×Hs
r , Sa,r = Sa ∩Hs

r (RN ),
S = Sa×Sb, Sr = Sa,r×Sb,r. ||·|| denotes the norm ofH orHs. u∗ denotes the sym-
metric decreasing rearrangement of u ∈ Hs, Recall that (see [25]) for 1 ≤ p, q < +∞,

|u∗|p = |u|p and
∫
RN
|u|p|v|q ≤

∫
RN

(|u|∗)p(|v|∗)q.

2 Preliminary results
In this section, we shall present some results for the proof of our main Theorems 1.1-
1.2. Let u ∈ Hs(RN ) and 2 < p < 2∗s , the fractional Gagliardo-Nirenberg-Sobolev
(GNS) inequality([16]) is∫

RN
|u|p ≤ CN,p,s(

∫
RN
|(−∆)

s
2u|2)

N(p−2)
4s (

∫
RN
|u|2)

p
2−

N(p−2)
4s . (2.1)

For notational convenience, we set γp := N(p−2)
2p , and then

pγp

{
> 2s if p < p < 2∗s
= 2∗ss if p = 2∗s.

By (2.1) and Hölder inequality, we have that, for any (u, v) ∈ S,

µ1

p
|u|pp ≤ C1(

∫
RN
|(−∆)

s
2u|2 + (

∫
RN
|(−∆)

s
2 v|2))

pγp
2s ,

µ2

q
|v|qq ≤ C2(

∫
RN
|(−∆)

s
2u|2 + (

∫
RN
|(−∆)

s
2 v|2))

qγq
2s ,

(2.2)

and

β

∫
RN
|u|r1 |v|r2 ≤β|u|r1r |v|r2r

≤C3β(

∫
RN
|(−∆)

s
2u|2 + (

∫
RN
|(−∆)

s
2 v|2))

rγr
2s ,

(2.3)

where C1 = C(N, s, p, a, µ1), C2 = C(N, s, q, b, µ2) and C3 = C(N, s, r1, r2, a, b).
Recall that (see [4, Section 9]), for any u ∈ Hs(RN ),∫∫

R2N

(|u|∗(x)− |u|∗(y))2

|x− y|N+2s
dxdy ≤

∫∫
R2N

(u(x)− u(y))2

|x− y|N+2s
dxdy. (2.4)

5



Lemma 2.1. Assume that N > 2s, 0 < s < 1 and p̄ < p < 2∗s , µ > 0, then for any
a > 0, problem (1.7) admits a unique positive solution up,µ,a ∈ Pµ,a. Moreover,

mp,µ(a) = inf
u∈Sa

max
τ∈R

Ip,µ(τ ? u) = inf
Pµ,a

I(u) = Ip,µ(up,µ,a) > 0,

and mp,µ(a) is strictly decreasing with respect to a > 0.

Proof. Since the Lemma can be proved following closely the method of [26, Theorem
1.2] (also see [31, Lemma 2.4]), we only provide the summary of the proof. It follows
from [16, Theorem 3.4] that QN,p is the unique positive radial ground state solution of
(2.5)

(−∆)su+ u = |u|p−2u in RN . (2.5)

We obtain that the unique positive solution of (1.7) formulated as follows,

up,µ,a = µ−
1
p−2κ−1QN,p(

1

ε
x),

with κ, ε satisfying 
−λε2s = 1,

κ2−pε2s = 1,

µ−
2
p−2κ−2εN |QN,p|22 = a,

(2.6)

and then

mp,µ(a) =Ip,µ(up,µ,a)

=(
1

2
− s

pγp
)

∫
RN
|(−∆)

s
2up,µ,a|2

=(
1

2
− s

pγp
)
[ s

µγpCN,p,s
a
pγp−ps

2s

] 2s
pγp−2s

.

The last equality means that mp,µ(a) > 0 is strictly decreasing with respect to a >
0.

Lemma 2.2. Let 2 ≤ N ≤ 4s, 1
2 ≤ s < 1 and suppose (u, v) ∈ H is a nonnegative

solution of (1.2) with 2 < p, q, r ≤ 2∗s , then u 	 0 reads λ1 < 0; v 	 0 reads λ2 < 0.

Proof. Since u 	 0 satisfies

(−∆)su = λ1u+ µ1u
p−1 + βr1u

r1−1vr2 ,

it yields that the right hand side is nonnegative if λ1 ≥ 0. We claim have that u ≡
0. Indeed, it is a standard method to combine [22, Proposition 3.1] and the Kelvin
transform u(x) centered at 0, it is not difficult to check that this contradicts to u ∈
L2(RN ). Therefore,we infet that λ1 < 0. The proof of the other part is identical.

We will need the following version of Brézis-Lieb Lemmas (see [12]) in the work-
ing space H and Hs(RN ) respectively. Since their proofs are standard, we would like
to drop them.

6



Lemma 2.3. If {(un, vn)} ⊂ H is a bounded sequence, up to a subsequence, (un, vn)→
(u, v) a.e. in RN , then for 2 ≤ p ≤ 2∗s and r1, r2 > 1, 2 ≤ r1 + r2 ≤ 2∗s , we have

lim
n→+∞

∫
RN
|un|p − |u|p − |un − u|p = 0,

and
lim

n→+∞

∫
RN
|un|r1 |vn|r2 − |un − u|r1 |vn − v|r2 − |u|r1 |v|r2 = 0.

Lemma 2.4. If {un} ⊂ Hs(RN ) is a bounded sequence, up to a subsequence, un → u
a.e. in RN , then

lim
n→+∞

(
||un||2Hs − ||u||2Hs − ||un − u||2Hs

)
= 0,

lim
n→+∞

(
||un||2L2 − ||u||2L2 − ||un − u||2L2

)
= 0.

Furthermore, we also have that

lim
n→+∞

∫
RN

[|(−∆)
s
2un|2 − |(−∆)

s
2u|2 − |(−∆)

s
2 (un − u)|2] = 0.

3 Proof of Theorem 1.1
In this section, we deal with the purely mass supercritical case p < p, q, r < 2∗s ,
µ1, µ2, β > 0 and prove Theorem 1.1. We denote by Φ the fiber map

Φ(τ, u, v) :=Φ(u,v)(τ) := I(H(τ, u, v))

=
e2sτ

2

∫
RN
|(−∆)

s
2u|2 + |(−∆)

s
2 v|2 − eτpγp

p
µ1

∫
RN
|u|p (3.1)

− eτqγq

q
µ2

∫
RN
|v|q − eτrγrβ

∫
RN
|u|r1 |v|r2 ,

where (u, v) ∈ S and τ ∈ R and

τ ? u(x) : = e
Nτ
2 u(eτx), for a.e. x ∈ RN ,

H(τ, u, v) : = τ ? (u, v) = (τ ? u, τ ? v).

Obviously, Φ(τ, u, v) is a C1 functional. In additional, setting the L2-Pohozaev mani-
fold

Pa,b =
{

(u, v) ∈ S | P (u, v) = 0
}
, (3.2)

with

P (u, v) =

∫
RN
|(−∆)

s
2u|2 + (−∆)

s
2 v|2 − µ1γp

s
|u|p

− µ2γq
s
|v|q − 1

s
rγrβ|u|r1 |v|r2 . (3.3)

Observe that Φ′(u,v)(τ) = sP (τ ? (u, v)).
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Lemma 3.1. Let (u, v) ∈ Sr be arbitrary but fixed. Then the following hold.

(1) e2sτ

2

∫
RN |(−∆)

s
2u|2 + |(−∆)

s
2 v|2 → 0+, I(H(τ, u, v))→ 0+ as τ → −∞;

(2) e2sτ

2

∫
RN |(−∆)

s
2u|2 + |(−∆)

s
2 v|2 → +∞, I(H(τ, u, v)) → −∞ as τ →

+∞.

Proof. The first limit of (1), (2) are obviously holds. The second limit of (1), (2) are
the consequence of (3.1) and pγp, qγq, rγr > 2s.

Lemma 3.2. There exists K(a, b) > 0 sufficiently small such that

0 < sup
(u,v)∈A1

I(u, v) < inf
(u,v)∈A2

I(u, v)

with {
A1 := {(u, v) ∈ Sr :

∫
RN |(−∆)

s
2u|2 + |(−∆)

s
2 v|2 < K(a, b)},

A2 := {(u, v) ∈ Sr :
∫
RN |(−∆)

s
2u|2 + |(−∆)

s
2 v|2 = 2K(a, b)}.

Proof. Let K > 0 be arbitrary but fixed, and for any (u, v) ∈ Sr satisfying l :=∫
RN |(−∆)

s
2u|2 + |(−∆)

s
2 v|2 < K, we see that, for K > 0 sufficiently small,

I(u, v) ≥1

2
l − C1l

pγp
2s − C2l

qγp
2s − C3βl

rγr
2s > 0 (3.4)

is a consequence of (2.1) and pγp, qγq, rγr > 2s. For another thing, (u1, v1), (u2, v2) ∈
Sr such that l1 = 2K and l2 < K, here l1 =

∫
RN |(−∆)

s
2u1|2 + |(−∆)

s
2 v1|2 and

l2 =
∫
RN |(−∆)

s
2u2|2 + |(−∆)

s
2 v2|2. It yields from (2.3)-(2.4) that

I(u1, v1)− I(u2, v2) ≥1

2
(l1 − l2)− C1l

pγp
2s

1 − C2l
qγq
2s

1 − C3βl
rγr
2s

1

≥1

4
K,

for K > 0 small enough. In summary, we can obtain the desired results by taking a
suitable sufficiently small positive number K(a, b).

Remark 3.1. By Lemmas 3.1, 3.2, we know that there exists (û, v̂), (ũ, ṽ) ∈ Sr such
that (û, v̂) ∈ Ā1 and

∫
RN |(−∆)

s
2 ũ|2 + |(−∆)

s
2 ṽ|2 > 2K(a, b) with the property that

I(û, v̂) > 0 ≥ I(ũ, ṽ). Let us define

Γ̂ :=
{
ĥ = (α,ψ1, ψ2) ∈ ([0, 1],R× Sr) : ĥ(0) ∈ {0} × Ā1, ĥ(1) ∈ {0} × I0

}
,

where I0 := {(u, v) ∈ Sr : I(u, v) ≤ 0}, and

ĉβ(a, b) := inf
ĥ∈Γ̂

sup
t∈[0,1]

Φ(ĥ(t)).
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Let
Γ :=

{
h ∈ C([0, 1],Sr) : h(0) ∈ Ā1, h(1) ∈ I0

}
,

and
cβ(a, b) := inf

h∈Γ
max
t∈[0,1]

I(h(t)).

We claim that cβ(a, b) = ĉβ(a, b). Indeed, since Γ ⊂ Γ̂, we firstly have that cβ(a, b) ≥
ĉβ(a, b). For any ĥ ∈ Γ̂, we can write it into ĥ(t) = (ĥ1(t), ĥ2(t)) ∈ R × Sr. Since
ĥ1(t) ? ĥ2(t) ∈ Γ, the opposite inequality is also holds. It follows from Lemma 3.2 and
(2.3)-(2.4) that, gonging if necessary we can choose a smaller K = K(a, b), for any
(u, v) ∈ A1,

P (u, v) ≥ l − l
pγp
2s − C2l

qγq
2s − C3βl

rγr
2s > 0, (3.5)

and
0 < I(u, v) < cβ(a, b),

where l =
∫
RN |(−∆)

s
2u|2 + |(−∆)

s
2 v|2.

Lemma 3.3. For every (u, v) ∈ S, the functional Φ(u,v)(τ) has a unique critical point
τ(u,v), which is a strict maximum point at the positive level and τ(u,v) ? (u, v) ∈ Pa,b.
Moreover,

(1) Φ(u,v)(τ) is strictly increasing in (−∞, τ(u,v)).

(2) The map (u, v) ∈ S 7→ τ(u,v) ∈ R is of class C1.

(3) P (u, v) < 0 iff τ(u,v) < 0.

Proof. Let P0
a,b :=

{
(u, v) ∈ Sa × Sb : Φ′′(u,v)(0) = 0

}
, where Φ(u,v)(τ) is given by

(3.1). We firstly claim that P0
a,b = ∅. By negation, we assume that (u, v) ∈ P0

a,b, then

(pγp − 2s)γpµ1|u|pp + (qγq − 2s)γqµ2|v|qq + (rγr − 2s)rγrβ

∫
RN
|u|r1 |v|r2 = 0.

Since pγp, qγq, rγr > 2s, this implies (u, v) = (0, 0), we get a contradiction. Similarly
to [26, Lemma 6.5], we can also infer that Pa,b is a smooth of codimension 3 in H .
The rest proof can argue in the same way as that of [26, Lemma 6.14], so we drop the
details.

Proposition 3.4. The following properties of cβ(a, b) hold.

(1) lim
β→+∞

cβ(a, b) = 0.

(2) cβ(a, b) = inf
(u,v)∈Pa,b

I(u, v).
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Proof. (1) We apply Remark 3.1, rγr > 2s and let h0(t) := [(1− t)τ1 + tτ2] ? (û, v̂),
yielding that h0 ∈ Γ and

cβ(a, b) ≤ max
t∈[0,1]

I(h0(t))

≤max
τ≥0

[τ2s

2

∫
RN
|(−∆)

s
2 û|2 + |(−∆)

s
2 v̂|2 − βτ rγr

∫
RN
|û|r1 |v̂|r2

]
≤D(

1

β
)

2s
rγr−2s → 0 as β → +∞.

(2) Define

Pĥ : t ∈ [0, 1]→ P (α(t) ? (ψ1(t), ψ2(t))) ∈ R (3.6)

for all ĥ = (α,ψ1, ψ2) ∈ Γ̂, it then yields from (3.5) that Pĥ(0) > 0. We claim that
Pĥ(1) < 0. If the claim is false, then Pĥ(1) ≥ 0, this implies from Lemma 3.3(1), (3)
that τĥ(1) ≥ 0 and

I(ψ1(1), ψ2(1)) = Φ(ψ1(1),ψ2(1))(0) > Φ(ψ1(1),ψ2(1))(−∞) = 0+,

we get a contradiction. We then deduce from the continuity of Pĥ that there exists
τĥ ∈ (0, 1) such that Pĥ(τĥ) = 0, i.e., ĥ(τĥ) ∈ Pa,b. Then

max
t∈[0,1]

Φ(ĥ(t)) ≥ I(ĥ(τĥ)) ≥ inf
(u,v)∈Pa,b

I(u, v),

this implies that cβ(a, b) ≥ inf
(u,v)∈Pa,b

I(u, v). In summary, we conclude that, for any

ĥ ∈ Γ̂ and t ∈ (0, 1),

ĥ(t) ∩ Pa,b 6= ∅. (3.7)

On the other hand, for all (u, v) ∈ Pa,b, we have that (|u|∗, |v|∗) ∈ Sr andP (|u|∗, |v|∗) ≤
P (u, v) = 0. Then τ∗ := τ(|u|∗,|v|∗) ≤ 0 = τ(u,v) and I(u, v) ≥ I(τ∗ ? (u, v)) ≥
I(τ∗ ? (|u|∗, |v|∗)) = max

τ∈R
I(τ ? (|u|∗, |v|∗)) is a consequence of Lemma 3.3. For

τ0 � −1 and τ1 � 1, we know that γ̂(|u|∗,|v|∗)(t) := (0, [(1−t)τ0 +tτ1]?(|u|∗, |v|∗))
is a path in Γ̂ with

I(u, v) ≥ max
τ∈R

I(τ ? (|u|∗, |v|∗)) ≥ max
t∈[0,1]

I(γ(|u|∗,|v|∗)(t)) ≥ cβ(a, b).

Hence the reverse inequality follows. Furthermore, by Lemma 3.2,

cβ(a, b) = inf
Pa,b

I > sup
Ā1∪I0

I. (3.8)

Lemma 3.5. There exists a Palais-Smale sequence {(un, vn)} ⊂ Sr for I|S at the
level cβ(a, b) with the properties of u−n , v

−
n → 0 and P (un, vn)→ 0.
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Proof. Set

F := Γ̂, A := {ĥ([0, 1]) : ĥ ∈ Γ̂}, F := Pa,b and B = {0} × Ā1 ∪ {0} × I0.

We firstly claim that F is homotopy-stable family with extended boundary B. Indeed,
for any ĥ(t) ∈ A and η ∈ C([0, 1] × Sr,Sr), η(1, ĥ(t)) ∈ F is a consequence of
η(1, ĥ(t)) ∈ C([0, 1],Sr), η(1, ĥ(0)) = ĥ(0) ∈ {0} × A1 and η(1, ĥ(1)) = ĥ(1) ∈
{0} × I0. It yields from (3.5), (3.7) and (3.8) that

A ∩ F\B = A ∩ (F\B) = A ∩ F 6= ∅.

Note that, for any ĥ ∈ Γ̂, we have that |ĥ| ∈ Γ̂ and inf
Pa,b

I ≤ max
t∈[0,1]

I(|ĥ(t)|) ≤

max
t∈[0,1]

I(ĥ(t)), the first inequality is a consequence of Proposition 3.4(2). So, we can

take a minimizing sequence {ĥn([0, 1]), ĥn = (αn, ψ
n
1 , ψ

n
2 )} for Φ at the level cβ(a, b)

with the properties that αn(t) = 0, ψn1 ≥ 0, ψn2 ≥ 0 for all t ∈ [0, 1]. We thus derive
from [19, Theorem 3.2 ] that there exists a sequence {(τ̃n, ũn, ṽn)} ⊂ R×Sr such that

Φ(τ̃n, ũn, ṽn)→ cβ(a, b),

∂τΦ(τ̃n, ũn, ṽn)→ 0, ||∂(u,v)Φ(τ̃n, ũn, ṽn)||TũnSa,r×TṽnSb,r → 0, (3.9)

|τ̃n|+ dist((ũn, ṽn), (ψn1 ([0, 1]), ψn2 ([0, 1])))→ 0, (3.10)

as n → ∞. So, from now on let (un, vn) = τ̃n ? (ũn, ṽn), we then see from (3.10)
that u−n , v

−
n → 0 a.e. in RN . For any (ϕ1, ϕ2) ∈ TunSa,r × TvnSb,r, we then see that

((−τ̃n) ? ϕ1, (−τ̃n) ? ϕ2) ∈ TũnSa,r × TṽnSb,r follows from

0 =

∫
RN

unϕ1dx =

∫
RN

ũne
−τ̃n

2 ϕ1(e−τ̃x)dx,

0 =

∫
RN

vnϕ2dx =

∫
RN

ṽne
−τ̃n

2 ϕ2(e−τ̃x)dx.
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This together with (3.9)-(3.10) implies that

I ′(un, vn)[ϕ1, ϕ2]

=e2sτ̃n

∫∫
R2N

(ũn(x)− ũn(y))(e
−Nτ̃n

2 ϕ1(e−τ̃nx)− e
−Nτ̃n

2 ϕ1(e−τ̃ny))

|x− y|N+2s
dxdy

+ e2sτ̃n

∫∫
R2N

(ṽn(x)− ṽn(y))(e
−Nτ̃n

2 ϕ2(e−τ̃nx)− e
−Nτ̃n

2 ϕ2(e−τ̃ny))

|x− y|N+2s
dxdy

− eτ̃npγpµ1

∫
RN
|ũn|p−2ũne

−Nτ̃n
2 ϕ1(e−τ̃nx)dx

− eτ̃nqγqµ2

∫
RN
|ṽn|q−2ṽne

−Nτ̃n
2 ϕ2(e−τ̃nx)dx

− eτ̃nrγrr1

∫
RN
|ũn|r1−2ũne

−Nτ̃n
2 ϕ1(e−τ̃nx)|ṽn|r2dx

− eτ̃nrγrr2

∫
RN
|ũn|r1 |ṽn|r2−2ṽne

−Nτ̃n
2 ϕ2(e−τ̃nx)dx

=∂(ũn,ṽn)Φ(τ̃n, ũn, ṽn)[(−τ̃n) ? ϕ1, (−τ̃n) ? ϕ2]

=on(1)||((−τ̃n) ? ϕ1, (−τ̃n) ? ϕ2)||H = on(1),

and

P (un, vn) = s∂τ̃nΦ(τ̃n, ũn, ṽn) = on(1).

where on(1)→ 0 as n→∞. Hence, {(un, vn)} gives our desired results.

Lemma 3.6. The Palais-Smale sequence {(un, vn)} ⊂ Sr in Lemma 3.5 is bounded
in Hr.

Proof. Let ρn :=
∫
RN |(−∆)

s
2un|2 + |(−∆)

s
2 vn|2. It follows from P (un, vn) → 0

that

ρn =
γp
s
µ1|un|pp +

γq
s
µ2|vn|qq +

rγr
s
β

∫
RN
|un|r1 |vn|r2 + on(1). (3.11)

Since I(un, vn)→ cβ(a, b), there exists a constant D > 0 such that

D ≥c(a, b) + on(1)

=
pγp − 2s

2sp
µ1|un|pp +

qγq − 2s

2sq
µ2|vn|qq +

rγr − 2s

2s
β

∫
RN
|un|r1 |vn|r2 .

Three coefficients on the right side are positive number, it implies the boundedness of
|un|pp, |vn|pq and

∫
RN |un|

r1 |vn|r2 . This together with (3.11) implies that {(un, vn)} is
bounded in H .
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Remark 3.2. We derive from Lemma 3.6 that there exists a nonnegative (u0, v0) ∈ Hr

such that, up to a subsequence,

(un, vn) ⇀(u0, v0) in Hr,

(un, vn)→ (u0, v0) in Lp × Lq, and Lr × Lr, and a.e. in RN . (3.12)

It then follows from the Lagrange multipliers rule and the fact that I|′S(un, vn) → 0
that there exists a sequence {(λn1 , λn2 )} ⊂ R× R with

I ′(un, vn)− λn1 (un, 0)− λn2 (0, vn)→ 0 in H∗, (3.13)

Now, take (un, 0) and (0, vn) as test functions in (3.13), we conclude the boundedness
of (λn1 λ

n
2 ). Hence, there exists (λ1, λ2) ∈ R × R such that, going if necessary to a

subsequence, (λn1 , λ
n
2 )→ (λ1, λ2).

Setting c0(a, 0) := mp,µ1
(a) and c0(0, b) := mq,µ2

(b).

Remark 3.3. For any a, b > 0, it yields from Proposition 3.4(1) that there exists β0 > 0
sufficiently large such that cβ(a, b) < min{c0(a, 0), c0(0, b)} for any β ≥ β0.

Lemma 3.7. Assume that β ≥ β0 � 1, then (un, vn) → (u0, v0) in Hr. Moreover,
(u0, v0) is a positive solution of system (1.2) with λ1 < 0, λ2 < 0.

Proof. First we claim u0, v0 6= 0. Arguing by contradiction, suppose (u0, v0) =
(0, 0). It then follows from (3.12) that lim

n→∞

∫
RN |(−∆)

s
2un|2 + |(−∆)

s
2 vn|2 = 0,

and cβ(a, b) = lim
n→∞

I(un, vn) = 0. This clearly contradicts to cβ(a, b) > 0. There-
fore, in what follows, we split two cases to show that u0 > 0 and v0 > 0.

Case 1. If u0 	 0, v0 ≡ 0. We derive from the maximum principle (see [30,
Proposition 2.17]) that u0 > 0. Observe that u0 > 0 is a radially symmetric solution of
(1.7) with parameters p, µ1, a1, where 0 < a1 = |u0|22 ≤ a and c0(a, 0) ≤ c0(a0, 0) =
I(u0, 0). It follows from Lemmas 2.3-2.4 and Remark 3.3 that

cβ(a, b) = lim
n→∞

I(un, vn) = lim
n→∞

I(un − u0, vn) + I(u0, 0)

≥1

2
lim
n→∞

∫
RN
|(−∆)

s
2 (un − u0)|2 + |(−∆)

s
2 vn|2 + c0(a, 0)

≥c0(a, 0)

a contradiction.

Case 2. If u0 ≡ 0, v0 � 0. Analogously as case 1, v0 > 0 is a radially symmetric
solution of (1.7) with parameters q, µ2, b1, where b1 = |v0|22 ≤ b and c0(0, b) ≤
c0(0, b1) = I(0, v0). It also yields that

cβ(a, b) = lim
n→∞

I(un, vn) = lim
n→∞

I(un, vn − v0) + I(0, v0)

≥c0(0, b)
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a contradiction.

Therefore, we derive that u0, v0 > 0. It then follows from Remark 3.2 that (u0, v0)
is a positive solution of systems (1.2). This together with P (u0, v0) = 0 implies that

λ1|u0|22 + λ2|v0|22 =(
γp
s
− 1)µ1|u0|pp + (

γq
s
− 1)µ2|v0|qq

+ (
γr
s
− 1)rβ

∫
RN
|u0|r1 |v0|r2 . (3.14)

Using P (un, vn)→ 0 and Remark 3.2-(3.12),(3.13), we see that

λ1a+ λ2b = lim
n→+∞

λn1 |un|22 + λn2 |vn|22

= lim
n→+∞

(∫
RN
|(−∆)

s
2un|2 + |(−∆)

s
2 vn|2 −

∫
RN

βr|un|r1 |vn|r2

− µ1|un|pp − µ2|vn|qq
)

=(
γp
s
− 1)µ1|u0|pp + (

γq
s
− 1)µ2|v0|qq + (

γr
s
− 1)rβ

∫
RN
|u0|r1 |v0|r2 .

This together with (3.14), yielding that

λ1(|u0|22 − a) + λ2(|v0|22 − b) = 0. (3.15)

Then λ1, λ2 < 0 follows from Lemma 2.2, we thus have that (un, vn) → (u0, v0) in
L2(RN )× L2(RN ). We apply (3.12)-(3.13), yielding that

lim
n→∞

∫
RN
|(−∆)

s
2un|2 − λ1|un|2 =

∫
RN
|(−∆)

s
2u0|2 − λ1|u0|2,

and

lim
n→∞

∫
RN
|(−∆)

s
2 vn|2 − λ2|vn|2 =

∫
RN
|(−∆)

s
2 v0|2 − λ2|v0|2.

It is easy to see that (un, vn)→ (u0, v0) in Hr.

Proof of Theorem 1.1. Theorem 1.1 follows from Lemmas 3.5-3.7, then we finish the
proof. 2

4 Proof of Theorem 1.2
Lemma 4.1. Let 2 ≤ N ≤ 4s, 1

2 ≤ s < 1 and suppose µ1, µ2, β > 0, r1 + r2 = 2∗s ,
then 

(−∆)su = λ1u+ µ1|u|2
∗
s−2u+ βr1|u|r1−2u|v|r2 in RN ,

(−∆)sv = λ2v + µ2|v|2
∗
s−2v + βr2|u|r1 |v|r2−2v in RN ,

u, v ∈ Hs(RN ),

(4.1)

has no positive solution.
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Proof. Arguing by contradiction, we may assume without loss of generality that (u1, v1)
be a positive solution of the system (4.1) and satisfy |u1|22 = a, |v1|22 = b. We have by
Lemma 2.2 that λ1 < 0 and λ2 < 0. Observe that

0 = P (u1, v1) =

∫
RN
|(−∆)

s
2u1|2 + |(−∆)

s
2 v1|2 − µ1

∫
RN
|u1|2

∗
s − µ2

∫
RN
|v1|2

∗
s

− β2∗s

∫
RN
|u1|r1 |v1|r2 (4.2)

and∫
RN
|(−∆)

s
2u1|2 + |(−∆)

s
2 v1|2 =λ1

∫
RN
|u1|2 + λ2

∫
RN
|v1|2 + µ1

∫
RN
|u1|2

∗
s

+ µ2

∫
RN
|v1|2

∗
s + β2∗s

∫
RN
|u1|r1 |v1|r2 , (4.3)

the last equality is a consequence of the weak solution definition. It then yields from
(4.2)-(4.3) that

0 > λ1

∫
RN
|u1|2 + λ2

∫
RN
|v1|2 = λ1a+ λ2b = 0

a contradiction.

Proof of Theorem 1.2. By Lemma 4.1, we finish the proof of Theorem 1.2. 2

References
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