
History of the development of the Half-Projected Hartree-Fock

method. Application to the calculation of excited states of the

same symmetry as the ground state
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Abstract

Spin projected wave functions are known as generalizations of the Hartree-Fock wave function.

Among them, the Half-Projected Hartree-Fock (HPHF) model represents a good compromise be-

tween the restricted (RHF) and unrestricted (UHF) Hartree-Fock methods. The HPHF wave

function is a nearly pure wave function of spin and recovers a small part of the spin correlation

energy. This paper reviews the history of the HPHF theory, not only from the conceptual point of

view but also providing a compilation of the publications of this method over the years until now.

In addition, the extension of the HPHF method to the calculation of non-orthogonal excited states

to the ground state will be treated. The variational collapse during the calculation of singlet ex-

cited states with the same symmetry as the ground state is avoided by orthogonalizing the excited

orbital to the corresponding occupied orbital. As an example, the potential energy surface of the

S0 ground and 1S1(n, π
∗) first excited state of the formic acid HCOOH are calculated. Formic acid

exhibits complex energy surfaces with respect two large amplitude motions, the torsional rotation

of the O-H group and the waving out-of-plane angle of the H atom. In the excited state, the

molecule adopts a pyramidal structure. The obtained energy results are fitted to curves that can

be used for the calculation of the theoretical spectrum.
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I. THE HARTREE-FOCK THEORY AND ITS GENERALIZATIONS

Today we are approaching the celebration of the centenary of the development of the

Hartree-Fock (HF) theory. Hartree’s first publications on cristalographic applications of

atomic theory date back to 1923. His work during the 1920s was based on his proposal of

the independent particle model, in which the electron can be considered to move around a

central field created by the nucleus and the average field from the repulsion of all the other

electrons, neglecting the instantaneus interelectronic interactions. In an atom, this is called

the central field approximation. The Hartree method [1], in which the wave function is a

product of one-electron orbitals, strictly represents the independent particle model. But the

Hartree-Fock wave function [2, 3] is antisymmetrized, taking into account the Pauli principle

in the form of a Slater determinant, which will be zero in the case that two rows or columns

are equal, so that the probability that two electrons are at the same place at the same time

is zero, creating a Fermi hole.

The wave functions that are exact solutions of the Schrödinger equation are eigenvalues

of the spin Ŝ2 and Ŝz and angular momentum L̂2, L̂z operators. These operators commute

with the Hamiltonian Ĥ and they share the same set of solutions. This ensures that varia-

tionally projected wave functions lead to better energy resuts. However, in the central field

aproximation we are working with aproximated wave functions, which do not fulfill these

symmetry properties.

According to the theoretical concept of doubly electronic occupancy of the orbitals, it

is possible to impose on the HF wave function the restriction that the spatial parts of

the one-electron orbitals belonging to the same atomic or molecular orbital are the same.

This restriction leads to the Restricted Hartree-Fock (RHF) wave function, which has the

advantage that the single determinant wave function is automatically an eigenfunction of

the spin Ŝ2 and Ŝz operators, i.e. the RHF wave function is a pure wave fuction of spin.

The RHF wave function is then defined as a Slater determinant, which is constructed with

ai one-electron spin orbitals or basis functions ai of spin α and āi of spin β:

ΨRHF = |a1ā1a2ā2 . . . anān| (1)

where the vertical bar notation represents a normalized Slater determinant, with normal-

ization constant 1√
N !

. In the RHF wave function N = 2n. Due to the widespread use of the
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RHF model, following Löwdin [4], the correlation energy is defined as the difference between

the RHF energy and the exact non-relativistic energy, and the correlation effects are those

that are not yet been included in the RHF wave function. In some especial cases the RHF

fails, due to the restrictions it contains. For example, the RHF model cannot correctly

reproduce molecular dissociation at large distances in neutral fragments.

The methods whose goal is to obtain part of the correlation energy are generalizations of

the HF method within the single determinat approximation. These methods are based on

the idea of using ”different orbitals for diferents spins” (DODS), an idea that was probably

first explored by Slater [5] in the solid state physics and generalized by Löwdin to molecular

systems. The idea behind the DODS approach is that important correlation effects can be

taken into account if pairs of electrons of opposite spin are not forced to occupy identical

space orbitals. In this way, the electrons of opposite spin would avoid each other by increasing

the interelectronic distances creating the so-called Coulomb hole. Eliminating the restriction

of doubly occupancy of the orbitals in the RHF wave function, we obtain the Unrestricted

Hartree-Fock (UHF) wave function or DODS wave function, defined as:

ΨUHF = ΨDODS = D0 = |a1b̄1a2b̄2 . . . anb̄n| (2)

As in the DODS method the orbitals can be varied independently, the application of

the UHF method means more flexibility in the wave function during the variational proce-

dure. Consequently, the UHF method leads to lower/better energies than the RHF method.

Therefore the UHF method achieves to recover a small part of the correlation energy and

also the molecules dissociate correctly. However, at short or intermediate intranuclear dis-

tances, especially at equilibrium distances, there is no difference between using one method

or another, being unnecessary to use the UHF one.

Unfortunately, the UHF wave function has the drawback, as single DODS determinant,

that is not an eigenfunction of the operator Ŝ2, and therefore, it is not a pure spin eigen-

function because it does not correspond to a defined multiplicity of spin, but it is mixture

of different spin multiplicities (singlet, triplet, etc).

Löwdin introduced the term of ”symmetry dilema” [6, 7] to describe this situation: If we

request the wave function has a required spin symmetry, then this is a constrain that will

result variationally in a higher energy result. On the contrary, if we let the wave function to

be flexible and get a lower energy, then the wave function has spin contamination. Löwdin
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proposed an ’analysis of components’ using a project operator. To solve this dilemma,

Löwdin [6] proposed to use a more elegant ”general spin projection operator”, named after

him, which allows extracting from a wave funtion, which is a mixture of multiplicites, the

desired multiplicity S(S + 1). Prat [8] in 1953 had constructed a projection operator that

produced a singlet state.

The energy of the unrestricted wave function can be considered as a linear combination

or weighted averaged energies of the pure components. As these values are usually different,

a lower energy than the initial one can be found. So the use of the operator allows not only

to have the correct symmetry but also to improve the energy.

A. The Spin-Projected Extended Hartree-Fock Wave Function

The Spin-Projected Extended Hartree-Fock (PHF or EHF) wave function defined by

Löwdin in 1955 [6] can be considered as the best single Slater determinant built on one-

electron spin orbitals that have flexibility and projected in the appropriate symmetry state

of interest. The projected wave function (determinant) is a linear combination of Slater

determinants but conceptually one single entity in the same way that the Slater determinant

is a linear combination of Hartree products [6, 7]. In this sense, the EHF model is the

generalization of the independent particle model.

The spin-projector operator annihilates all the components of the unwanted multiplic-

ity, leaving the spin component S of the desired multiplicity S(S + 1) unchanged. That

is, it projects onto the subspace of the spin eigenfunctions, the appropiate eigenfunction.

To visualize this, we can imagine a vector in a n-dimensional space, which is the sum or

linear combination of the vector components or coordinates on each axis or dimension. The

projection on one of the axis corresponds to an eigenvector or component. The projection

operator on a state with spin Sk is then:

ΘSk
=

∏
S(S2 − S(S + 1))∏

S(Sk(Sk + 1)− S(S + 1))
(3)

The action of the full spin projection operator on a DODS Slater determinant D0 Eq.

(2), produces following Löwdin [6, 9] a linear combination of Slater determinants Dj, which

are at the same time a linear combination of all Slater determinants obtained from D0 by

exchanging j orbitals of α spin for other j of β spin, whose coefficients are the well-known
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Sanibel Coefficients [9],

Θ̂SD0 =
n∑
j=0

Cj(S, 0, n)Dj (4)

The spin-orbitals have complete flexibility and are variationally determined. Although

the EHF wave function is conceptually simple, it is computationally complex. The main

disadvantage of the EHF wave function is that the number of determinants produced is
(
2n
n

)
where n is the number of electrons. Therefore, the number of Slater determinants depends

on the number of electrons and this number grows rapidly with the number of electrons.

The evaluation of the matrix elements over the EHF wave functions and their program-

ming are enormously complicated. They have been derived by Mayer et al. [7, 10, 11] for

even electron systems and Mayer [12] for odd electron systems from the Brillouin’s theorem

and using corresponding orbitals. In the case of the ground state of the He atom, Lefebvre

and Smeyers [13] obtained 90 % of the correlation energy employing only four projected

configurations constructed with Slater orbitals. Also, the EHF wave function has a large

overlap with the Configuration Interaction (CI) wave function. Some applications of the

EHF method to systems with even number of electrons as butadiene [14], cyclobutadiene

[7, 15], and some π-electron systems [18] lead to very good energy results, recovering more

than 90% of the correlation energy, as a similar full-CI calculation. In systems with odd

number of electrons, the results were very good for allyl radical, whereas for larger systems

as benzyl radical the method takes into account about only 50% of the correlation energy.

For more details, see Ref. [7]. Odd electron systems which cannot be treated well with the

RHF method would be a field of application of the EHF method. Another advantage of the

EHF method is the correct description of the molecular dissociation into neutral fragments,

see Fig. 7 of [7].

Finally, another drawback of the EHF wave function is that the electronic correlation is

important only for small electron systems (molecules with up to 25 or 30 electrons) [16]. For

larger systems, the EHF energy tends to the UHF energy as noted by Mayer et al. [7, 17–19].

Therefore, the use of the EHF method can be validated for problems in solid state physics,

that is, to treat antiferromagnetism, polymers and crystals.
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B. The Half-Projected Hartree-Fock Wave Function

Mayer in his landmark review [7, p. 217] wrote ”Smeyers and co-workers worked out an

extremely simple and ingenious variant of the partial annihilation, called the ”half projected

HF” (HPHF) method ... The method gives results which are closed to the EHF ones and

may be considered as a happy compromise between the spin ”symmetry dilemma” and other

troubles connected with the UHF method, on the one hand, and the complexity of the EHF

equations, on the other”.

In fact, the Half-Projecte Hartree-Fock model (HPHF) introduces some correlation effects,

beyond the usual RHF. The HPHF model was proposed by Smeyers in 1971 [20, 21] and

represents a good compromise between the UHF and the PHF/EHF wave functions, since

the HPHF wave-function consists of only two Slater determinants and retains the conceptual

simplicity of the RHF method at the same time despite its direct determination, half of the

spin contaminants are aniquilated [21]. This model yields results close to those of PHF

and better than those of UHF, whereas the method uses only the same computational time

of one UHF calculation. In addition, the method can compite with the full-CI procedure,

which uses millions of configurations. The full-CI method uses the same basis set for ground

and excited states, but the HPHF method can use different basis sets. As is well-known the

full-CI method is computationally very expensive to be used in the practice for medium and

large systems.

Let us define the HPHF wave fuction and look its properties in detail. The HPHF wave

function for a 2n electron system, in a ground state of S quantum number, even or odd, is

written as a linear combination of two Slater determinants, built up with spinorbitals that

minimize the total energy [20, 21]:

Ψ =
1

2
{|a1b̄1a2b̄2 . . . anb̄n|+ (−1)S+n|ā1b1ā2b2 . . . ānbn|} (5)

where ai and bi are orbitals of opposite spin belonging to the same electron pair. Here the

bar notation implies the normalization factor 1√
N !

.

The linear combination is obtained by projection of one determinant on the spin eigen-

states with S even or odd:

Â(S) =
1

2
[1 + (−1)S+nP̂αβ] (6)
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where P̂αβ is a permutation operator which interchanges all the α and β functions in the

determinant.

The Â(S) is a half-projector operator, its expression can be obtained from the full-

projector operator of Löwdin, as is shown in the next lines. The action of the full spin

projected operator Eq. (3) over a DODS Slater determinant D0, yields a linear combination

of Slater determinants Dj obtained from D0 by changing j orbitals of α spin for other j

orbitals of β spin, whose coefficients are the known Sanibel Coefficients, Cj. The sumation

Eq. (4) can be also expressed [22]:

Θ̂SD0 =
1

2

n∑
j=0

CjDj +
1

2

n∑
j=0

Cn−jDn−j (7)

and using the symmetry property of the Sanibel Coefficients:

C(S, n− k) = (−1)n+SC(S, n) (8)

and the relation among the terms which represent a sum of Slater determinants,

Dn−p = P̂αβDp (9)

one obtains,

Θ̂SD0 =
n∑
j=0

CjÂ(S)Dj =
n∑
j=0

CjΨj (10)

where Â(S) is the Half-Projected operator. The spin half-projector fulfill these two proper-

ties:

Â(even)× Â(odd) = 0̂ (11)

Â(even) + Â(odd) = 1̂ (12)

The space of the spin states is split into two subspaces, one for states of even spin and

the other for odd spin. Also can be demonstrated that:

ΘS=oddÂ(even)D0 = 0 (13)

ΘS=evenÂ(odd)D0 = 0 (14)
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so the HPHF wave function of a spin state S = 0, 2, 4, . . . does not contain contamination

of S = 1, 3, 5, . . . and the opposite. When calculating a singlet, the triplet contamination is

absent, but a little contamination from quintuplet, nonaplet and higher multiplicity appears

[21]. In the same way, the HPHF wave function of a triplet does not contain singlet con-

tamination but does contain heptuplet, and others. These are the reasons that the operator

Â(S) is a half-projector, that Â(S) annihilates half of the possible spin contaminants.

C. A Historical Review of the HPHF method

The first calculations [21] of the HPHF method on the ground states of the Be atom and

its isoelectronic ions Li−, B+ and C2+ yielded very close results to the corresponding PHF

calculations using the same orbitals. The same was the case with molecules as LiH [22, 23],

the HPHF energy was very close to the PHF one. In addition, the dissociation curve of LiH

was very good with a shape similar of a the CI curve. These results were confirmed with

further calculations on small molecules like the BH molecule [24] and H2O, CO, NH3 and

CH4 [25]. While the results were close to the PHF ones and the dissociation curves had the

correct shape, the correlation energy captured by the HPHF method was relatively small

compared with other CI methods. In fact, the HPHF can be considered as a two-determinant

CI wave function [23]. This resulted in the assumption that the HPHF wave function is good

describing the correlation in a single pair of electrons, which leads to a proper description

of bond breaking, but less good for the simultaneous correlation of several pairs. Another

problem arised: There were existing several solutions of the HPHF wave function which

appeared during the variational procedure [25]. The various solutions included inner or outer

correlation effects and occurred as local minima at different geometries, i.e. equilibrium

geometries and larger intermolecular distances until dissociation. The problem could be

overcome by a careful analysis of the solutions and chosing generally as the best one the

lowest solution at every geometry, as can be seen in dissociation curves of the LiH molecule

[26–28]. In the case of calculation of molecular properties, usually the solution including

the desired type of correlation effects should be chosen. This effect has been also observed

in calculations with the PHF wave function [13]. There is a great analogy between the

HPHF and PHF wave functions. Both models lead to similar results and have various

solutions [23]. They have also the same limitations, whereas the PHF contains less higher
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spin contaminants.

The determination of the HPHF wave function was slightly more difficult than the UHF

wave function. Two iterative procedures were used. The first was based on the Generalized

Brillouin Theorem [13, 29], converged very well and led to accurate results, but it required

longer computation times, since matrix elements between Slater determinants had to be

calculated. The second one consisted in solving simultaneously two sets of coupled equations

as the UHF equation in a iterative way, one for orbitals of α spin and one for spin β [29–31].

The last method is the one used since then. Tested in the case of the dissociation of the

Li2 molecule, the iterative method, similar in time to a UHF, led to a better dissociation

curve than UHF, from the variational point of view, for singlet [30] and lowest triplet excited

states [31]. Beyond ground singlet states, the HPHF method was successfully applied to the

low-lying triplet excited states as it was the case in calculations of the Be atom [32].

Other authors from different groups and countries [33] have also investigated small molec-

ular systems, i.e. H2O, C2, N2 and CH2 with the HPHF method. They concluded that the

HPHF method performed as a limited Multiconfigurational Self-Consistent Field (MCSCF)

treatment, including a small but important fraction of the correlation energy, gave qualita-

tively correct potential energy surfaces, and provided to good one particle orbital bases. The

convergence of the HPHF wave function was also investigated and accelerated employing

DIIS algorithms [34]. The HPHF wave function described well the dissociation curves of the

molecules F2, BH, O2+
2 and BN, where UHF showed ill behaviour due to spin contamination.

Also the singlet-triplet energy gap of the CH2 molecule was correctly described. Therefore,

the usage of the HPHF method provides a way to remove serious spin contamination in

a referent determinant and provides a reliable wave function on which to introduce corre-

lation. Bone and Pulay [34] pointed out ”HPHF is by far the most efficient of projected

Hartree-Fock schemes today”. At this point, we may mention that the computational times

of the HPHF method are about twice or more than the UHF method, since two equations

and a ross term should be solved. This computational times are nowadays negligible.

Olivella and Salvador [52] applied the HPHF method to calculate biradicals. For that

purpose, they developed the equations of the method when a singularity λ = 〈ak|bu〉 =

0, representing the overlap between an occupied ak and virtual orbital bu, occurs. This

singularity was used later as orthogonality condition during the calculation of excited states,

see Section II. Note that, orthogonality is automatically achieved when both wave functions
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have different spin between singlet and triplet states.

With this extension, the HPHF method was then applied to the calculation of the triplet

ground state and singlet excited state of the biradical methylene [36, 37]. Both states

are open shells and orthogonal by symmetry (spatial and spin) to each other, what makes

easier the calculations during the variational procedure. The results of the singlet-triplet

energy gap and the triplet ground state torsion potential energy curves were better than

the UHF curve and compared well with the experiments. In the case of methanal and

dimethylglyoxal, the excited wave functions were orthogonal to the ground state one and

the procedure converged without any complication. The HPHF initial-guess functions were

obtained by using mixtures with, or substitutions by, virtual orbitals of RHF occupied

orbitals. A criterium for the initial guess and the obtention of the solutions for every spatial

geometry was then established [38]. In similar cases, the HPHF method can be regarded as

an extension of the UHF method for Ms = 0, and employed in calculations of the lowest

excited states of medium size molecules.

In large molecules, it is frequent that excited states have same symmetry as the ground

state. Therefore the states are non-orthogonal by spin symmetry to each other. When

calculating the excited state of the same symmetry than the ground state, it may occur

the so-called ”variational collapse”, that is, the calculation falls down to the one of the

ground state. To avoid this, a pair of corresponding orbitals were kept to be zero λ = 0 at

every step of the iterative process [39]. This was an extension of the idea of Ref. [52]. It

seemed to be more favourable to orthogonalize a virtual orbital than all the orbitals. As

examples of this procedure, the first singlet excited states (n → π∗) of formid acid [40]

and cyclobutanone and 3-cyclopenten-1-one [41] were studied, obtaining energies, optimal

geometries in both states and potential energy surfaces with respect to the out-of-plane

wagging CO-groups. The energy barriers in potential energy surfaces, bond distances and

bond angles of medium size molecules are very well described with the HPHF method,

comparing well with experimental results. Also nine states of the Li2 molecule [42] and core

excitation energies in the SF6 molecule have been obtained by the HPHF method [43].

In addition, some methodological improvements of the HPHF methodology took place.

One of the simplest was to construct the monoexcited wave function based on the Half-

Projected reference wave function [44, 45], and to derive the first and second derivatives of

the functional of the energy [44, 45]. These algorithms have not been yet extended compu-
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tationally. The analytical gradients for the HPHF wave function were derived [46] starting

from the Brillouin theorem. The computational implementation is still missing, and there-

fore, the analytical gradients have not been yet used. Conversely, the simplex optimization

method was implemented [47] leading to remarkably good results. The simplex method is

a non-derivative method, which uses the total energy, and therefore it does not depend of

the method UHF, RHF or HPHF employed. The simplex method is computationally eco-

nomical and so it permits the exploration of the potential energy surfaces with a reasonable

computational effort. At the same time, it ensures the convergence to conformations with

minimal energy. Note that conformations in excited states have usually other geometries

than the ones in the ground states. Therefore, the simplex method seems to be appropriate

for the calculation of excited states of medium and large systems.

Other important methodological advance was the construction of a Multiconfigurational

HPHF wave function (MCHPHF) [48] to treat the problem of spatial symmetry breaking

(σ-π separation) which occurs in molecules with extended conjugated π-electron systems,

where the excited states are degenerated or quasi-degenerated, what may lead to a mixing

of excitations and consequently, to a numerical breakdown during the iterative process. If

the spatial symmetry is kept, the HPHF calculations are successful, but if the symmetry

is broken, re-orthogonalization of the orbitals in order to keep the condition λ = 0 does

not always work well. The method was implemented computationally and applied to the

molecules of ketene, allene and bencene. The calculated excitation energies and geometries

of the ground and excited states compared well with the experimental data. Usually, double

bonds in excited states become larger, and the carbonyl group too and in addition, it moves

out of the plane. In the case of allene in its ground state, the CH2 groups form an angle of 90◦,

while in the excited state, allene will relax becoming more planar. Generally, the MCHPHF

method employed two to six configurations. With its use, the problems of symmetry breaking

can be avoided and the computational cost of geometry optimization does not represent any

problem.

The HPHF wave function was defined for the even electron case. For the odd electron

case, the HPHF wave function has been obtained in a similar way from the PHF wave

function [49]. Also Ref. [25] pointed out the necessity of a HPHF wave function for odd

electron systems. However, in the odd-electron case, the HPHF wave function consists on a

limited sum of Slater determinants, whose number depends on the number of electrons, as
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was the case of the PHF wave function. This fact makes more difficult its computational

implementation. For example, in the case of five electrons, the HPHF wave function is

a sum of four Slater determinants. The number of determinants grows linearly with the

number of electrons. The determinants are constructed using the spin permutation operator,

therefore there will be some properties which simplify the matrix equations. The HPHF wave

function for the doublet state does not contain contamination of a quadruplet state, which

is the one nearest in energy. Similarly, the HPHF wave function for a quadruplet state does

not contain contamination of a doublet state. Although the computational difficulty, this

implementation seems promising.

In the last decades, methods which introduce more electronic correlation have attracted

a major interest and the applications of the HPHF method have had a reduced impact.

Nevertheless, the spin contamination is still nowadays a serious problem in the calculations

and it is being object of extended investigations. So that in the last years a renewed interest

on spin projected wave functions has taken place. The half-projected spin operator is being

applied to the wave functions in a variation-after-projection procedure (VAP) and in this

way new methods are using the HPHF wave function as refence one. This is the case of the

Half-Projected Strongly Localized Geminals (HPSLG) [50], applied to H4, diradicals and

benzynes, confirming the spin properties already mentioned of the HPHF wave function.

In order to get more correlation energy, the HPSLG method has been extended including

perturbation theory [51] and tested in the case of singlet - triplet gaps of biradicaloids,

leading to very promising results. The HPHF method has been also extended in the variante

of semiempirical methods [52, 53] and was employed to calculate biradical especies. In the

calculation of excited states [54], the HPHF method seems to show great efficiency avoiding

the variational collapse high-quality excited-state solutions that exist in a wide range of

geometries. These methods make an advantage of the correct spin symmetry of the wave

function and improve it with correlation energy, approaching the results of a full-CI wave

function, which cannot be applied for such systems.

Rencently, there is a renewest interest on the PHF method and efficient computational

procedures are being studied in order to be able to apply the method efficiently. That is the

case in the method by using the projection operator as integration over the spin-rotation

operator, what can be numerically evaluated with grid points. The procedure consists then

in determining the appropriate number of grid points, and calculating the rotated Fock
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matrix at each grid point [55]. An improvement of the EHF method has been proposed by

Pons Viver [56] with the practical use of the expectation value of Löwdins spin projection

operator. The methodology seems to be equivalent to the earlier Mayer et al. formulation of

the EHF method [7, 10, 11]. In this respect, Yoshizawa [57] pointed out: ”Moreover, there

is an approach which provides almost EHF quality results at the computational expense of

a UHF calculation, and it is called the half-projected HF approach”.

Another wave function for the ground state of atomic and molecular systems based on a

spin projected operator is the Omega function [59]. The operator interchanges the α and

β spin-functions of all the electron pairs in the wave-function. This function is roughly

equivalent to a closed shell excited configuration expansion. For singlet states, the Omega

function is defined as a linear combination of 2n slater determinants, where n is the number

of electron pairs. It has been applied to Be atom [58], finding that the Omega function

introduces an important part of the correlation energy. It has been also applied to the LiH

molecule [60].

Because the increasing of the computer facilities, the HPHF method is expected to play

a more important role in the field of medium-large size systems when no other methods can

be even applied. Also the HPHF wave function can serve as reference wave function for

other methodologies. Another great field of application of the HPHF wave function is the

calculation of potential energy surfaces.

II. THE HPHF METHOD FOR EXCITED STATES.

Theoretically, wave functions which are solutions of the same Hamiltonian are orthogonal

to each other. In addition, if they posses different spatial symmetry or different spin, they

are orthogonal by symmetry. Since our wave functions are solutions of different Hamiltonian

equation, one for the ground state and a different one for the excited state, see eqs. (24)

and (37) of Ref. [39], it may happen that during the variational process, the calculation of

an excited state falls down to the calculation of the ground state, the so-called ”variational

collapse”. In this work, we present how the HPHF method has been employed to calculate

potential energy surfaces of the singlet excited states which are of the same symmetry as the

ground state avoiding the variational collapse. In medium size molecules is very frequent

that the first excited state posses the same symmetry that the ground one, in addition, with
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the HPHF method the spin contamination of triplet (which is the principal one) is absent

in the singlet.

Molecules in the excited state show interesting properties with respect to vibronic and

rotational barriers of groups e.g. to mention only the wagging motion of carbonyl groups

and ring puckering in cyclobutanone and 3-cyclopen-1-one [61] and the potential curves for

the rotation of the methyl group in fluorinated toluene [62] in its ground and excited state,

depending on its position, respectively. The HPHF method has been extended to calculate

medium size and large molecules and being applied to the examples mentioned above and

the results are in good agreement with experimental spectroscopic data [41]. In this work,

we present the calculations carried out about the formic acid molecule with the purpose of

obtaining the potential energy function of the first singlet excited and ground states that can

be used as starting point for further investigation, in particular, to calculate the theoretical

spectra of luminiscence with the help of the Group Theory of Non-Rigid Molecules [63] and

so, to compare later with the experimental one in order to check the theories.

The HPHF wave function for an excited state (bk → bu) is constructed substituting in

the HPHF ground state wave function (5) an bk occupied spinorbital by a bu virtual one,

Ψ(bk → bu) =
1

2
{|a1b̄1 . . . akb̄u . . . anb̄n|+ (−1)n+S|ā1b1 . . . ākbu . . . ānbn|} (15)

In order to avoid the possible collapsing of the so-constructed excited wave- function

onto the ground state one during the variational process, it is convenient that the excited

wave function should be orthogonal to the former. In some cases, this orthogonality is

automatically achieved, when both wave functions exhibit different multiplicies or different

spatial symmetries. When both wave functions exhibit the same multiplicity and the same

spatial symmetry, it is convenient that the excited wave function should be orthogonal to

the fundamental one. One way to achieve this requirement is orthogonalizing the excited

orbital bu to its companion ak, at each step of the iterative procedure.

In any cases, the requirement applied to the orbitals:

λ = 〈ak|bu〉 = 0 (16)

The Brillouin theorem’s has been shown to hold in the case of the HPHF wave function

[13]. For excited states we have:
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∂E

∂εit
= 〈Ψ(bk → bu)|Ĥ − E|Ψit(bk → bu)〉 = 0 (17)

where Ψit(bk → bu) is the HPHF excited wave function in which an ai occupied orbital has

been replaced for an at virtual one.

Introducing the HPHF wave function expression (15) into (17), and taking into account

the idempotency of the operator Â(S), the following equation may be obtained:

∂E

∂εit
= 〈D0k|Ĥ|(Dit

0k + (−1)n+SDit
nk)〉 − E〈D0k|(Dit

0k +Dit
nk)〉 (18)

D0k and Dnk are the terms of the bideterminantal HPHF wave function for excited states

considered separately. Dit
0k and Dit

nk are the Slater determinants D0k and Dnk in which one

i occupied orbital has been substituted by a t virtual one, respectively.

In order to solve the equation (18), the following matrix elements between Slater deter-

minants have to be considered:

〈D0k|Ĥ|Dit
0k〉, 〈D0k|D0kit〉, (19)

〈D0k|Ĥ|Dit
nk >, 〈D0k|Dit

nk〉. (20)

Since D0k and Dit
0k are constructed with the same set of orthonormal spinorbitals, the

two first matrix elements can easily rewritten, acording to the Slater’s rules [64], as:

〈D0k|Ĥ|Dit
0k〉 = 〈ai|F̂ a|at〉, (21)

〈D0k|Dit
0k〉 = 0. (22)

In this expression, the F̂ a operator is the usual Fock operator of the Unrestricted Hartree-

Fock method:

〈ai|F̂ a|at〉 = 〈ai|ĥ|at〉+
n∑
j=1

([aiaj|ataj] + [aibj|atbj]− [aiaj|ajat]) , (23)

the notation used for the repulsion integrals is:

[aiaj|akal] = 〈ai(1)aj(2)| 1

r12
|ak(1)al(2)〉, (24)

and ĥ stands for the well known one-electron operator:
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ĥ(1) = −1

2
∆1 +

∑
A

ZA
r1A

. (25)

A similar operator as (23) can be written when bi orbital is substituted by a bt virtual

one:

〈bi|F̂ b|bt〉 = 〈bi|ĥ|bt〉+
n∑
j=1

([biaj|btaj] + [bibj|btbj]− [bibj|bjbt]) . (26)

The calculation of the cross matrix elements (19,20) is somewhat more difficult, because

the Slater determinants involved in them are constructed with two sets of non-orthonormal

spinorbitals. This calculation, however, may be greatly simplified, if the two sets are assumed

to be ”corresponding”, that is, if they fulfill the following condition [65]:

〈ai|bj〉 = λiδij. (27)

And the orthogonality requirement applied to the orbitals (16) implies some modifications

in the formulae of the usual cross HPHF operators [39], which are now redefined as:

〈ai|F̂ ab|bl〉 = 〈ai|ĥ|bl〉+
n∑
j 6=k

1

λj
([aiaj|blbj] + [aibj|blaj]− [aiaj|bjbl]) , (28)

〈bl|F̂ ba|ai〉 = 〈bl|ĥ|ai〉+
n∑
j 6=k

1

λj
([blbj|aiaj] + [blaj|aibj]− [blbj|ajai]) ,

in which the sumations are restricted to the non-orthogonal orbitals.

In addition, partial cross Fock operators are also to be defined:

〈ai|f̂ab|bl〉 = (2[aiat|blbu]− [aiat|bubl]),

〈bl|f̂ ba|ai〉 = (2[blbu|aiat]− [blbu|atai]). (29)

For the same reason, new density projector operators are defined with respect to the

usual HPHF ones:

R̂ab =
n∑
i 6=k

1

λi
|ai〉〈bi|, R̂ba =

n∑
i 6=k

1

λi
|bi〉〈ai| (30)

as well as limited projector operators to the k or u orbital space:
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r̂ab = |ak〉〈bu|, r̂ba = |bu〉〈ak| (31)

Finally, a restricted overlap between the two determinants limited to the non-orthogonal

orbitals is defined:

Λ
′
= (−1)S

n∏
i 6=k

|λi|2. (32)

In order to deduce the pseudo-eigenvalue equations, we have to distinguish the two posi-

bilities:

When ai 6= ak, the Brillouin theorem equation (18) is reduced to:

∂E

∂εit
= 〈ai|F̂ a|at〉+

〈bi|at〉
λi

E
′

2 −
Λ

′

λi
〈bu|at〉〈bî|F ba|ak〉, (33)

where the cross energy term, E
′
2, between the two Slater determinants, takes the form of a

simple repulsion integral:

E
′

2 = Λ
′
[akak|bubu]. (34)

In contrast, when ai = ak, the following expression is found:

〈ak|F̂ a|at〉+ Λ
′{〈bu|f̂ ba|at〉+ 〈bu|at〉〈ak|F̂ ab|bu〉

−
n∑
j 6=k

〈bj|at〉
λj
〈bu|f̂ ba|aj〉} = 0. (35)

From equations (33) and (35), a general HPHF Fock operator for determining the ai

orbitals of excited states can be extracted after some straightfoward transformations:

Ĥa = F̂ a + R̂abE
′

2 + Λ
′{r̂abf̂ ba + r̂abF̂ bar̂ab − r̂abf̂ baR̂ab − R̂abf̂ bar̂ab}. (36)

Since equation (29) is not symmetric, it is symmetrized by addition of the adjoint of the

asymmetric part. We obtain the new expression:

Ĥa = F̂ a + (R̂ab + R̂ba)E
′

2 + Λ
′{r̂abf̂ ba + r̂abF̂ bar̂ab − r̂abf̂ baR̂ab

−R̂abf̂ bar̂ab + f̂abr̂ba + r̂baF̂ abr̂ba − R̂baf̂abr̂ba − r̂baf̂abR̂ba}. (37)
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A similar equation can be deduced for the bi orbitals.

Finally, the expression of the total electronic energy holds:

E(bk → bu) = E1 + E
′

2, (38)

with E1 as a principal contribution to the energy:

E1 =
1

2

n∑
i=1

{
〈ai|(ĥ+ F̂ a)|ai〉+ 〈bi|(ĥ+ F̂ b)|bi〉

}
. (39)

It is of interest that the total HPHF electronic energy of a ground state system is:

E =
E1 + E2

1 + Λ
, (40)

with

E2 = Λ

{
n∑
i

2

λi
〈ai|ĥ|bi〉+

n∑
i

n∑
j

1

λiλj
(2[aiaj|bibj]− [aiaj|bjbi])

}
, (41)

and

Λ = (−1)S
n∏
i

|λi|2. (42)

III. COMPUTATIONAL ASPECTS: THE PROGRAM

Based on the orginal HPHF computer program developed over the years by Smeyers

et al. [20–23, 26–32, 36–39, 42, 43], our HPHF computer program has been implemented

in an ab-initio molecular program MOLSCF [66], which uses lobe functions to represent

atomic orbitals of s-, p- d-, and f-orbitals. The HPHF program has been programmed in

Fortran 90 language and developed for vector and parallel multiprocessor systems [67]. In

the SCF standard procedure, the methods RHF, UHF, AUHF, MP2 and MCHPHF [48]

are included. To ensure convergence of the iterative process, variable damping of charge-

bond order and Fock matrices can be optionally chosen. The acceleration of the convergence

maybe performed using either 3-, or 4-point extrapolation, the DIIS-method, which is applied

independently Ĥa and Ĥb matrices, turns out to be the most efficient for acceleration.

The program has been used for the calculations of cyclobutatone, 3-cyclopenten-1-one [41],

ketene, allene and bencene [48].
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The geometry optimization of molecules in excited states is very important because major

changes occur with respect to the ground state. For this purpose, we have developed a

program based in the simplex algorithm [47], which has been applied succesfully to medium

size molecules. The gradients of the HPHF program have been derived [46] and then will

be also implemented. The optimization can be performed for all or a part of the degrees of

freedom.

The HPHF computer program is paralellized. As the number of processors use to be

large, the task have to be defined within a molecular calculation. Each processor calculate

part of the integrals and in the following iterative procedure, the processors are working only

in their parts of integrals. The diagonalization of the Fock matrices can also be performed

in parallel, using a program based on the basis of the QR algorithm [67].

The calculation of excited states of molecules using HPHF has to follow a number of

steps. Each one of them has to be treated carefully and frequently one may select among

different solutions. Some of the occurring problems will be briefly discussed in the following

sections.

A. Choice of the starting HPHF wave function for excited states

Usually, the first step is to perform a RHF calculation of the ground state of the molecule

under consideration. After having decided which excitation has to be investigated, an oc-

cupied bk orbital is exchanged by a virtual bu orbital, while the rest of the ai, bi occupied

orbitals are taken from the starting wave function. In certain cases, the starting HPHF wave

function constructed in this simple way may have difficulties to converge. Then it is recom-

mended to perform an UHF calculation using the configuration of the excited state with the

above mentioned replacement. If there are still convergence difficulties, an UHF calculation

of the ionic form of the molecule may be performed, in order to generate a splitting between

the ai and bi sets of orbitals. Another way to introduce a splitting is to change arbitrarily

the selected orbitals from the RHF wave function, but then they should be renormalized

and make them orthogonal again to the rest of unchanged orbitals by usind the Schmidt

orthogonalization. Furthermore, the previous virtual orbital bu, which belongs now to the

occupied space of the bi orbitals, must be made orthogonal to the corresponding occupied

ak orbital. As a consequence of this approach, in the case of π-electron systems, the σ − π
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separation maybe broken. According to our experience with many HPHF calculations, we

can conclude that the RHF wave function represents a satisfactory initial wave function for

the subsequent HPHF calculation of energy levels of excited states.

B. Reordering of the molecular orbitals

After the diagonalization in each SCF-cycle of the Fock matrices Ĥa and Ĥb, Eq. (37)

it is necessary to ensure that the subspace of occupied orbitals bi still contains the so-called

excited orbital. This special orbital is identified by the maximun overlap with one of the

orbitals of the wave function of the previous iteration step. For the sake of convenience, we

put this orbital as well as the ai which has been replaced by the excited bu configuration at the

position of the HOMO. Further ordering of the rest of the orbitals in both ai and bi sets and

also between them is not necessary, though corresponding orbitals are calculated in the next

step. In any case on has to check whether the two HOMOs orbitals (of ai and bi electrons)

are still orthogonal to each other. If this is not fulfilled, a Schmidt orthogonalization is

performed. According to the algorithm the ak orbital is unchanged and bk orbital modified.

The program offers the posibility of orthogonalize the rest of the bi orbitals to the new

HOMO β-orbital.

C. Calculation of corresponding orbitals

As it has already been mentioned, no ordering of the orbitals is necessary to determine

the corresponding orbitals by suitable transformation. It can be shown that the unitary

matrix U for the α-wave function corresponds to the eigenvector matrix obtained from the

eigenvalue problem:

S†SU = Ua, (43)

where one of the eigenvalues is zero (or small). The transformation matrix for the β-wave

function is the same than U except that the eigenvector of the zero-eigenvalue is replaced

by the eigenvector to the same eigenvalue of the matrix SS†:

S†SV = Vb. (44)
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During the iteration process, it is required to test the orthogonality of the two HOMO or-

bitals. A Schmidt orthogonalization is performed when the overlap exceeds a threshold value

and the corresponding orbitals have to be recalculated. In this case, both transformation

matrices are the same and only one diagonalization has to be performed.

IV. RESULTS

Formic acid, the smallest of the carboxylic acids, is an interesting case in spectroscopy,

with complex potential energy surfaces for ground S0 and excited states. Its singlet excited

state 1S1(n, π
∗) has the same symmetry as its ground state S0. Thus, the wave function for

the excited state is no longer orthogonal by symmetry to that of the ground state. Formic

acid exhibits two large amplitude motions: the angle torsion of the hydroxylic group (θ) and

the out-of-plane wagging (α) of the aldehydic hydrogen atom, as shown in Fig. 1. In order

to obtain the theoretical spectrum of luminiscency of formic acid and further comparison

with the spectroscopical data, it is necessary to determine not only the potential energy

surface of its low-lying excited state, but also the ground state potential energy surface.

A. The S0 Ground state

We have calculated the potential energy surface of the ground state of formic acid with

respect to the torsion θ and the wagging α motions in the RHF approximation using 4-

31G and 6-31G∗∗ basis sets and full optimization of the geometry, except for the torsional

angles θ and α. The RHF method has been used instead of the HPHF method because

the formid acid molecule in its ground state has an even number of electrons, it then is a

closed shell system, and the calculated conformations are near to the molecular equilibrium

(since optimization of the geometry is used). In those cases, the RHF method leads to a

good description of the potential energy surface. In addition, the potential energy surface

is also calculated with the 6-31G** basis, which is the same basis that will be employed in

the calculation of the excited state.

There are two planar conformations in formic acid, the anti and syn that represent two

minima. The ground state configuration is the anti conformation, where the hydroxylic

hydrogen is on the same side than the carbonyl oxygen (θ = 0, α = 0). The reason is
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due to two effects: on the one hand, the delocalization of a π molecular orbital. On the

other hand, an intermolecular hydrogen bridge of the hydrogen from the hydroxylic group

with the carbonyl oxygen. The syn conformation (θ = 180, α = 0) is a relative minimum

about 2000 cm−1 above the anti conformation. The energy results, presented in Table 1,

show a potential energy surface with high walls when the wagging angle becomes large, and

oscilating values which change smoothly with the torsional angle θ. Our calculated energy

values and torsional barrier compare well with GVB calculations using 6-31G* basis [68],

see Table 2.

The geometrical parameters for these conformations are listed in Table 3. Among them,

the bond distance C=O, is shorter in the syn conformation and the bond distance C-O is

greater. During the torsion, the C=O bond distance shortens (less interaction with the

hydroxilic hydrogen) while the C-O bond distance becomes larger. The other distances are

not changing appreciably. The calculated geometrical parameters compare very well with

those of the anti and syn conformations calculated by other methods, see Table 4.

It is useful to express the potential energy surface depending on the variables that have

not been optimized in order to use this function for further investigations. The electronic

energy V in the formic acid molecule, due to the presence of a symmetry plane between the

fixed structure and the movil parts, is invariant with respect a simultaneous change of both

rotations, therefore it fulfills the next symmetry relation:

V (θ, α) = V (−θ,−α) (45)

with this, it is necessary the calculation of the symmetry irreducible points of the potential

energy surface. Using this relation, we can extend the potential energy surface of Table 1

with additional points, i.e. V (−30,−30) = V (30, 30), and so on. The energy values of the

ground state have been fitted to a potential function composed by terms which are products

of trigonometrical functions (easier integration) and has the following form:

V (θ, α) =
∑
KL

ACCKL cos(Kθ) cos(Lα) +
∑
KL

BCC
KL sin(Kθ) sin(Lα) (46)

where ACCKL are the coefficients of the cos(θ)×cos(α) functions and BCC
KL the coefficients of the

sin(θ)× sin(α) functions. K,L are whole numbers that indicate perioricity. The coefficients

and perioricity are determined by the fitting f the potential energy surface. This type of
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form is a Fourier series of symmetry adapted and has been chosen because the integrals

between such functions are very easy to evaluate and they are further used in the Theory of

Non-Rigid Molecules [63]. The potential energy curve for the ground state obtained by the

calculations using a 6-31G** basis set is:

V (θ, α) = 27332.55− 857.91 cos(θ)− 25176.78 cos(α) + 2363.10 sin(θ) sin(α)

− 1041.49 cos(2θ)− 755.59 cos(2θ) cos(α) + 1138.65 sin(2θ) sin(α)− 545.57 sin(θ) sin(2α)

+ 619.85 cos(3α)− 120.64 cos(3θ) cos(α) + 104.70 sin(3θ) sin(α) (47)

The energies are related to the minimum energy and expressed in cm−1. The standard

deviation is 37 cm−1, with a correlation coefficient of 1.0000 and a tolerancy of the variables

0.01. This function can be used for the calculation of the theoretical energy levels of internal

rotation of the formic acid molecule.

B. The 1S1(n, π
∗) single excited state

The potential energy surface of the single excited state has been calculated using the

4-31G and 6-31G** basis sets and full optimization of the geometry except the torsion and

wagging angles. We found two conformations which are pyramidal in agreement with the

geometry of the carboxylic group in excited state, θ = −47.91, α = 41.32 and θ = 63.66, α =

45.76, which are only slightly more stable, about 119 cm−1, one than the other. The carbon

atom of the preferred conformations exhibits an sp3 hybridization due to the destabilization

of the π electronic bond by occupation of the π∗ antibonding orbital (n → π∗ ). The bond

distance of the C=O is considerably larger than in the molecule in its ground state. The C

atom of the C-O bond maintains its sp2 character, although the C-O distance is also larger

than in the case of the ground state. In addition, the O-H group is rotated up or down of

the O=C-O plane. In Tables 5 and 6, the conformations and energies employing the two

different basis sets are listed. The relative energies are smaller than in the ground state.

The calculations of the diedral angles of the preferred conformations are in good accordance

with calculations using the GVB approximation [68] and 6-31G* basis set (-47.91 and 41.32,

the most stable, and 63.66 and 45.76 the next one in energy). It can be seen that they are

only a few degrees different of our results.
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The potential energy curve for the excited state (6-31G** basis set) is:

V (θ, α) = 20229.83− 27604.30 cos(α)− 44.27 cos(θ) cos(α) + 168.71 sin(θ) sin(α)

− 0.06 cos(2θ) + 9877.11 cos(2α) + 1350.00 sin(3θ) sin(3α)− 10.21 cos(5θ) cos(3α)

− 23.84 cos(θ) cos(6α) + 790.86 cos(6θ) cos(3α) + 235.30 cos(3θ) cos(6α)

− 110.86 cos(6θ) cos(4α) + 148.17 cos(4θ) cos(6α) + 5.85 cos(6θ) cos(5α) (48)

The standard deviation is about 30 cm−1, the correlation coefficient 1.0000 and the

tolerancy of the variables is 0.01. Knowing the potential energy surfaces, it is possible

to calculate the theoretical rotational spectra of the molecule of formic acid and to compare

with the experimental fluorescency spectrum.

V. DISCUSSION AND CONCLUSIONS

In the present paper, the necessity of spin projected wave functions is discussed and the

HPHF wave function is derived from the PHF wave function, and its main properties with

respect to the spin elimination/contamination are proved. An historical review including all

the references and main contributions over the years is done. As further application of the

HPHF method, the calculation of excited states of the same symmetry as the ground state

is reviewed and the method is applied to the calculation of the first singlet excited state

S1 of formic acid. For this, an orthogonalization of the excited orbital to its corresponding

occupied orbital is made, in order to avoid the variational collapse of the excited state into

the fundamental one. Note, that the excited wave function is not necessarily orthogonal to

the fundamental one because the wave functions are eigenfunctions of different Hamiltonian

equations, see i.e. Eqs. (24,37) of Ref. [39] and Eqs. (17,23) of Ref. [41]. Nevertheless,

the wave functions are nearly orthogonal. This procedure is preferred to the complete

orthogonalization of all the envolved orbitals, which might led to worse results.

Formic acid is small molecule but it has been chosen due to its complex spectra. To

study the spectrum of formic acid, potential energy surfaces of the molecule in its ground

and excited state with respect to the slow motions are needed. These motions are the torsion

of the hydroxilic group and the waving out-of plane of the aldehydic hydrogen. The potential

energy surface of the ground state has two minima, the anti/trans and sin/cis conformations.
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In the anti conformation, the hydroxilic hydrogen interacts with the carboxylic oxygen by

hydrogen bonding, making more stable, about 2000 cm−1 this conformation. In addition,

the surface shows many relative minima.

In the S1 excited state, two minimum conformations have been found with pyramidal

geometries, which are in concordance with other theoretical calculations. Contrary to the

ground state, they are separated by a smaller barrier of about 119 cm−1. The bond distance

of the C-O groups are larger. The carboxylic carbon seems to be in a sp3 hybridization while

the other C atom is in a sp2 one. The obtained potential energy surface and geometrical

parameters can be employed to calculate the theoretical spectrum of this molecule.

It can be concluded that the HPHF method, appart of introducing small spin correlation

effects and provide almost pure state wave functions, can be advantageously employed in the

calculation of the lowest singlet and triplet excited states of medium size to large molecules.
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J. Mol. Struct. (Theochem), 120, 431-436, (1985).
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Figure 1: The formic acid molecule with its motions of torsion of the hydroxylic group

(θ) and the out-of-plane wagging (α) of the adehydic hydrogen atom.
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TABLE I: Potential energy surface of the S0 ground state of formic acid molecule with respect to

the torsion θ of the hydroxylic group and the out-of-plane wagging α of the adehydic hydrogen

atom. The angles are defined in Fig. 1. The molecular conformations have been optimized using

a 4-31G basis and the fixed conformations were calculated using a 6-31G** basis set. Energies in

a.u., relative energy in cm−1 and bond and diedral angles in degrees.

θ(tor.) α(wag.) E(RHF/4-31G) E(RHF/6-31G**) E rel. (RHF/6-31G**)

0 0 -188.475615 -188.767056 0.00

30 0 -188.470908 -188.761748 1164.97

60 0 -188.461790 -188.751644 3382.54

90 0 -188.456326 -188.746200 4577.36

120 0 -188.457521 -188.748718 4024.73

150 0 -188.462181 -188.754910 2665.74

180 0 -188.464635 -188.757967 1994.80

0 30 -188.463221 -188.754128 2837.37

30 30 -188.454621 -188.744940 4853.90

30 -30 -188.463119 -188.753494 2976.51

60 30 -188.444947 -188.734622 7118.44

90 30 -188.441525 -188.731700 7759.75

90 -30 -188.448790 -188.737534 6479.33

120 30 -188.444879 -188.736391 6738.56

120 -30 -188.447250 -188.737145 6564.71

150 30 -188.450292 -188.743008 5277.93

150 -30 -188.450267 -188.742081 5481.38

180 30 -188.452578 -188.745984 4624.77

0 60 -188.424328 -188.713229 11813.66

30 60 -188.412716 -188.701357 14419.26

30 -60 -188.428407 -188.716832 11022.89

60 60 -188.402374 -188.691024 16687.10

60 -60 -188.423932 -188.711090 12283.12
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Continuation Table I.

θ(tor.) α(wag.) E(RHF/4-31G) E(RHF/6-31G**) E rel. (RHF/6-31G**)

90 60 -188.400008 -188.689427 17037.60

90 -60 -188.416679 -188.703031 14051.86

120 60 -188.404514 -188.695059 15801.51

120 -60 -188.412656 -188.699901 12544.07

150 60 -188.410892 -188.702447 14180.04

150 -60 -188.413169 -188.702713 14121.66

180 60 -188.414088 -188.705467 13517.22

TABLE II: Comparison of the energies and relative energies of the S0 ground state anti and syn

conformations obtained by the RHF method and a 6-31G** basis with the HPHF program package

and results obtained by Ref. [68] using the GVB approximation and a 6-31G* basis. The angles

are defined in Fig. 1. Energies in a.u., relative energies in cm−1 and bond and diedral angles in

degrees.

Ref. Conform. θ(tor.) α(wag.) E(a.u.) E rel. (cm−1)

This work (RHF/6-31G**) anti 0 0 -188.767056 0.00

Ref. [68] (GVB/6-31G*) anti 0 0 -188.7747569936 0.00

This work (RHF/6-31G**) syn 180 0 -188.757967 1994.80

Ref. [68] (GVB/6-31G*) syn 180 0 -188.7648402037 2175.00
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TABLE III: Conformations of the potential energy surface of the S0 ground state of formic acid

molecule with respect to the torsion θ of the hydroxylic group and the out-of-plane wagging α of

the adehydic hydrogen atom. The angles and distances are referred to Fig. 1. They have been

optimized with a 4-31G basis set. Lengths are expressed in Å and bond and diedral angles in

degrees.

θ (tor.) α (wag.) r(C=O) r(C-O) r(O-H) r(C-H) α (O=C-O) α (C-O-H) α (H-C-O)

0 0 1.200 1.341 0.956 1.072 124.62 114.89 124.93

30 0 1.199 1.348 0.955 1.073 124.70 116.09 124.52

60 0 1.195 1.360 0.954 1.074 124.48 118.19 123.74

90 0 1.193 1.365 0.954 1.076 123.69 118.83 123.14

120 0 1.192 1.360 0.953 1.078 123.00 117.97 122.87

150 0 1.193 1.351 0.952 1.080 122.63 116.99 122.88

180 0 1.193 1.347 0.951 1.080 122.46 116.65 122.89

0 30 1.201 1.352 0.956 1.076 123.37 114.95 125.04

30 30 1.980 1.364 0.955 1.077 123.06 115.79 124.70

60 30 1.195 1.374 0.954 1.079 122.85 116.71 123.59

90 30 1.194 1.374 0.954 1.081 122.61 116.28 122.41

120 30 1.195 1.365 0.953 1.083 122.39 115.96 121.87

150 30 1.195 1.356 0.951 1.083 121.91 116.03 122.04

180 30 1.194 1.316 0.951 1.083 121.39 116.41 122.56

0 60 1.201 1.396 0.957 1.085 118.86 114.59 127.43

30 60 1.197 1.414 0.955 1.085 118.22 114.35 127.65

60 60 1.195 1.423 0.955 1.086 118.48 113.38 124.94

90 60 1.197 1.414 0.955 1.089 119.14 112.77 121.89

120 60 1.198 1.399 0.952 1.091 119.23 114.06 120.55

150 60 1.197 1.391 0.951 1.093 118.50 114.95 121.08

180 60 1.195 1.396 0.952 1.092 117.57 115.94 122.52

30 -30 1.201 1.353 0.956 1.076 124.11 116.22 124.18

60 -30 1.198 1.364 0.954 1.076 124.24 118.88 123.24
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Continuation Table II.

θ (tor.) α (wag.) r(C=O) r(C-O) r(O-H) r(C-H) α (O=C-O) α (O-C-H) α (H-C=O)

90 -30 1.194 1.374 0.954 1.078 123.21 120.56 122.82

120 -30 1.192 1.374 0.953 1.080 121.89 119.80 122.82

150 -30 1.193 1.365 0.953 1.082 121.26 117.80 122.89

30 -60 1.202 1.388 0.958 1.085 120.49 116.39 124.98

60 -60 1.200 1.395 0.956 1.085 121.58 119.51 122.77

90 -60 1.196 1.409 0.955 1.086 120.67 121.83 122.20

120 -60 1.193 1.415 0.954 1.087 118.62 121.25 122.81

150 -60 1.193 1.409 0.953 1.090 117.34 118.29 123.32

TABLE IV: Comparison of the obtained ground state S0 geometries of the most stable conformeres

anti/trans (θ = 0, α = 0) and syn/cis (θ = 180, α = 0) of formic acid with SCF-MO ab initio

calculations using the Gaussian 82 program package with a 6-3G* basis and experimental values.

In this work, the molecular conformations have been optimized using a 4-31G basis. The angles

are defined in Fig. 1. Energies in a.u., bond distances in Å and diedral angles in degrees. Note, in

Ref. [69] bond distances are given in pm.

Method θ (tor.) α (wag.) r(C=O) r(C-O) r(O-H) r(C-H) α (O=C-O) α (C-O-H) α (H-C=O)

RHF 0 0 1.200 1.341 0.956 1.072 124.62 114.89 124.93

Exp. [70] 0 0 1.203 1.342 0.972 1.097 124.8 106.3 123.2

SCF-MO [69] 0 0 1.182 1.323 0.953 1.084 124.9 108.7 124.7

RHF 180 0 1.193 1.347 0.951 1.080 122.46 116.65 122.89

Exp. [71] 180 0 1.195 1.352 0.956 1.105 122.1 109.7 123.3

SCF-MO [69] 180 0 1.175 1.328 0.948 1.090 122.0 111.6 124.1
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TABLE V: Potential energy surface of the S1 singlet excited state of formic acid molecule with

respect to the of torsion θ of the hydroxylic group and the out-of-plane wagging α of the adehydic

hydrogen atom calculated by the HPHF method. The molecular conformations have been optimized

using a 4-31G basis. The angles are defined in Fig. 1. Energies in a.u., relative energies in cm−1,

bond distances in Å and diedral angles in degrees.

θ α r(C=O) r(CO) r(OH) r(CH) α (OCO) α (COH) α (HCO) E(RHF/4-31G) E rel.

-47.91 41.32 1.417 1.385 0.957 1.073 109.29 115.20 120.93 -188.371380 0.00

63.66 45.76 1.397 1.385 0.957 1.077 109.32 115.20 120.88 -188.367798 786.23

0 0 1.408 1.373 0.961 1.064 123.97 114.71 116.91 -188.361620 2142.10

45 0 1.408 1.364 0.952 1.063 117.21 115.47 120.38 -188.364681 1470.35

90 0 1.405 1.368 0.955 1.063 115.25 115.50 119.93 -188.364987 1403.11

135 0 1.399 1.366 0.952 1.066 114.16 115.34 119.68 -188.362674 1910.83

180 0 1.392 1.369 0.948 1.068 111.86 114.90 120.98 -188.361081 2260.52

0 45 1.397 1.400 0.956 1.069 111.30 115.56 116.42 -188.369582 394.69

90 45 1.394 1.382 0.955 1.074 109.55 116.05 114.28 -188.368744 578.67

180 45 1.389 1.396 0.954 1.073 108.15 113.96 114.41 -188.369099 500.73

150 -45 1.388 1.381 0.950 1.075 107.60 114.70 114.67 -188.369775 352.36

0 90 1.389 1.483 0.956 1.081 101.95 114.14 117.30 -188.326282 9821.95

90 90 1.378 1.537 0.956 1.078 98.92 110.53 118.07 -188.315520 12259.87

-90 90 1.396 1.484 0.957 1.081 101.69 116.15 113.72 -188.331551 8741.47
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TABLE VI: Potential energy surface of the S1 singlet excited state of formic acid molecule with

respect to the of torsion θ of the hydroxylic group and the out-of-plane wagging α of the adehydic

hydrogen atom calculated by the HPHF method. The molecular conformations have been optimized

using a 6-31G** basis. The angles are defined in Fig. 1. Energies in a.u., relative energies in cm−1,

bond distance in Å and angles in degrees.

θ α r(C=O) r(CO) r(OH) r(CH) α (OCO) α (COH) α (HCO) E(RHF/6-31G**) E rel.

-41.93 46.57 1.370 1.351 0.946 1.071 109.17 115.15 119.96 -188.645986 0.00

67.38 39.67 1.362 1.348 0.950 1.084 109.45 115.25 120.15 -188.644483 119.79

0 0 1.376 1.347 0.941 1.067 123.88 114.74 117.34 -188.631843 3512.60

45 0 1.370 1.343 0.950 1.065 117.01 115.42 120.83 -188.636122 2164.83

90 0 1.375 1.345 0.944 1.062 115.20 115.49 120.33 -188.636949 1983.54

135 0 1.369 1.343 0.942 1.068 114.09 115.38 120.12 -188.634223 2581.16

180 0 1.370 1.347 0.940 1.066 111.80 114.90 121.26 -188.631414 3198.16

0 45 1.378 1.349 0.946 1.080 111.46 115.38 116.86 -188.645211 170.25

90 45 1.368 1.346 0.944 1.081 109.61 116.17 114.73 -188.644777 265.48

180 45 1.359 1.350 0.940 1.064 108.16 113.93 114.91 -188.644990 218.62

150 -45 1.364 1.351 0.941 1.079 107.77 114.71 115.11 -188.645440 119.79

0 90 1.354 1.437 0.947 1.089 102.02 114.34 117.95 -188.600875 9900.69

90 90 1.337 1.458 0.948 1.081 99.06 110.65 118.90 -188.591982 11852.64

-90 90 1.356 1.421 0.951 1.087 101.72 116.19 114.47 -188.605821 8815.33
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TABLE VII: Comparison of the obtained singlet excited state S1 geometries of the most stable

conformeres of formic acid with another ab initio calculations using a 6-3G* basis and Gaussian 98

(GVB) computer program. In this work, the molecular conformations have been optimized using

a 6-31G** basis. The angles are defined in Fig. 1. Energies in a.u., relative energies in cm−1 and

bond distances in Å and diedral angles in degrees.

Method θ α r(C=O) r(CO) r(OH) r(CH) α (OCO) α (COH) α (HCO) E E rel.

HPHF -41.93 46.57 1.370 1.351 0.946 1.071 109.17 115.15 119.96 -188.645986 0.00

GVB [68] -47.91 41.32 1.3701 1.3499 0.9524 1.0821 112.35 -118.72 111.50 -188.6336441178 0.00

HPHF 67.38 39.67 1.362 1.348 0.950 1.084 109.45 115.25 120.15 -188.644483 119.79

GVB [68] 63.66 45.76 1.3743 1.3515 0.9492 1.0771 112.87 -122.63 110.71 -188.6321054319 338.00

The disagreement between the angles α (COH) is maybe due to a different reference direction of the angles

calculation.
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