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Abstract. In this paper, we study the long-time dynamical behavior of the non-autonomous velocity-

vorticity-Voigt model of the 3D Navier-Stokes equations with damping and memory. We first investigate
the existence and uniqueness of weak solutions to the initial boundary value problem for above-mentioned

model. Next, we prove the existence of uniform attractor of this problem, where the time-dependent forcing

term f ∈ L2
b(R;H−1(Ω)) is only translation bounded instead of translation compact. The results in this

paper will extend and improve some results in Yue, Wang (Comput. Math. Appl., 2020) in the case of

non-autonomous and contain memory kernels which have not been studied before.

1. Introduction

In this paper, we study the long-time dynamical behavior of the solutions for the following velocity-
vorticity-Voigt system with memory:

ut − α2∆ut − ϑ∆u−
∫∞

0
κ(s)∆u(t− s)ds+ w × u+∇p = f, x ∈ Ω, t ≥ τ,

wt − ϑ∆w −
∫∞

0
l(s)∆w(t− s)ds+ (u · ∇)w − (w · ∇)u+ λw = ∇× f, x ∈ Ω, t ≥ τ,

∇ · u = 0, ∇ · w = 0, x ∈ Ω, t ≥ τ,
u(x, t) = 0, w(x, t) = 0, x ∈ ∂Ω, t ≥ τ,
u(x, τ) = uτ (x), w(x, τ) = wτ (x), x ∈ Ω,

u(x, τ − s) = qτ (x, s), w(x, τ − s) = pτ (x), x ∈ Ω, s > 0,

(1.1)

where Ω is a bounded domain in R3 with smooth boundary ∂Ω; the vector field u = (u1, u2, u3) is averaged
velocity of the fluid; w = (w1, w2, w3) represents vorticity but we do not assume w = ∇ × u; f = f(x, t) is
an external forcing term; p = p(x, t) is the pressure; ϑ > 0 is the kinematic viscosity and the term λw (λ is
a positive constant determined later) is damping term, which parameterizes the extra dissipation occurring
in the planetary boundary layer (see [16]), α is a length scale parameter characterizing the elasticity of the
fluid (see [7]). The second equation of system (1.1) is called vorticity equation with memory.

In 2019, Larios et al. [8] pointed out that the Voigt-regularization and the velocity-vorticity formulation
have not been able to overcome all the analytical and computational difficulty inherent in the 3D Navier-
Stokes equations of incompressible fluid flow. Therefore, they combine these two approaches and contructed
the new system which will retain the best qualities of both systems and have solutions that are closer to the
actual physics of fluids, while still having enough regularization that the equations are better behaved from
the standpoints of mathematical analysis, numerical stability, and computational efficiency. The new system
is a new regularization of the 3D Navier-Stokes equations, which is called the 3D velocity-vorticity-Voigt
(VVV) model, with a Voigt regularization term added to momentum equation in velocity-vorticity form, but
with no regularizing term in the vorticity equation. In [8], the authors only proved the global well-posedness
by Galerkin approximation and convergence properties of the system.

In 2020, G.Yue and J. Wang [15] also considered VVV model as in [8], but added the damping term λw
to the second equation, which parameterizes the extra dissipation occurring in the planetary boundary layer
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(see [17]), such as 
ut − α2∆ut − ϑ∆u+ w × u+∇p = f,

wt − ϑ∆w + (u · ∇)w − (w · ∇)u+ λw = ∇× f,
∇ · u = 0, ∇ · w = 0.

(1.2)

The authors proved the existence of global and exponential attractors of the three-dimensional VVV system.
In the last few years, in the case of λ ≡ 0, α ≡ 0 and w = ∇ × u, the system (1.2) becomes the model

studied by the authors in [11]. They investigated well-posedness of a velocityvorticity formulation of the 3D
Navier-Stokes (NS) equations with no-slip boundary conditions.

Now if we consider the system (1.2) in the case of incorporating hereditary effects, we add a fading memory
term to (1.2), the system can be turned into the VVV system with memory that we will study. The speed
of energy dissipation for (1.1) is faster than for the usual VVV system. The conduction of energy is not
only affected by present external forces but also by historic external forces. The system (1.1) appears as an
extension of the usual VVV system in the realm of viscoelastic incompressible fluid models.

In this paper, we will prove the existence of weak solutions, the existence of uniform attractor for VVV
system, while the time-dependent forcing term is only translation bounded instead of translation compact
(see (F) below) and the memory kernel satisfies general assumption (see (M) below). To study the problem
(1.1), we assume that the external force and the memory kernel satisfy the following conditions:

(M) The convolution (or memory) kernel κ and l are nonnegative summable functions having the explicit
form

κ(s) =

∫ ∞
s

µ(r)dr, l(s) =

∫ ∞
s

ν(r)dr,

where µ, ν ∈ L1(R+) are decreasing (hence nonnegative) piecewise absolutely continuous in each
interval [0, T ] with T > 0 and satisfy

∫∞
0
µ(s)ds = 1,

∫∞
0
ν(s)ds = 1. In particular, µ, ν are allowed

to exhibit (infinitely many) jumps. Moreover, we require that

κ(s) ≤ θ1µ(s), l(s) ≤ θ2ν(s), (1.3)

for some θ1, θ2 > 0 and every s > 0. As shown in Gatti et al [5], this is completely equivalent to the
requirement that

µ(r + s) ≤Me−δrµ(s), ν(r + s) ≤Me−δrν(s), (1.4)

for some M ≥ 1, δ > 0, every r ≥ 0 and almost every s > 0.
(F) The external force f ∈ L2

b(R;H−1(Ω)), the space of translation bounded functions in L2
loc(R;H−1(Ω)),

that is, f ∈ L2
loc(R;H−1(Ω)) satisfies

‖f‖2L2
b

= sup
t∈R

∫ t+1

t

‖f(s)‖2H−1ds < +∞.

For f ∈ L2
b

(
R;H−1(Ω)

)
, we denote by Hw(f) the closure of the set {f(·+h)|h ∈ R} in L2

b(R;H−1(Ω)) with
the weak topology. Noting that, as in [3, Chapter 5, Proposition 4.2], we have: Hw(f) is weakly compact
and for all σ ∈ Hw(f),

‖σ‖2L2
b
≤ ‖f‖2L2

b
.

The paper is organized as follows. In Section 2, we introduce some notations, functions spaces, and recall
some basic inequalities that will be used frequently in this paper. In Section 3, we prove the existence
and uniqueness of weak solutions by using the Faedo-Galerkin method. Finally, in Section 4, we show the
existence of uniform attractor for the continuous semigroup generated by the weak solutions.

2. Notations and preliminaries

In this section, we recall some notations about function spaces and preliminary results. We can find it,
for example, in [6, 13, 15].

For 1 6 p 6 ∞ and k ∈ N, spaces Lp(Ω) = (Lp(Ω))3, Hk(Ω) = (Hk(Ω))3, and Hk
0(Ω) = (Hk

0 (Ω))3 will
denote the Lebesgue and Sobolev spaces of vector-valued functions on Ω as usual, where Hk = W k,2 is a
Hilbert space. We also denote by ‖.‖ and 〈·, ·〉 the normal and scalar product in L2(Ω), respectively. Let
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Cw(I;X) be the space of the weakly continous functions u that take values in X for almost every t ∈ I, such
that the Lp norm of ‖u‖X is finite. For u = (u1, u2, u3) and v = (v1, v2, v3), we denote by

〈u, v〉 =

3∑
i=1

〈ui, vi〉L2(Ω), ‖u‖2 =

3∑
i=1

‖ui‖2, ‖∇v‖2 =

3∑
i,j=1

∥∥∥∥∂vj∂xi

∥∥∥∥2

.

We set

V = {u ∈ (C∞0 (Ω))3 : ∇ · u = 0},
H and V are the closures of V in L2(Ω) and H1(Ω). Besides, V −1 denote the dual space of V . For
convenience, we use ‖u‖ and ‖u‖1 to denote the norms of u in H and V .
Let

P : L2(Ω) = H ⊕H⊥ → H

be the Helmholtz-Leray orthogonal projection. The Stokes operator is defined as

A = −P4, D(A) = H2(Ω) ∩ V.

It is known to us all that the operator A is a self-adjoint positively definite operator in H, and its inverse
A−1 is a compact operator from H into H. Moreover D(A

1
2 ) = V and

‖u‖V = ‖∇u‖ = ‖A 1
2u‖, ∀u ∈ V.

Denote the family of Hilbert spaces Vs = D(A
s
2 ), (s ∈ R, α ∈ (0, 1]), endowed with inner product

〈u, v〉Vs = 〈A
s−1
2 u,A

s−1
2 v〉+ α2〈A s

2u,A
s
2 v〉,

and norm

‖u‖2Vs = ‖A 1
2u‖2 + α2‖A s

2u‖2.
So we have the following results

‖u‖2V1
= ‖u‖2 + α2‖A 1

2u‖2 = ‖u‖2 + α2‖∇u‖2,

‖u‖2V2
= ‖A 1

2u‖2 + α2‖Au‖2 = ‖∇u‖2 + α2‖Au‖2,

‖∇u‖2 =
1

α2
· α2‖∇u‖2 6 1

α2

(
‖u‖2 + α2‖∇u‖2

)
=

1

α2
‖u‖2V1

,

‖Au‖2 =
1

α2
· α2‖Au‖2 6 1

α2

(
‖∇u‖2 + α2‖Au‖2

)
=

1

α2
‖u‖2V2

.

Then we introduce the standard bilinear and the trilinear forms

B(u, v) = P ((u · ∇)v),

b(u, v, w) = 〈B(u, v), w〉.
It is clear that the bilinear form B(·, ·) can be extended to a continuous map B : V × V → V −1, where V −1

is the dual space of V . And for smooth functions u, v, w ∈ ν, we have

〈B(u, v), w〉 =

∫
(u · ∇)v · wdx.

And then the trilinear form b(·, ·, ·) satisfies the following equalities and inequalities (see e.g. [10]):
For every u, v, w ∈ V , we have

b(u, v, v) = 0, b(u, v, w) = −b(u,w, v), (2.1)

|b(u, v, w)| 6 C‖u‖ 1
2 ‖∇u‖ 1

2 ‖∇v‖‖∇w‖, (2.2)

|b(u, v, w)| 6 C‖v‖ 1
2 ‖∇v‖ 1

2 ‖∇u‖‖∇w‖, (2.3)

|b(u, v, w)| 6 C‖w‖ 1
2 ‖∇w‖ 1

2 ‖∇u‖‖∇v‖. (2.4)

Next we give more estimates that we will often use later: For any u ∈ V , the following inequalities hold

‖u‖L3 6 C‖u‖ 1
2 ‖∇u‖ 1

2 , ‖u‖L4 6 C‖u‖ 1
4 ‖∇u‖ 3

4 , ‖u‖L6 6 C‖∇u‖. (2.5)
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Next, in order to cary out our analysis, we introduce some new variables which reflect the past history of
(1.1), given by

ηt(x, s) = η(x, t, s) =

∫ s

0

u(x, t− r)dr, ζt(x, s) = ζ(x, t, s) =

∫ s

0

w(x, t− r)dr, (x, t, s) ∈ Ω× [0,∞)× R+.

We can check that

∂tη
t(x, s) = u(x, t)− ∂sηt(x, s), ∂tζ

t(x, s) = w(x, t)− ∂sζt(x, s), (x, t, s) ∈ Ω× [0,∞)× R+,

and

ηt(x, 0) := lim
s→0

ηt(x, s) = 0, ζt(x, 0) := lim
s→0

ζt(x, s) = 0, (x, t) ∈ Ω× [0,∞),

ητ (x, s) = ητ (x, s) =

∫ s

0

u(r)dr, ζτ (x, s) = ζτ (x, s) =

∫ s

0

w(r)dr, (x, s) ∈ Ω× R+.

Setting µ(s) = −κ′(s) and ν(s) = −k′(s), problem (1.1) can be transformed into the following system

ut − α2∆ut − ϑ∆u−
∫∞

0
µ(s)∆ηt(s)ds+ w × u+∇p = f, (x, t) ∈ Ω× [τ,∞),

wt − ϑ∆w −
∫∞

0
ν(s)∆ζt(s)ds+ (u · ∇)w − (w · ∇)u+ λw = ∇× f, (x, t) ∈ Ω× [τ,∞),

ηtt + ηts = u, (x, t, s) ∈ Ω× [τ,∞)× R+,

ζtt + ζts = w, (x, t, s) ∈ Ω× [τ,∞)× R+,

∇ · u = 0, ∇ · w = 0, (x, t) ∈ Ω× [τ,∞),

u(x, t) = 0, w(x, t) = 0, x ∈ ∂Ω, t ≥ τ,
u(x, τ) = uτ (x), w(x, τ) = wτ (x), x ∈ Ω,

ητ (x, s) = ητ (x, s) =
∫ s

0
qτ (x, r)dr, ζτ (x, s) = ζτ (x, s) =

∫ s
0
pτ (x, r)dr, x ∈ Ω, s > 0,

(2.6)
Besides, to simplify the notation, we take the viscosity ϑ = 1 and then we apply the Helmholtz-Leray
projector P to the system (2.6) to obtain the following equivalent functional differential equation

ut + α2Aut +Au+
∫∞

0
µ(s)Aηt(s)ds+ P (w × u) = Pf,

wt +Aw +
∫∞

0
ν(s)Aζt(s)ds+B(u,w)−B(w, u) + λw = ∇× (Pf),

ηtt + ηts = u,

ζtt + ζts = w,

(2.7)

with boundary conditions

u(x, t) = w(x, t) = 0, ηt(x, 0) = ζt(x, 0) = 0 on (x, t) ∈ ∂Ω× R+,

and initial conditions

u(x, τ) = uτ (x), w(x, τ) = wτ (x), ητ (x, s) = ητ (x, s), ζτ (x, s) = ζτ (x, s) (x, s) ∈ Ω× R+. (2.8)

Next, we define the memory space. Let L2
µ(R+, H) be the Hilbert space of functions ϕ : R+ → L2(Ω) endowed

with the inner product

〈ϕ1, ϕ2〉µ =

∫ ∞
0

µ(s) 〈ϕ1(s), ϕ2(s)〉 ds,

and let ‖ϕ‖µ denote the corresponding norm. In a similar manner we introduce the inner product 〈·, ·〉1,µ , 〈·, ·〉2,µ
and relative norms ‖ · ‖1,µ, ‖ · ‖2,µ on L2

µ(R+, V ) and L2
µ(R+, D(A)) as

〈·, ·〉1,µ = 〈·, ·〉V,µ ; 〈·, ·〉2,µ = 〈·, ·〉D(A),µ ; ‖ϕ‖21,µ =

∫ ∞
0

µ(s)‖∇ϕ(s)‖2ds, ‖ϕ‖22,µ =

∫ ∞
0

µ(s)‖∆ϕ(s)‖2ds.

We also introduce the Hilbert spaces

H1 = V1 ×H × L2
µ(R+, V )× L2

ν(R+, V ),

H2 = V2 × V1 × L2
µ(R+, D(A))× L2

ν(R+, D(A)).

The norm induced on Hi for i = 1, 2, are

‖(u,w, η, ζ)‖2H1
= ‖u‖2V1

+ ‖w‖2H +

∫ ∞
0

µ(s)‖∇η(s)‖2ds+

∫ ∞
0

ν(s)‖∇ζ(s)‖2ds,
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and

‖(u,w, η, ζ)‖2H2
= ‖u‖2V2

+ ‖w‖2V1
+

∫ ∞
0

µ(s)‖∆η(s)‖2ds+

∫ ∞
0

ν(s)‖∆ζ(s)‖2ds.

In addition, we recall some useful inequalities (see e.g. [13]) which will be used throughout this paper.

• Poincaré inequality: ‖u‖Vs+1 6
1√
λ1

‖u‖Vs+1 , ∀u ∈ Vs+1.

Therefore, taking advantage of Poincaré inequality, we have the following two estimates

‖u‖2V1
= ‖u‖2 + α2‖∇u‖2 6 1

λ1
‖∇u‖2 + α2‖∇u‖2 =

1

kα
‖∇u‖2,

‖u‖2V2
= ‖∇u‖2 + α2‖Au‖2 6 1

λ1
‖Au‖2 + α2‖Au‖2 =

1

kα
‖Au‖2, (2.9)

where kα =
λ1

1 + λ1α2
.

• Agmon inequalities in 3D: For any u ∈ D(A), we have

‖u‖L∞ 6 C‖∇u‖
1
2 ‖Au‖ 1

2 , ‖u‖L∞ 6 C‖u‖
1
4 ‖Au‖ 3

4 .

• Gronwall’s inequality: Let ϕ(t) ∈ R satisfy the differential inequality

ϕt 6 g(t)ϕ+ h(t).

Then

ϕ(t) 6 ϕ(0)eG(t) +

∫ t

0

eG(t)−G(s)h(s)ds,

where G(t) =

∫ t

0

g(r)dr. In particular, if ϕt 6 bϕ+ γ, where b and γ are constants, then

ϕ(t) 6 ϕ0e
bt +

γ

β

(
ebt − 1

)
.

Finally, we will provide a auxiliary lemma to serve later sections.

Lemma 2.1. Assume that hypotheses (M) hold. Then for any u,w ∈ V1 and ηt ∈ L2
µ(R+, V ), ζt ∈

L2
ν(R+, V ), the following inequalities hold∫ ∞

0

κ(s)‖∇ηt(s)‖2ds ≤ θ1‖ηt‖21,µ ≤ θ1(‖u‖2V1
+ ‖ηt‖21,µ); (2.10)∫ ∞

0

l(s)‖∇ζt(s)‖2ds ≤ θ2

∫ ∞
0

ν(s)‖∇ζt(s)‖2ds ≤ θ2

(
‖∇w‖2 +

∫ ∞
0

ν(s)‖∇ζt(s)‖2ds
)

; (2.11)

d

dt

(∫ ∞
0

κ(s)‖∇ηt(s)‖2ds
)
≤ −1

2

∫ ∞
0

µ(s)‖∇ηt(s)‖2ds+ 2θ2
1κ(0)‖∇u‖2; (2.12)

d

dt

(∫ ∞
0

l(s)‖∇ζt(s)‖2ds
)
≤ −1

2

∫ ∞
0

ν(s)‖∇ζt(s)‖2ds+ 2θ2
2l(0)‖∇w‖2. (2.13)

Proof. By hypotheses (1.3), we immediately obtain (2.10) and (2.11).
Besides, using the third equation of (2.7) and exploiting again (1.4), we have

d

dt

(∫ ∞
0

κ(s)‖∇ηt(s)‖2ds
)

=− 2

∫ ∞
0

κ(s)

∫
Ω

∇ηts∇ηtdxds+ 2

∫ ∞
0

κ(s)〈ηt(s), u〉V ds

=−
∫ ∞

0

κ(s)
d

ds
‖∇ηt(s)‖2ds+ 2

∫ ∞
0

κ(s)〈ηt(s), u〉V ds

=− κ(s)‖∇ηt(s)‖2
∣∣∣s=∞
s=0

+

∫ ∞
0

κ′(s)‖∇ηt(s)‖2ds+ 2

∫ ∞
0

κ(s)〈ηt(s), u〉V ds

≤−
∫ ∞

0

µ(s)‖∇ηt(s)‖2ds+ 2θ1

∫ ∞
0

µ(s)

∫
Ω

∇ηt · ∇udxds
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≤−
∫ ∞

0

µ(s)‖∇ηt(s)‖2ds+ 2θ1

(∫ ∞
0

µ(s)‖∇ηt‖2ds
)1/2(∫ ∞

0

µ(s)‖∇u‖2ds
)1/2

≤− 1

2

∫ ∞
0

µ(s)‖∇ηt(s)‖2ds+ 2θ2
1‖∇u‖2

∫ ∞
0

κ′(s)ds

≤− 1

2

∫ ∞
0

µ(s)‖∇ηt(s)‖2ds+ 2θ2
1κ(0)‖∇u‖2.

Similarly, we also get (2.13).
�

3. Existence and uniqueness of weak solutions

Definition 3.1. A function z = (u,w, ηt, ζt) is called a weak solution on the time interval [τ, T ] of problem
(2.7)-(2.8) with the initial datum z(τ) = zτ ∈ H1 and external force f ∈ L2(τ, T ;V −1) if

u ∈ C([τ, T ];V1), w ∈ Cw([τ, T ];H) ∩ L2(τ, T ;V ),

ut ∈ L2(τ, T ;V ), wt ∈ L2(τ, T ;V −1),

ηt ∈ C([τ, T ];L2
µ(R+, V )), ζt ∈ C([τ, T ];L2

ν(R+, V )),

∂tη
t + ∂sη

t ∈ L∞(τ, T ;L2
µ(R+, H)) ∩ L2(τ, T ;L2

µ(R+, V1)),

∂tζ
t + ∂sζ

t ∈ L∞(τ, T ;L2
ν(R+, H)) ∩ L2(τ, T ;L2

ν(R+, V1)),

and 
〈ut, ϕ〉+ α2〈ut, ϕ〉V + 〈u, ϕ〉V + 〈ηt, ϕ〉1,µ + 〈w × u, ϕ〉 = 〈f, ϕ〉V −1,V ,

〈ηtt + ηts, ξ
t〉1,µ = 〈u, ξt〉1,µ,

〈wt, ϕ〉+ 〈w,ϕ〉V + 〈ζt, ϕ〉1,ν − 〈B(u, ϕ), w〉 − 〈B(w, u), ϕ〉 = −〈f,∇× ϕ〉V −1,V ,

〈ζtt + ζts, ψ〉1,ν = 〈w,ψ〉1,ν ,
for every test functions ϕ ∈ L2(τ, T ;V ∩ L∞(Ω)) and ξt ∈ L2

µ(R+, V ), ψt ∈ L2
ν(R+, V ).

The following result on the existence and uniqueness of weak solutions to the model (1.1) (also (2.7)-(2.8))
was proved by a Faedo-Garlerkin.

Theorem 3.1. Assume that hypotheses (F), (M) hold. Then for any zτ = (uτ , wτ , η
τ , ζτ ) ∈ H1, any

σ ∈ Hw(f) and any T > τ, τ ∈ R given, problem (2.7)-(2.8) (with σ in place of f) has a unique weak
solution z = (u,w, ηt, ζt) on the interval [τ, T ] satisfying

z ∈ C([τ, T ];H1).

Moreover, the weak solution depends continuously on the initial data on H1.

Proof. i) Existence.
Consider the approximate solution zn(t) = (un(t), wn(t), ηtn, ζ

t
n) in the form

un(t) =

n∑
j=1

unj(t)ϕj , wn(t) =

n∑
j=1

wnj(t)ϕj and ηtn(s) =

n∑
j=1

ηnj(t)ξj(s), ζtn(s) =

n∑
j=1

ζnj(t)φj(s)

satisfying〈
(∂tun + α2A∂tun, ∂tη

t
n), (ϕk, ξj)

〉
H×L2

µ(R+,V )

=

〈
(−Aun −

∫ ∞
0

µ(s)Aηtn(s)ds− P (wn × un) + Pσ, un − ∂sηtn), (ϕk, ξj)

〉
H×L2

µ(R+,V )

,〈
(∂twn, ∂tζ

t
n), (ϕk, φj)

〉
H×L2

µ(R+,V )

=

〈
(−Awn −

∫ ∞
0

µ(s)Aζtn(s)ds−B(un, wn) +B(wn, un) +∇× Pσ, wn − ∂sζtn), (ϕk, φj)

〉
H×L2

µ(R+,V )

,(
un, η

t
n)
∣∣
t=τ

= (Pnuτ , Qnητ ),(
wn, ζ

t
n)
∣∣
t=τ

= (Pnwτ , Qnζτ ),

(3.1)
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for a.e. t ≤ T , for every k, j = 0, . . . , n, where ϕ0, ξ0 and φ0 are the zero vectors in the respective spaces.
Taking (ϕk, ξ0), (ϕk, φ0) and (ϕ0, ξk), (ϕ0, φk) in (3.1), and applying the divergence theorem to the term〈∫ ∞

0

µ(s)Aηtn(s)ds, ϕk

〉
and

〈∫ ∞
0

ν(s)Aζtn(s)ds, ϕk

〉
we get a system of ODE in the variable zk(t) of the form

d

dt
(1 + α2ak)unk = −akunk −

n∑
j=1

ηnj 〈ξj , ϕk〉1,µ + 〈Pσ, ϕk〉 ,

d

dt
wnk = −akwnk −

n∑
j=1

ζnj 〈ξj , ϕk〉1,ν + 〈B(wnk, unk), ϕk〉+ 〈∇ × Pσ, ϕk〉,

d

dt
ηnk =

n∑
j=1

unj 〈ϕj , ξk〉1,µ −
n∑
j=1

ηnj
〈
ξ′j , ξk

〉
1,µ

,

d

dt
ζnk =

n∑
j=1

wnj 〈ϕj , φk〉1,ν −
n∑
j=1

ζnj
〈
ξ′j , φk

〉
1,ν
,

(3.2)

subject to the initial conditions

unk(τ) = 〈uτ , ϕk〉V ,
wnk(τ) = 〈wτ , ϕk〉V ,
ητnk = 〈ητ , ξk〉1,µ ,
ζτnk = 〈ζτ , φk〉1,ν .

(3.3)

According to the Picard-Lindelöf Theorem, we know that there exists a solution of (3.2)-(3.3) on some
interval (τ, Tn). The a priori estimates below imply that in fact Tn = +∞.

Multiplying the first equation of(3.1) by the function (unk, ηnk), then summing from k = 1 to n, we have

1

2

d

dt

(
‖un‖2 + α2‖∇un‖2

)
+ ‖∇un‖2 +

∫ ∞
0

µ(s)〈∇ηtn(s),∇un〉ds = 〈Pσ, un〉V −1,V ,

un = ∂tη
t
n + ∂sη

t
n. (3.4)

Integrating by parts, we have∫ ∞
0

µ(s)〈∇ηt(s),∇un〉ds =

∫ ∞
0

µ(s)〈∇ηtn(s), ∂t∇ηtn(s)〉ds+

∫ ∞
0

µ(s)〈∇ηtn(s), ∂s∇ηt(s)〉ds

=
1

2

d

dt

(∫ ∞
0

µ(s)‖∇ηtn(s)‖2ds
)
−
∫ ∞

0

µ′(s)‖∇ηtn(s)‖2ds.

Besides, from conditions (M) and the Cauchy inequality, we can see that

−2

∫ ∞
0

µ′(s)‖∇ηtn(s)‖2ds ≥ 0 and 2〈Pσ, un〉V −1,V ≤ ‖Pσ‖2V −1 + ‖∇un‖2.

Combining all the above estimates, we get

d

dt

(
‖un‖2 + α2‖∇un‖2 +

∫ ∞
0

µ(s)‖∇ηtn(s)‖2ds
)

+ ‖∇un‖2 ≤ ‖Pσ‖2V −1 . (3.5)

Integrating on (τ, t), t ∈ (τ, T ), leads to

y(t) +

∫ t

τ

‖∇un(r)‖2dr ≤ y(τ) + C

∫ t

τ

‖Pσ‖2V −1dr,

where y(t) = ‖un(t)‖2 + α2‖∇un(t)‖2 +
∫∞

0
µ(s)‖∇ηtn(s)‖2ds.

This inequality implies that

{un} is bounded in L∞(τ, T ;V1),

{ηtn} is bounded in L∞(τ, T ;L2
µ(R+, V )).

(3.6)
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Therefore, by the Banach-Alaoglu Theorem, there exists functions u and ηt such that

un ⇀ u weakly-star in L∞(τ, T ;V1),

ηtn ⇀ ηt weakly-star in L∞(τ, T ;L2
µ(R+, V )),

(3.7)

and

Aun ⇀ Au weakly-star in L∞(τ, T ;V −1),

Aηtn ⇀ Aηt weakly-star in L∞(τ, T ;L2
µ(R+, V −1)),

(3.8)

up to a subsequence.
Multiplying the second equation of (3.1) by the function (wnk, ζnk), then summing from k = 1 to n, we

have

1

2

d

dt
‖wn‖2 + ‖∇wn‖2 + λ‖wn‖2 +

∫ ∞
0

µ(s)〈∇ζtn(s),∇wn〉ds = b(wn, un, wn) + 〈∇ × Pσ,wn〉,

wn = ∂tζ
t
n + ∂sζ

t
n. (3.9)

Integrating by parts, we have∫ ∞
0

ν(s)〈∇ζt(s),∇wn〉ds =

∫ ∞
0

ν(s)〈∇ζtn(s), ∂t∇ζtn(s)〉ds+

∫ ∞
0

ν(s)〈∇ζtn(s), ∂s∇ζt(s)〉ds

=
1

2

d

dt

(∫ ∞
0

ν(s)‖∇ζtn(s)‖2ds
)
−
∫ ∞

0

ν′(s)‖∇ζtn(s)‖2ds.

On the other hand, by conditions (M) and the Cauchy inequality, we obtain

−2

∫ ∞
0

ν′(s)‖∇ζtn(s)‖2ds ≥ 0 and 2〈∇ × Pσ,wn〉 ≤ 2‖∇ × Pσ‖2 +
1

2
‖∇wn‖2.

Using the (2.12) and the Cauchy inequality once again, we have

2|b(wn, un, wn)| ≤ C‖∇un‖‖wn‖
1
2 ‖∇wn‖

3
2

≤ C‖∇un‖4‖wn‖2 +
1

2
‖∇wn‖2.

Combining all the above estimates, we have

d

dt

(
‖wn‖2 +

∫ ∞
0

ν(s)‖∇ζtn(s)‖2ds
)

+ ‖∇wn‖2 ≤ C‖∇un‖4‖wn‖2 + 2‖∇ × Pσ‖2.

Therefore,

d

dt
y(t) + ‖∇wn‖2 ≤ Cy(t) + 2‖∇ × Pσ‖2. (3.10)

where y(t) = ‖wn‖2 +
∫∞

0
ν(s)‖∇ζtn(s)‖2ds. Applying the Gronwall lemma, we get

‖wn‖2 +

∫ ∞
0

ν(s)‖∇ζtn(s)‖2ds ≤ y(τ)eC(T−τ) + 2

∫ T

τ

eC(t−s)‖∇ × Pσ‖2ds ≤ ∞.

This inequality implies that

{wn} is bounded in L∞(τ, T ;H),

{ζtn} is bounded in L∞(τ, T ;L2
µ(R+, H1

0 (Ω))).
(3.11)

Besides, integrating (3.10) from τ to T , leads to

{wn} is bounded in L2(τ, T ;H1
0 (Ω)), (3.12)

Now, multiplying the first equation of(3.1) by the function (wnk, ζnk), and summing form k = 1 to n, then

taking the divergence of this equation, and denoting vn := ∇ · wn, ζ̂tn := ∇ · wn, we get

d

dt
vn +Avn +B(un, vn) +

∫ ∞
0

νAζ̂tn(s)ds = 0. (3.13)
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Next we take inner-products with the above equation by vn, we get

d

dt

(
‖vn‖2 +

∫ ∞
0

ν‖∇ζ̂tn(s)‖2ds
)

+ 2‖∇vn‖2 ≤ 0, (3.14)

d

dt
y(t) ≤ y(t),

where y(t) = ‖vn‖2 +
∫∞

0
ν‖∇ζ̂tn(s)‖2ds. Using the Gronwall lemma, we have

y(t) ≤ y(τ)e(T−τ).

If the initial data (wτ , ζτ ) is in H×L2
ν(R+, V ), we have (vn(τ), ζ̂tn) = (0, 0), which implies (∇×wn,∇×ζtn) =

(vn, ζ̂
t
n) = (0, 0) in L2([τ, T ];L2(Ω)) × L2([τ, T ];L2

ν(R+, H1
0 (Ω)). Since L2([τ, T ];H) × L2([τ, T ];L2

ν(R+, V )
is closed in L2([τ, T ];L2(Ω)) × L2([τ, T ];L2

ν(R+, H1
0 (Ω)), this implies (∇ · w,∇ · ζt) = (0, 0), so long as

(∇ ·wτ ,∇ · ζτ ) = (0, 0). Namely, we have (w, ζt) ∈ L∞(τ, T ;H)∩L2(τ, T ;V )×L2(τ, T ;L2
ν(R+, V ). Besides,

from (3.14), we also obtain

‖vn‖2 +

∫ ∞
0

ν‖∇ζ̂tn(s)‖2ds+ 2

∫ T

τ

‖∇vn‖2dt ≤ ‖vn(τ)‖2 +

∫ ∞
0

ν‖∇ζ̂τn(s)‖2ds,

this implies that (vn, ζ̂
t
n) is uniformly bounded in L2(τ, T ;H1

0 (Ω))× L2(τ, T ;L2
ν(R+, H1

0 (Ω)).
Therefore, by similar arguments as above for un and ηtn, we get

wn ⇀ w weakly in L2(τ, T ;V ),

ζtn ⇀ ζt weakly-star in L∞(τ, T ;L2
ν(R+, V )),

(3.15)

and

Awn ⇀ Aw weakly-star in L∞(τ, T ;V −1),

Aζtn ⇀ Aζt weakly-star in L∞(τ, T ;L2
µ(R+, V −1)),

(3.16)

up to a subsequence.
Next, we estimate ∂tun, ∂twn. Multiplying the first equation of(3.1) by the function (u′nk, η

′
nk), then

summing from k = 1 to n, we have

1

2

d

dt
‖∇un‖2 + ‖∂tun‖2 + α2‖∂t∇un‖2 = −

∫ ∞
0

µ(s)〈∇ηtn(s), ∂t∇un〉ds− 〈P (wn × un), ∂tun〉+ 〈Pσ, ∂tun〉V −1,V ,

(3.17)

Using the Holder and Young inequalities and (2.12), (3.6), (3.11), we get

−
∫ ∞

0

µ(s)〈∇ηtn(s), ∂t∇un〉ds ≤ C(ε)

∫ ∞
0

ν(s)‖∇ηtn(s)‖2ds+ ε‖µ‖L1(R+)‖∂t∇un‖2,

〈Pσ, ∂tun〉V −1,V ≤
1

α2
‖Pσ‖2V −1 +

α2

4
‖∂t∇un‖2,

−〈P (wn × un), ∂tun〉 ≤ ‖wn‖L3‖un‖‖∂tun‖L6

≤ C‖wn‖
1
2 ‖∇wn‖

1
2 ‖un‖‖∂t∇un‖

≤ C(α, ‖un‖)‖∇wn‖‖∂t∇un‖

≤ C(α, ‖un‖)‖∇wn‖2 +
α2

4
‖∂t∇un‖2.

Combining all the above estimates, we get

d

dt
‖∇un‖2 + 2‖∂tun‖2 + (α2 − 2ε‖µ‖L1(R+))‖∂t∇un‖2 ≤ C(α, ‖un‖)‖∇wn‖2 + ‖Pσ‖2V −1 + C(ε, ‖ηtn‖1,µ).

Choosing ε > 0 small enough such that α2− 4ε‖µ‖L1(R+) ≥ 0 and then integrating on (τ, t), t ∈ (τ, T ), leads
to

‖∇un‖2 +

∫ t

τ

(
‖∂tun(r)‖2 + (α2 − 2ε‖µ‖L1(R+))‖∂t∇un(r)‖2

)
dr
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≤ C(α, ‖un‖)
∫ T

τ

‖∇wn(t)‖2dt+

∫ T

τ

‖Pσ‖2V −1dt+ C(ε, ‖ηtn‖1,µ)T.

This inequality implies that

{∂tun} is bounded in L2(τ, T ;V1) (3.18)

thus

∂tun ⇀ ut weakly in L2(τ, T ;V1) (3.19)

up to a subsequence.
Now, we consider the nonlinear terms in the second equation of (3.1). By (2.12), we get

|〈(un · ∇)wn, φ〉| ≤ ‖un‖
1
2 ‖∇un‖

1
2 ‖∇wn‖‖∇φ‖

for all test functions φ ∈ V . Thus, −B(un, wn) is uniformly bounded in L2(τ, T ;V −1). Similar estimates
show that B(wn, un) is also uniformly bounded in L2(τ, T ;V −1). Therefore, from the second equation of
(3.1) and by the bounds we obtain above, we have

{∂twn} is bounded in L2(τ, T ;V −1), (3.20)

thus

∂twn ⇀ wt weakly in L2(τ, T ;V −1) (3.21)

up to a subsequence. Applying the AubinLions lemma in [9], we can conclude that (un, wn)→ (u,w) strongly
in L2(τ, T ;H)× L2(τ, T ;H).

Now, choosing some test function (ψ, ξ) ∈ C1
c ([τ, T ];V )×D(([τ, T ];D(R+, V )), then (3.1) holds with (ψ, ξ)

in place of (ϕk, ξj). Integrating the resulting equation over (τ, T ) and integrating by parts, we get

−
∫ T

τ

〈un, ψt〉dt+ 〈un(·, T ), ψt(·, T )〉 − 〈un(·, τ), ψt(·, τ)〉

− α2

∫ T

τ

〈∇un,∇ψt〉dt− α2〈∇un(·, T ),∇ψt(·, T )〉+ α2〈∇un(·, τ),∇ψt(·, τ)〉

+

∫ T

τ

〈∇un,∇ψ〉dt+

∫ T

τ

〈wn × un, Pnψ〉dt+

∫ T

τ

∫ ∞
0

µ(s)〈∇ηtn,∇ψ〉 =

∫ T

τ

〈Pf, ψ〉V −1,V dt,

−
∫ T

τ

〈wn, ψt〉dt+ 〈wn(·, T ), ψt(·, T )〉 − 〈wn(·, τ), ψt(·, τ)〉

+

∫ T

τ

〈∇un,∇ψ〉dt+

∫ T

τ

〈B(un, wn), Pnψ〉dt−
∫ T

τ

〈B(wn, un), Pnψ〉dt

+

∫ T

τ

∫ ∞
0

ν(s)〈∇ζtn,∇ψ〉 =

∫ T

τ

〈Pσ,∇× ψ〉dt.

(3.22)

By similar arguments as in [8], we have∣∣∣∣∣
∫ T

τ

〈wn × un, Pnψ〉dt−
∫ T

τ

〈w × u, ψ〉dt

∣∣∣∣∣→ 0 as n→∞,∣∣∣∣∣
∫ T

τ

〈B(un, wn), Pnψdt−
∫ T

τ

〈B(u,w), ψ〉dt

∣∣∣∣∣→ 0 as n→∞,∣∣∣∣∣
∫ T

τ

〈B(wn, un), Pnψdt−
∫ T

τ

〈B(w, u), ψ〉dt

∣∣∣∣∣→ 0 as n→∞.

Besides, the pressure term p can be recovered using a corollary of a deep result of G. de Rham. The corollary
states that, for any distribution g, the equality g = ∇p holds for some distribution p if and only if 〈g, w〉 = 0
for all w ∈ V . See [14] for an elementary proof of the corollary. Moreover, by standard arguments, we can
check that z satisfies the initial condition z(τ) = zτ . This implies that z = (u, ηt, w, ζt) is a weak solution of
problem (2.7).



VELOCITY-VORTICITY-VOIGT MODEL 11

ii) Uniqueness and continuous dependence. We assume that z1 = (u1, η
t
1, w1, ζ

t
1) and z2 = (u2, η

t
2, w2, ζ

t
2)

are two solutions subject to initial data z1(τ) and z2(τ), respectively. Denote (U, η̄t,W, ζ̄t) = (u1 − u2, η
t
1 −

ηt2, w1 − w2, ζ
t
1 − ζt2), we have
Ut + α2AUt +AU +

∫∞
0
µ(s)Aη̄t(s)ds+ P (w1 × U) + P (W × u2) = 0,

Wt +AW +
∫∞

0
ν(s)Aζ̄t(s)ds+B(u1,W )−B(w2, U)−B(W,u1) + λW = 0,

η̄tt + η̄ts = U,

ζ̄tt + ζ̄ts = W.

(3.23)

Taking the inner product of the first equation of (4.1) in L2(Ω) by U and the second one by W , we obtain

1

2

d

dt

(
‖U‖2 + α2‖∇U‖2 +

∫ ∞
0

µ(s)‖∇η̄t(s)‖2ds
)

+ ‖∇U‖2 −
∫ ∞

0

µ′(s)‖∇η̄t(s)‖2ds = −〈P (W × u2), U〉,

1

2

d

dt

(
‖W‖2 +

∫ ∞
0

ν(s)‖∇ζ̄t(s)‖2ds
)

+ ‖∇W‖2 + λ‖W‖2 −
∫ ∞

0

ν′(s)‖∇ζ̄t(s)‖2ds

= b(W,u1,W ) + b(w2, U,W )− b(U,w2,W ),

where 〈P (w1 × U), U〉 = 0 and U = η̄tt + η̄ts, W = ζ̄tt + ζ̄ts.
From the boundedness of ‖u2‖ and ‖∇w2‖, we deduce that there exists a constant C1, such that ‖∇u1‖, ‖u2‖, ‖∇w2‖ ≤
C1. Therefore, using (2.5), (2.4) and Holder’s inequality, Young’s inequality, we get

|〈P (W × u2), U〉| ≤
∫

Ω

|W ||u2||U |dx ≤ ‖W‖L3‖u2‖‖U‖L6

≤ C1‖W‖
1
2 ‖∇W‖ 1

2 ‖∇U‖

≤ C1‖W‖‖∇W‖+
C1

4
‖∇U‖2

≤ C1‖W‖2 +
C1

4
‖∇W‖2 +

C1

4
‖∇U‖2,

and

|b(w2, U,W )− b(U,w2,W )| ≤ C‖∇U‖‖∇w2‖‖W‖
1
2 ‖∇W‖ 1

2

≤ C1‖∇U‖‖W‖
C1
2 ‖∇W‖ 1

2

≤ C1‖W‖‖∇W‖+
C1

4
‖∇U‖2

≤ C1‖W‖2 +
C1

4
‖∇W‖2 +

C1

4
‖∇U‖2,

and

|b(W,u1,W )| ≤ C‖∇u1‖‖W‖
1
2 ‖∇W‖ 3

2

≤ C1‖W‖
1
2 ‖∇W‖ 3

2

≤ C1‖W‖2 +
C1

4
‖∇W‖2.

Combining the above three estimates, it yields

1

2

d

dt

(
‖U‖2 + α2‖∇U‖2 +

∫ ∞
0

µ(s)‖∇η̄t(s)‖2ds
)

+ ‖∇U‖2 ≤ C1‖W‖2 +
C1

4
‖∇W‖2 +

C1

4
‖∇U‖2, (3.24)

1

2

d

dt

(
‖W‖2 +

∫ ∞
0

ν(s)‖∇ζ̄t(s)‖2ds
)

+ ‖∇W‖2 + λ‖W‖2 −
∫ ∞

0

ν′(s)‖∇ζ̄t(s)‖2ds

≤ C1‖W‖2 +
C1

2
‖∇W‖2 +

C1

4
‖∇U‖2, (3.25)
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where −
∫∞

0
µ′(s)‖∇η̄t(s)‖2ds ≥ 0 and −

∫∞
0
ν′(s)‖∇ζ̄t(s)‖2ds ≥ 0.

Adding (4.2) and (3.25) gives

1

2

d

dt

(
‖U‖2V1

+ ‖W‖2 +

∫ ∞
0

µ(s)‖∇η̄t(s)‖2ds+

∫ ∞
0

ν(s)‖∇ζ̄t(s)‖2ds
)
6 2C1

(
‖W‖2 + ‖∇W‖2 + ‖∇U‖2

)
.

Thus,

d

dt
y(t) 6 4C1y(t),

where y(t) = ‖U‖2V1
+ ‖W‖2 +

∫∞
0
µ(s)‖∇η̄t(s)‖2ds+

∫∞
0
ν(s)‖∇ζ̄t(s)‖2ds.

By applying the Gronwall inequality, we obtain

y(t) ≤ e4C1T y(τ).

Therefore,

‖U‖2V1
+ ‖W‖2 +

∫ ∞
0

µ(s)‖∇η̄t(s)‖2ds+

∫ ∞
0

ν(s)‖∇ζ̄t(s)‖2ds

6 e2C1T

(
‖U(τ)‖2V1

+ ‖W (τ)‖2 +

∫ ∞
0

µ(s)‖∇η̄τ (s)‖2ds+

∫ ∞
0

ν(s)‖∇ζ̄τ (s)‖2ds
)

6
1

α2
e2C1T

(
‖U(τ)‖2V1

+ ‖W (τ)‖2 + ‖η̄τ (s)‖21,µ + ‖ζ̄τ (s)‖21,ν
)
.

This proves the uniqueness (when z1(τ) = z2(τ)) and the continous dependence on the initial data of the
weak solution. This completes the proof.

�

4. Existence of a uniform attractor

Theorem 3.1 allows us to define a family of processes {Uσ(t, τ)}σ∈Hw(f) as follows

Uσ(t, τ) : H1 → H1,

where Uσ(t, τ)zτ is the unique weak solution of (1.1) (with σ in place of f) at the time t with the initial
datum zτ at τ .

The aim of this section is to prove the following theorem.

Theorem 4.1. Assume that conditions (F ) and (M) hold. Then the family of processes {Uσ(t, τ)}σ∈Hw(f),
corresponding to problem (2.6) in H1 has a compact uniform (w.r.t σ ∈ Hw(f)) attractor Aε in the space
H1. Moreover,

A =
⋃

σ∈Hw(f)

Kσ(s), ∀s ∈ R,

where Kσ(s) is the kernel section at time s of the process Uσ(t, τ).

For proving this theorem, we need to show that the processes Uσ(t, τ) has a uniform absorbing set B0 in
H1 and Uσ(t, τ) is uniform asymptotically compact in H1.

4.1. Existence of a uniform absorbing set. Now, we prove the existence of a uniform absorbing set for
the family of processes {Uσ(t, τ)}σ∈Hw(f).

Lemma 4.2 (Bounded uniformly absobing set). Let (F ) and (M) hold. Then there exists a positive constant
C5 which only depends on ‖f‖L2

b
and the constant α, such that for any bounded subset B in H1, there is a

t∗3 = t(‖B‖H1),

‖Uσ(t, τ)zτ‖2H1
≤ C5, for t− τ ≥ t∗3, zτ ∈ B, σ ∈ Hw(f).

Moreover, there exists a positive constant C6 > 0 which depends on ‖f‖L2
b
, such that the following inequality

holds ∫ t+1

t

‖∇w‖2 ≤ C6.
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Proof. Multiplying the first equation of (2.7) with u and integrating by parts over Ω, we can obtain

1

2

d

dt

(
‖u‖2 + α2‖∇u‖2 +

∫ ∞
0

µ(s)‖∇ηt(s)‖2ds
)

+ ‖∇u‖2 −
∫ ∞

0

µ′(s)‖∇ηt(s)‖2ds = 〈Pσ, u〉V −1,V .

Thus,
d

dt

(
‖u‖2 + α2‖∇u‖2 +

∫ ∞
0

µ(s)‖∇ηt(s)‖2ds
)

+ ‖∇u‖2 ≤ 1

λ1
‖Pσ‖2V −1 (4.1)

where −
∫∞

0
µ′(s)‖∇ηt(s)‖2ds ≥ 0 and

|〈Pσ, u〉| 6 ‖Pσ‖V −1‖∇u‖ 6 1

2
‖∇u‖2 +

1

2
‖Pσ‖2V −1 .

Now, for γ1 > 0 to be fixed later, we define the functional

Λ1(t) = E1 + 4γ1

∫ ∞
0

κ(s)‖∇ηt(s)‖2ds,

where E1(t) = ‖u‖2 + α2‖∇u‖2 +
∫∞

0
µ(s)‖∇ηt(s)‖2ds.

From (4.1) and (4.2), we get

d

dt
Λ1(t) +

(
1− 8γ1θ

2
1κ(0)

)
‖∇u‖2 + 2γ1

∫ ∞
0

µ(s)‖∇ηt(s)‖2ds ≤ ‖Pσ‖2V −1 .

Choosing γ1 > 0 small enough such that

2γ1

(
1

λ1
+ α2

)
≤ 1− 8γ1θ

2
1κ(0),

we have
d

dt
Λ1(t) + 2γ1E1(t) ≤ 1

λ1
‖Pσ‖2.

Using (2.10),(2.12) and choosing γ1 small enough, we have

E1(t) ≤ Λ2(t) ≤ 2E1 (4.2)

thus
d

dt
Λ1(t) + γ1Λ1(t) ≤ ‖Pσ‖2V −1 .

Applying the Gronwall inequality, we obtain

Λ1(t) ≤ Λ1(τ)e−γ1(t−τ) +

∫ t

τ

e−γ1(t−r)‖Pσ(r)‖2V −1dr. (4.3)

Besides,∫ t

τ

e−γ1(t−r)‖Pσ(r)‖2V −1dr ≤
(∫ t

t−1

e−γ1(t−r)‖Pσ(r)‖2V −1ds+

∫ t−1

t−2

e−γ1(t−r)‖Pσ(r)‖2V −1dr + . . .

)
≤
(
1 + e−γ1 + e−2γ1 + . . .

)
‖Pσ‖2L2

b
≤ 1

1− e−γ1
‖Pf‖2L2

b
,

(4.4)

where we have used the fact that ‖Pσ‖2
L2
b
≤ ‖Pf‖2

L2
b

for all Pσ ∈ Hw(Pf).

Combining (4.2), (4.3) and (4.18), we get

‖u‖2V1
+ ‖ηt(s)‖21,µ ≤ Λ1(t) ≤ 2

(
‖uτ‖2V1

+ ‖ητ (s)‖21,µ
)
e−γ1(t−τ) +

1

λ1 (1− e−γ1)
‖Pf‖2L2

b
. (4.5)

Obviously, lim
t→+∞

e−γ1(t−τ) = 0, there exists a t∗1 = t∗1(‖u0‖V1 , ‖ητ (s)‖1,µ) > 0 such that

‖u‖2V1
+ ‖ηt‖21,µ ≤ C‖Pf‖2L2

b
= C2(‖f‖, α), ∀t > t∗1. (4.6)

Now, we give the proof of the boundedness of ‖w‖ and ‖ζt‖1,ν .
Multiplying the second equation of (2.7) with w and integrate by parts over Ω to obtain

1

2

d

dt

(
‖w‖2 +

∫ ∞
0

ν(s)‖∇ζt(s)‖2ds
)

+ ‖∇w‖2 + λ‖w‖2 −
∫ ∞

0

ν′(s)‖∇ζt(s)‖2ds
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= b(w, u,w) + 〈∇ × (Pσ), w〉. (4.7)

When t > t∗1, by using the Holder and Young inequalities, and (2.4), (4.6), we get

|〈∇ × (Pσ), w〉| 6 ‖Pσ‖V −1‖∇w‖ 6 2‖Pσ‖2V −1 +
1

8
‖∇w‖2,

and

|b(w, u,w)| 6 C‖∇u‖‖∇w‖ 3
2 ‖w‖ 1

2 6
3

4
‖∇w‖2 +

C4‖∇u‖4

4
‖w‖2

6
3

4
‖∇w‖2 +

C4‖u‖4V1

4α4
‖w‖2 6 3

4
‖∇w‖2 + C3‖w‖2,

where C,C3 =
C4C2

2

4α4
are positive constants.

Besides, since the term −
∫∞

0
ν′(s)‖∇ζt(s)‖2ds in (4.7) is positive, it can be neglected.

Combining (4.7) and the above inequalities, we obtain

1

2

d

dt

(
‖w‖2 +

∫ ∞
0

ν(s)‖∇ζt(s)‖2ds
)

+
1

4
‖∇w‖2 + C4‖w‖2 6 4‖Pσ‖2V −1 , ∀t > t∗1, (4.8)

where C4 = 2(λ− C3) > 0. For γ2 > 0 to be fixed later, we define the functional

Λ2(t) = ‖w‖2 + ‖ζt‖21,ν + 4γ2

∫ ∞
0

l(s)‖∇ζt(s)‖2ds.

Using (2.11),(2.13) and choosing γ2 small enough, we have

‖w‖2 + ‖ζt‖21,ν ≤ Λ2(t) ≤ 2
(
‖w‖2 + ‖ζt‖21,ν

)
. (4.9)

From (4.8) and (4.9), we get

d

dt
Λ2(t) +

(
1

2
− 8γ2θ

2
2l(0)

)
‖∇w‖2 + C4‖w‖2 + 2γ2‖ζt‖21,ν ≤ 4‖Pσ‖2V −1 . (4.10)

Choosing γ2 > 0 small enough such that 1
2 − 8γ2θ

2
2l(0) > 0 and putting γ3 = min{γ2, C3}, we have

d

dt
Λ2(t) + γ3Λ2(t) ≤ 4‖Pf‖2V −1 .

Applying the Gronwall inequality and using (4.18), (4.9), we obtain

‖w‖2 + ‖ζt‖21,ν 6 2
(
‖wτ‖2 + ‖ζt‖21,ν

)
e−γ3(t−τ) + 4

∫ t

τ

e−γ1(t−r)‖Pσ(r)‖2V −1dr

6 2
(
‖wτ‖2 + ‖ζτ‖21,ν

)
e−γ3(t−τ) +

4

1− e−γ3
‖Pf‖2L2

b
.

Therefore, there exists a t∗2 = t∗2 (‖(uτ , wτ , ητ , ζτ )‖H1
) > t∗1, such that

‖w‖2 + ‖ζt‖21,ν ≤
8

1− e−γ3
‖Pf‖2L2

b
= C4, ∀t > t∗2. (4.11)

Combining (4.6) and (4.11), we immediately deduce that

‖u(t)‖2V1
+ ‖ηt‖21,µ + ‖w(t)‖2 + ‖ζt‖21,ν ≤ C2 + C4,

or

‖z(t)‖2H1
≤ C5, C5 = C2 + C4, (4.12)

for all zτ ∈ B, σ ∈ Hw(f) and for all t ≥ t∗2, where B is an arbitrary bounded subset of H1.
On the other hand, integrating (4.8) between t and t+ 1, we obtain∫ t+1

t

‖∇w‖2 ≤ C4
1
2 − 8γ2θ2

2l(0)
= C6. (4.13)

This completes the proof �
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4.2. Asymptotic compactness. The main difficulty of the problem is, of course, that the embeddings
are no longer compact. In order to get the asymptotic compactness of the solution, we are going to take
advantage of the method of the semigroup decomposition.

Recall that in this paper we only assume the external force f ∈ V −1. However, we know that for any
f ∈ V −1 and ε > 0 given, there is a fε ∈ H, which depends on f and ε, such that

‖f − fε‖V −1 < ε. (4.14)

4.2.1. Decomposition of the equation. It is convenient to make asymptotic estimates when we decompose the
solution Uσ(t, τ)zτ = z(t) of problem (4.2) (with σ in place of f) as

Uσ(t, τ)zτ = D(t, τ)zτ +Kσ(t, τ)zτ ,

where D(t, τ)zτ = z1(t) and Kσ(t, τ)zτ = z2(t), that is, z = (u, ηt, w, ζt) = z1+z2, z1 = (vε, ηtε, rε, ζtε1 ), z2 =
(v̄ε, ηtε2 , r̄

ε, ζtε2 ). For convenience, we still denote z1 = (v, ηt1, r, ζ
t
1), z2 = (v̄, ηt2, r̄, ζ

t
2). Besides, D(t, τ)zτ solves

the following equation with initial data z1(τ) = zτ ,
vt + α2Avt +Av +

∫∞
0
µ(s)Aηt1(s)ds+ P (w × v) = Pσ − Pσε,

rt +Ar +B(u, r)−B(w, v) + λr +
∫∞

0
ν(s)Aζt1(s)ds = 0,

∂tη
t
1 + ∂sη

t
1 = v, ∂tζ

t
1 + ∂sζ

t
1 = r

(4.15)

and Kσ(t)zτ solves the following equation with initial data z2(τ) = 0
v̄t + α2Av̄t +Av̄ +

∫∞
0
µ(s)Aηt2(s)ds+ P (w × v̄) = Pσε,

r̄t +Ar̄ +B(u, r̄)−B(w, v̄) + λr̄ +
∫∞

0
ν(s)Aζt2(s)ds = ∇× (Pσ),

∂tη
t
2 + ∂sη

t
2 = v̄, ∂tζ

t
2 + ∂sζ

t
2 = r̄.

(4.16)

By the standard Galerkin method, one can prove the existence and uniqueness of solutions to problems (4.15)
and (4.16). Besides, for problem (4.16), because the external force fε ∈ H and the initial data are zero (so
belong to H2), we can show that the solution z2 = (v̄, ηt2, r̄, ζ

t
2) is in fact a strong solution. In particular, we

will have z2 ∈ H2 for any T > 0 and this will be used in the proof of Lemma 4.4 below.
We now prove some estimates for solutions of these two systems.

Lemma 4.3. Assume that hypotheses (M)-(F) hold. Then the solutions of equation (4.15) satisfy the
following estimate: there is a constant γ6 > 0 and there exist t∗3 > t∗2 > τ large enough, such that

‖D(t, τ)zτ‖2H1
≤ C‖z(τ)‖2H1

e−γ6(t−τ) + ε, for all t ≥ t∗3.

Proof. Multiplying the first equation of (4.15) by v, we have

1

2

d

dt
(‖v‖2 + α2‖∇v‖2 + ‖ηt1‖21,µ) + ‖∇v(t)‖2 −

∫ ∞
0

µ′(s)‖∇ηt1(s)‖2ds = 〈Pσ − Pσε, v〉V −1,V

≤ ‖Pσ − Pσε‖2V −1 +
1

4
‖∇v(t)‖2.

Now, for γ3 > 0 to be fixed later, we define the functional

Λ3(t) = E3 + 4γ4

∫ ∞
0

κ(s)‖∇ηt1(s)‖2ds, E3(t) = ‖v‖2 + α2‖∇v‖2 + ‖ηt1‖21,µ.

Using (2.10),(2.12) and choosing γ4 small enough, we have

E3(t) ≤ Λ3(t) ≤ 2E3.

From (4.1) and (4.2), we get

d

dt
Λ3(t) +

(
1− 8γ4θ

2
1κ(0)

)
‖∇v‖2 + 2γ4

∫ ∞
0

µ(s)‖∇ηt1(s)‖2ds ≤ ‖Pσ − Pσε‖2V −1 .

Choosing γ4 > 0 small enough such that

2γ4

(
1

λ1
+ α2

)
≤ 1− 8γ4θ

2
1κ(0),
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we have
d

dt
Λ3(t) + 2γ4E3(t) ≤ ‖Pσ − Pσε‖2V −1 ,

thus
d

dt
Λ3(t) + γ4Λ3(t) ≤ ‖Pσ − Pσε‖2V −1 ,

And then, we can get the following estimate by Gronwall inequality

‖v‖2 + α2‖∇v‖2 + ‖ηt1‖21,µ ≤ Λ3(t) ≤ C
(
‖uτ‖2V1

+ ‖ητ‖21,µ
)
e−γ4(t−τ) + Cε2. (4.17)

Now we consider the ‖r(t)‖2 + ‖ζt1‖21,ν . Taking the inner product of the second equation of (4.15) with r
and then using (2.3) and (4.17), we have

1

2

d

dt
(‖r‖2 + ‖ζt1‖21,ν) + ‖∇r‖2 + λ‖r‖2 −

∫ ∞
0

µ′(s)‖∇ηt1(s)‖2ds = b(w, v, r).

Using (2.3), (4.17) and Young inequality, we have

b(w, v, r) ≤ C‖v‖ 1
2 ‖∇v‖ 1

2 ‖∇w‖‖∇r‖

≤ C‖∇v‖2‖∇w‖2 +
1

2
‖∇r‖2

≤
(
C
(
‖uτ‖2V1

+ ‖ητ‖21,µ
)
e−γ4(t−τ) + Cε2

)
‖∇w‖2 +

1

2
‖∇r‖2.

Therefore,

d

dt
(‖r‖2 + ‖ζt1‖21,ν) + ‖∇r‖2 + 2λ‖r‖2 ≤

(
C
(
‖uτ‖2V1

+ ‖ητ‖21,µ
)
e−γ4(t−τ) + Cε2

)
‖∇w‖2.

Now, for γ5 > 0 to be fixed later, we define the functional

Λ4(t) = ‖r‖2 + ‖ζt1‖21,ν + 4γ5

∫ ∞
0

l(s)‖∇ζt1(s)‖2ds.

Using (2.10),(2.12) and choosing γ5 small enough, we have

‖r‖2 + ‖ζt1‖21,ν ≤ Λ3(t) ≤ 2
(
‖r‖2 + ‖ζt1‖21,ν

)
.

Thus, we get

d

dt
Λ4(t) +

(
1− 8γ5θ

2
2l(0)

)
‖∇r‖2 + 2λ‖r‖2 + 2γ5

∫ ∞
0

µ(s)‖∇ηt1(s)‖2ds

≤
(
C‖zτ‖2H1

e−γ4(t−τ) + Cε2
)
‖∇w‖2.

Choosing γ5 > 0 small enough such that

1− 8γ5θ
2
2l(0) > 0 and γ5 ≤ λ,

we have
d

dt
Λ4(t) + 2γ5

(
‖r‖2 + ‖ζt1‖21,ν

)
≤
(
C‖zτ‖2H1

e−γ4(t−τ) + Cε2
)
‖∇w‖2,

thus
d

dt
Λ4(t) + γ5Λ4(t) ≤

(
C‖zτ‖2H1

e−γ4(t−τ) + Cε2
)
‖∇w‖2,

Applying the Gronwall inequality, we deduce that

‖r‖2 + ‖ζt1‖21,ν ≤ Λ4(t) ≤ C‖zτ‖2H1
e−γ5(t−τ) + C‖zτ‖2H1

∫ t

τ

e−γ5(t−s)e−γ4(s−τ)‖∇w(s)‖2ds

+ Cε2

∫ t

τ

e−γ5(t−r)‖∇w(r)‖2dr.

On the other hand, using (4.13), we have∫ t

τ

e−γ5(t−s)e−γ4(s−τ)‖∇w(s)‖2ds



VELOCITY-VORTICITY-VOIGT MODEL 17

≤ e−γ4(t−τ)

∫ t

τ

e−γ5(t−s)‖∇w(s)‖2ds

≤ e−γ4(t−τ)

(∫ t

t−1

e−γ5(t−s)‖∇w(s)‖2ds+

∫ t−1

t−2

e−γ5(t−s)‖∇w(s)‖2ds+ . . .

)
≤ e−γ4(t−τ)

(
1 + e−γ5 + e−2γ5 + . . .

)
C6

≤ C6

1− e−γ5
e−γ4(t−τ),

and ∫ t

τ

e−γ5(t−r)Cε2‖∇w(r)‖2dr ≤ CC6ε
2

1− e−γ1
. (4.18)

Therefore,

‖r‖2 + ‖ζt1‖21,ν ≤ C‖zτ‖2H1
e−γ5(t−τ) +

CC6‖zτ‖2H1

1− e−γ5
e−γ4(t−τ) + Cε2. (4.19)

Combining (4.17) and (4.19) and taking 2Cε2 ≤ ε, we can conclude that

‖D(t, τ)zτ‖2H1
≤ C‖zτ‖2H1

e−γ6(t−τ) + ε.

Next we concern the solution operator K(t). We will show that, for every fixed time, as (u0, w0) belongs
to the absorbing set Bβ , the component related to K(t)u0 belongs to a compact subset of V1. �

Lemma 4.4. Let (F ) and (M) hold. Then, for any ε > 0, α ∈ (0, 1], zτ ∈ H1, there exists M > 0, t∗3 > τ
large enough, which depends on ‖zτ‖2H1

, ‖Pfε‖L2
b
, ‖∇ × Pf‖L2

b
, such that

‖Kσ(t, τ)zτ‖2H2
≤M for all t ≥ t∗3. (4.20)

Proof. Taking the second equation of (4.16) by Av̄ and integrating by parts over ω to obtain

1

2

d

dt

(
‖∇v̄‖2 + α2‖Av̄‖2 +

∫ ∞
0

µ(s)‖Aηt2(s)‖2ds
)

+ ‖Av̄‖2 −
∫ ∞

0

µ′(s)‖Aηt2(s)‖2ds+ 〈P (w × v̄), Av̄〉 = 〈Pσε, Av̄〉.

Using Holder and Young inequalities, we get

〈Pσε, Av̄〉 ≤ ‖Pσε‖2 +
1

4
‖Av̄‖2.

By the boundedness of ‖∇u‖ and ‖∇v‖, we can deduce that ‖∇v̄‖ is bounded. Using Holder, Young and
Agmon inequalities, as well as the boundedness of ‖∇v̄‖ and ‖w‖, we get

|〈P (w × v̄), Av̄〉| ≤ ‖w‖‖v̄‖L∞‖Av̄‖

≤ C‖w‖‖∇v̄‖ 1
2 ‖Av̄‖ 3

2

≤ C‖∇v̄‖ 1
2 ‖Av̄‖ 3

2

≤ C‖∇v̄‖2 +
1

4
‖Av̄‖2

≤ C +
1

4
‖Av̄‖2 for all t ≥ t∗2.

Combining the above inequalities and −
∫∞

0
µ′(s)‖Aηt2(s)‖2ds ≥ 0, we have

d

dt

(
‖∇v̄‖2 + α2‖Av̄‖2 +

∫ ∞
0

µ(s)‖Aηt2(s)‖2ds
)

+ ‖Av̄‖2 ≤ 2‖Pσε‖2 + C.

Now, for γ6 > 0 to be fixed later, we also define the functional

Λ5(t) = E5(t) + 4γ6

∫ ∞
0

κ(s)‖Aηt2(s)‖2ds, E5(t) = ‖v̄‖2V2
+ ‖ηt2‖22,µ.
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Thus, we obtain

d

dt
Λ5(t) +

(
1− 8γ6θ

2
1κ(0)

)
‖Av̄‖2 + 2γ6

∫ ∞
0

µ(s)‖∇ηt(s)‖2ds ≤ 2‖Pσε‖2 + C.

Choosing γ5 small enough such that
2γ6

kα
≤ 1 − 8γ6θ

2
1κ(0) and E5 ≤ Λ5(t) ≤ 2E5, then using (2.9), we can

deduce that
d

dt
Λ5(t) + 2γ6E5(t) ≤ 2‖Pσε‖2 + C,

thus
d

dt
Λ5(t) + γ6Λ5(t) ≤ 2‖Pσε‖2 + C. (4.21)

By the Gronwall inequality, we obtain

Λ5(t) ≤ 1

(1− e−γ6)
‖Pfε‖2L2

b
+ C,

thus

‖v̄‖2V2
+ ‖ηt2‖22,µ ≤M1, where M1 =

1

(1− e−γ6)
‖Pfε‖2L2

b
+ C and t ≥ t∗2. (4.22)

Next, we will show the boundedness of ‖∇r̄‖ and ‖ζt2‖2,ν . Multiplying the second equation of (4.16) by
Ar̄ and integrating by parts over ω, we obtain

1

2

d

dt

(
‖∇r̄‖2 +

∫ ∞
0

ν(s)‖Aζt2(s)‖2ds
)

+ ‖Ar̄‖2 + λ‖∇r̄‖2 −
∫ ∞

0

µ′(s)‖Aηt2(s)‖2ds

= 〈∇ × (Pσ), Ar̄〉+ b(w, v̄, Ar̄)− b(u, r̄, Ar̄).

Now we deal with the three terms on the right hand side of above equality as follows

|〈∇ × (Pσ), Ar̄〉| ≤ ‖∇ × (Pσ)‖2 +
1

4
‖Ar̄‖2;

|b(w, v̄, Ar̄)| ≤ ‖w‖L6‖∇v̄‖L3‖Ar̄‖
≤ C‖∇w‖‖Av̄‖‖Ar̄‖
≤ CM1‖∇w‖‖Ar̄‖

≤M2‖∇w‖2 +
1

4
‖Ar̄‖2,

where we have used the Holder and Young inequalities and (4.22);

|b(u, r̄, Ar̄)| ≤ ‖u‖L6‖∇r̄‖L3‖Ar̄‖

≤ C‖∇u‖‖∇r̄‖ 1
2 ‖Ar̄‖ 3

2

≤ CC5‖∇r̄‖
1
2 ‖Ar̄‖ 3

2

≤M3‖∇r̄‖2 +
1

4
‖Ar̄‖2,

where we have also used the Holder and Young inequalities, ‖∇r̄‖L3 ≤ C‖∇r̄‖ 1
2 ‖Ar̄‖ 1

2 , and (4.12).
Combining the above inequalities and the term −

∫∞
0
µ′(s)‖Aηt2(s)‖2ds ≥ 0 can be neglected, we have

d

dt

(
‖∇r̄‖2 + ‖ζt2‖22,ν

)
+ ‖Ar̄‖2 +M4‖∇r̄‖2 ≤ 2M2‖∇w‖2 + 2‖∇ × (Pσ)‖2, ∀t ≥ t∗2,

where M4 = 2(λ−M3) > 0. Similarly to the proof of (4.21) we obtain

d

dt
Λ6(t) + γ7Λ6(t) ≤ 2M2‖∇w‖2 + 2‖∇ × (Pσ)‖2.
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where Λ6(t) = ‖∇r̄‖2 + ‖ζt2‖22,ν + 4γ6

∫∞
0
l(s)‖Aζt2(s)‖2ds and γ7 > 0 is small enough. Then, we can get the

following estimate by Gronwall inequality, (F ) and (4.13)

‖∇r̄‖2 + ‖ζt2‖22,ν ≤
C

(1− e−γ7)

(
M2 + ‖∇ × f‖2L2

b

)
= M5 for all t ≥ t∗2. (4.23)

Combining (4.22) and (4.23), we end up with

‖Kσ(t, τ)zτ‖2H2
≤M for all t ≥ t∗3 > t∗2.

�

In addition, for any (η2τ , ζ2τ ) ∈ L2
µ(R+, V )× L2

ν(R+, V ), the Cauchy problem (see e.g. [2, 12]){
∂t(η

t
2, ζ

t
2) = −∂s(ηt2, ζt2) + (v̄, r̄), t > τ,

(ητ2 , ζ
τ
2 ) = (η2τ , ζ2τ ),

has a unique solution (ηt2, ζ
t
2) ∈ C((τ,+∞);L2

µ(R+, V )× L2
ν(R+, V )), and

ηt2(s) =

{∫ s
0
v̄(t− r)dr, τ < s ≤ t,

η2τ (τ + s− t)− η2τ (τ) +
∫ t

0
v̄(t− y)dy, s > t.

(4.24)

ζt2(s) =

{∫ s
0
r̄(t− r)dr, τ < s ≤ t,

ζ2τ (τ + s− t)− ζ2τ (τ) +
∫ t

0
r̄(t− y)dy, s > t.

(4.25)

So, for the equations (4.24) and (4.25), thanks to (ητ2 (x, s), ζτ2 (x, s)) = (0, 0), we have

ηt2(s) =

{∫ s
0
v̄(t− y)dy, τ < s ≤ t,∫ t

0
v̄(t− y)dy, s > t.

(4.26)

ζt2(s) =

{∫ s
0
r̄(t− y)dy, τ < s ≤ t,∫ t

0
r̄(t− y)dy, s > t.

(4.27)

Let B0 be the bounded uniformly absorbing set obtained from Lemma 4.2; then

Lemma 4.5. Assume that the external force f satisfies (F ), σ ∈ Hw(f) and (M) hold. Setting

KT = PKσ(T, τ)B0,

for T > τ large enough, where {Kσ(t, τ)}t≥τ is the solution process of (4.16), P : V1 × H × L2
µ(R+, V ) ×

L2
ν(R+, V ) → L2

µ(R+, V ) × L2
ν(R+, V ) is the projection operator. Then there is a positive constant N1 =

N1(‖B0‖H1
) such that

(i) KT is bounded in L2
µ(R+, D(A)) ∩H1

µ(R+;V )× L2
ν(R+, D(A)) ∩H1

ν (R+;V ),

(ii) sup(ηt2,ζ
t
2)∈KT ‖(η

t
2(s), ζt2(s))‖2V×V ≤ N1.

Moreover, KT is relatively compact in L2
µ(R+, V )× L2

ν(R+, V ).

Proof. Due to the explicit expression (4.26), we have

∂sη
t
2(s) =

{
v̄(t− s), 0 < s ≤ t,
0, s > t,

∂sζ
t
2(s) =

{
r̄(t− s), 0 < s ≤ t,
0, s > t.

Combining with Lemma 4.4, this implies that (i) holds.
After that, using (4.26) once again, we can deduce that

‖ηT2 (s)‖2V ≤

{∫ s
0
‖v̄(T − y)‖2V dr ≤

∫ T
0
‖v̄(T − y)‖2V dy, 0 < s ≤ T,∫ T

0
‖v̄(T − y)‖2V dy, s > T ;

‖ζT2 (s)‖2V ≤

{∫ s
0
‖r̄(T − y)‖2V dr ≤

∫ T
0
‖r̄(T − y)‖2V dy, 0 < s ≤ T,∫ T

0
‖r̄(T − y)‖2V dy, s > T ;

By virtue of (4.20), we know that (ii) holds. Because D(A) ↪→ V compactly, we conclude that KT is relatively
compact in L2

µ(R+, V )× L2
ν(R+, V ) thanks to the following lemma:
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Lemma 4.6. [12] Assume that µ ∈ C1(R+) ∩ L1(R+) is a nonnegative function and satisfies the condition:
if there exists s0 ∈ R+ such that µ(s0) = 0, then µ(s) = 0 for all s ≥ s0. Moreover, let X0, X1, X2 be Banach
spaces, here X0, X2 are reflexive and satisfy

X0 ↪→ X1 ↪→ X2,

where the embedding X0 ↪→ X1 is compact. Let C ⊂ L2
µ(R+, X1) satisfy

(i) C is a subset in L2
µ(R+, X0) ∩H1

µ(R+, X2);

(ii) supη∈C ‖η(s)‖2X1
≤ h(x, s),∀s ∈ R+, where h ∈ L1

µ(R+).

Then C is relatively compact in L2
µ(R+, X1).

�

4.3. Proof of Theorem 4.1.

Proof. By Lemma 4.2, the family of processes Uσ(t, τ) has a bounded absorbing B0 in H1. Moreover, Uσ(t, τ)
is uniform asymptotically compact inH1 due to Lemmas 4.3 and 4.5. Therefore, the family of process Uσ(t, τ)
has the uniform attractor A in H1.

�
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