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Abstract 

The objective of this paper is to develop a modified strain gradient beam constraint model 

(MSGBCM) to improve modeling accuracy of small-scale compliant mechanisms. First, a simple 

nano/micro flexure beam under the effect of end loads is considered. The virtual work principle is 

employed to formulate the load-displacement behavior of the system based on the modified strain 

gradient theory. It is observed that as the size of the structure becomes smaller, the elements of the 

elastic stiffness and load stiffening matrices severely deviate from their corresponded values in the 

beam constraint model (BCM). Then, a closed-form expression is proposed for the nonlinear strain 

energy of the nano/micro flexure beams in terms of their tip displacements. This energy expression 

is then utilized to model load-displacement relationship of micron/submicron size parallelogram 

(P) flexures. Moreover, analytical formulas are derived for the axial, transverse and rotational 

stiffnesses of P-flexures. The most important observation is that the axial stiffness loss of small-

scale P-flexures resulted from the movement of the stage in the transverse direction, may be 

seriously overestimated by the BCM. The MSGBCM developed in this paper can be easily 
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extended for investigating static and dynamic behavior of more complex micron and submicron 

size flexure units. 
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1- Introduction 

Mechanisms are used to transform an input force or movement into desired outputs. Classical 

mechanisms usually include different rigid members sliding on, or rotating around each other with 

the ultimate aim of providing desired motion in the mechanisms output. The performance of the 

classical mechanisms is negatively affected by wear, backlash and friction [1, 2]. Moreover, 

fabrication of prismatic and revolute joints which are essential parts of the classical mechanisms 

are very difficult (if not impossible) in nano and micro dimensions. To avoid these shortcomings, 

compliant mechanisms are becoming widely popular. These mechanisms provide motion guidance 

via elastic deformation of their constitutive beams. Due to their monolithic structure, they don’t 

require assembly or lubrication. They are especially suited for micron size apparatuses which 

require high precision and large motion range. Among such applications, one can point to the 

micro-grippers [3-5], micro/nano manipulators [6-8], displacement amplification mechanisms [9], 

force, displacement and acceleration sensors [10-12], compact and affordable motion stages for 

semiconductor wafer inspection [13] and micro scanners in high-speed imaging [14]. 

Compliant mechanisms are usually designed for achieving large motion ranges. This is 

achieved by the large deflection of the constitutive beams which on the other hand, activates the 

geometric nonlinearities in the system. Consequently, an accurate model of these mechanisms shall 



take the geometric nonlinearities into account. Large deflection behavior of thin beams under the 

effect of different applied loads have been well-studied in previous studies [15-21]. Among 

different models and strategies, the beam constraint model (BCM) developed by Awtar and Sen 

[22] is best suited for intermediate/large deflection analysis of beams in compliant mechanisms. 

The advantages of BCM are as follows: 

1- It provides sufficiently accurate expressions for the load-displacement behavior of the beam. 

This is especially important from a design perspective in which the designer is interested in 

modeling the static or dynamic behavior of the motion stage. 

2- It suggests an acceptable tradeoff between the complexity of the solution procedure and 

accuracy of the results. 

3- Using BCM, the nonlinear strain energy of a cantilever flexure beam can be easily expressed in 

terms of its tip displacements. This specification makes it quite easy to extend the applicability 

of BCM from a simple beam flexure to more complex flexure modules such as parallelogram 

(P) [22-25], double parallelogram (DP) [26, 27] and paired double parallelogram (DP-DP) [27, 

28] flexures. 

The strain energy expressions developed by BCM is not only useful for static analysis of 

complex flexures, but also it provides a comfortable platform for their dynamic modeling. For 

example, Cui et al [29] used the constrained equations resulted from BCM to present a lumped 

parameter model for a structure with multiple DP flexure modules. The transfer function of their 

dynamic model was used to identify complex nonminimum phase zeros of the system. Findings of 

this research were later experimentally verified for a desktop size flexure [30]. 



One of the most important superiorities of the compliant mechanisms over their traditional 

counterparts is their applicability in small scale devices. In fact, fabrication of traditional 

mechanisms in nano or micro dimensions is very difficult. So, for providing constrained motion 

guidance in these dimensions, employing compliant mechanisms may be the only available option. 

As instances of micron size flexures, one can point to the works of Awtar and co-workers in which 

they demonstrated novel double parallelogram–tilted-beam double parallelogram (DP-TDP) [31], 

clamped paired double parallelogram (C-DP-DP) [32] and XY [33] flexure mechanisms that 

enabled large stroke in electrostatic comb-drive actuators. In all these works, the theoretical 

findings were based on a classical elasticity theory. On the other hand, it has been shown in many 

other studies (see [34-37] as a few examples) that classical elasticity theory fails in prediction of 

the material behavior in micro or nano dimensions. To overcome these limitations, several size 

dependent theories were presented. Among them, one can mention the micropolar theory [38-40], 

nonlocal theory of Eringen [41], modified strain gradient [34]  and modified couple stress [42] 

theories which were propose to fill the gap between the experimental observations and theoretical 

findings. Micropolar elasticity utilizes some extra rotational degrees of freedom at each material 

point to improve modeling accuracy [43]. Nonlocal elasticity theory developed by Eringen [44, 

45] is based on the assumption that the stress at a point is a function of strains at all points in the 

continuum. To simplify the corresponded mathematical formulation of the micropolar theory, 

researchers proposed several other size dependent theories such as modified strain gradient (MSG) 

[34] and modified couple stress (MCS) [42] theories. By including three non-classical material 

constants in the derivations, Lam et al [34] proposed the MSG formulation. The MCS theory 

presented by Yang et al [42] added one non-classical as well as two classical material constants to 

the constitutive equations of elastic materials. It has to be noted that the use of MSG theory in 

mathematical formulation of mechanical structures using energy-based techniques, is simpler than 



those of the micropolar and nonlocal theories. Moreover, MSG theory is more general than MCS 

one. In fact, the MCS theory can be obtained by removing two non-classical material constants 

from the MSG formulation [46]. 

Static and dynamic behavior of microbeams based on size dependent theories have been well-

investigated in previous studies. For example, Vatankhah and Kahrobaiyan [47] Investigated the 

size-dependency in free-vibration of micro-resonators based on the strain gradient theory. Kong et 

al [48] solved the static and dynamic problem of Euler-Bernoulli beams on the basis of MSG 

theory. They found that when the thickness of the beam becomes comparable to the material length 

scale parameter, beam deflection decreases and natural frequencies increase remarkably. Wang et 

al [49] investigated the same problem for the small Timoshenko beams and concluded that when 

the beam thickness is comparable to the material length scale parameter, results of a strain gradient 

elasticity theory substantially differs from those of classical theories. Radgolchin and Moeenfard 

[50]  utilized the MSG along with the random vibration theory to statistically model the harvested 

power in micron size energy harvesters. The strain gradient theory has also been utilized for 

modeling nonlinear large deflection behavior of beams. In a leading publication, Kahrobaiyan et 

al [51] developed a nonlinear size dependent Euler-Bernoulli beam model. Rahaeifard et al [52] 

studied the deflection and static pull-in of microbridges based on the MCS theory. The bucking 

analysis of micron and sub-micron size beams were carried out in [53] and [54] by employing 

strain gradient theory. The nonlinear MSG theory was used in [46] to analyze the vibrational 

behavior of electrostatically actuated shear deformable microarches.  

As reviewed, size dependent theories have been extensively utilized to model the static and 

dynamic behavior of nano and micro beams. However, as far as the authors know, these theories 

have not been yet employed to modify the BCM which is widely applicable for analysis of 



compliant mechanisms. So, the current paper aims to develop a novel method called modified 

strain gradient beam constrain model (MSGBCM) to enable accurate analysis of nano or micro 

scale flexures. The principle of virtual work is utilized to formulate the problem for a strain 

gradient beam flexure. Then closed-from analytic expressions are derived for the nonlinear strain 

energy of the beam which is further employed for modeling load-displacement behavior of nano 

and micro scale P-flexures. Extensive parametric studies are also performed to characterize the 

length scale effects on behavior of flexure beams as well as P-flexures. The core finding of this 

research is that for accurate analysis of small size flexures, the length scale effects shall be taken 

into account. 

2- Problem formulation 

A thin microbeam as shown in Fig. 1 is considered. The length, width and thickness of this beam 

is assumed to be 𝐿, 𝑏 and ℎ  respectively. The microbeam deflects under the effects of end forces 

𝐹𝑍 and 𝐹𝑋 as well as end moment 𝑀𝑌. 

 

Fig. 1: Schematic view of the thin nano/microbeam under study 



Based on the thin beam theory, the displacement vector of an arbitrary element placed at a 

distance 𝑍 from the neutral axis of the beam can be obtained as [55] 

𝒰⃗ = {

𝒰1(𝑋, 𝑍)

𝒰2(𝑋, 𝑍)

𝒰3(𝑋, 𝑍)
} = {

𝑈(𝑋)
0

𝑊(𝑋)
} − 𝑍 {

𝑑𝑊(𝑋)

𝑑𝑋
0
0

} (1) 

In this equation, 𝒰1, 𝒰2 and 𝒰3 are the displacements along the 𝑋, 𝑌 and 𝑍 axes respectively. 

Moreover, 𝑈(𝑋) is the axial displacement of the neutral axis and 𝑊(𝑋) is its transverse deflection. 

Using the von-Karman strain [56] along with employing Eq. (1), the only nonzero element of the 

strain tensor is derived as 

𝜀11(𝑋) =
𝜕𝒰1(𝑋, 𝑍)

𝜕𝑋
+

1

2
(
𝜕𝒰3(𝑋, 𝑍)

𝜕𝑍
)

2

=
𝑑𝑈(𝑋)

𝑑𝑋
+

1

2
(
𝑑𝑊(𝑋)

𝑑𝑋
)

2

− 𝑍
𝑑2𝑊(𝑋)

𝑑𝑋
 (2) 

Using Eq. (1), the infinitesimal rotation vector Θ⃗⃗ =
1

2
curl(𝒰⃗ ) [51] is obtained as 

Θ⃗⃗ = −{

0
𝑑𝑊(𝑋)

𝑑𝑋
0

} (3) 

Now, Eq. (3) can be utilized to obtain the symmetric part of the rotation gradient tensor 𝜒𝑖𝑗
𝑠 =

(Θ𝑖,𝑗 + Θ𝑗,𝑖) 2⁄  [51]. The nonzero elements of this tensor are as 

𝜒12
𝑠 = 𝜒21

𝑠 = −
1

2

𝑑2𝑊(𝑋)

𝑑𝑋2
 (4) 

The strain tensor 𝜀 can be used to find the elements of the dilatation gradient vector 𝛾𝑖 = 𝜀𝑚𝑚,𝑖 

[43] as 



𝛾1 =
𝑑2𝑈(𝑋)

𝑑𝑋2
+

𝑑𝑊(𝑋)

𝑑𝑋

𝑑2𝑊(𝑋)

𝑑𝑋2
− 𝑍

𝑑3𝑊(𝑋)

𝑑𝑋3
 (5) 

𝛾2 = 0 (6) 

𝛾3 = −
𝑑2𝑊(𝑋)

𝑑𝑋2
 (7) 

The deviatoric stretch gradient tensor 𝜂𝑖𝑗𝑘
(1)

 can also be derived using [57] 

𝜂𝑖𝑗𝑘
(1)

= −
1

15
[𝛿𝑖𝑗(𝜀𝑚𝑚,𝑘 + 2𝜀𝑚𝑘,𝑚) + 𝛿𝑗𝑘(𝜀𝑚𝑚,𝑖 + 2𝜀𝑚𝑖,𝑚) + 𝛿𝑘𝑖(𝜀𝑚𝑚,𝑗 + 2𝜀𝑚𝑗,𝑚)]

+
1

3
(𝜀𝑗𝑘,𝑖 + 𝜀𝑘𝑖,𝑗 + 𝜀𝑖𝑗,𝑘) (8) 

in which 𝛿 is the Kronecker delta. By substituting 𝜀 from Eq.(2) into Eq.(8) the nonzero elements 

of this tensor are obtained as 

𝜂111
(1)

=
2

5
(

𝑑

𝑑𝑋
(
𝑑𝑈(𝑋)

𝑑𝑋
+

1

2
(
𝑑𝑊(𝑋)

𝑑𝑋
)

2

) − 𝑍
𝑑3𝑊(𝑋)

𝑑𝑋3
) (9) 

𝜂113
(1)

= 𝜂311
(1)

= 𝜂131
(1)

= −
4

15

𝑑2𝑊(𝑋)

𝑑𝑋2
 (10) 

𝜂122
(1)

= 𝜂133
(1)

= 𝜂212
(1)

= 𝜂221
(1)

= 𝜂313
(1)

= 𝜂331
(1)

= −
1

5
(

𝑑

𝑑𝑋
(
𝑑𝑈(𝑋)

𝑑𝑋
+

1

2
(
𝑑𝑊(𝑋)

𝑑𝑋
)

2

) − 𝑍
𝑑3𝑊(𝑋)

𝑑𝑋3
) 

(11) 

𝜂223
(1)

= 𝜂232
(1)

= 𝜂322
(1)

=
1

15

𝑑2𝑊(𝑋)

𝑑𝑋2
 (12) 

𝜂333
(1)

=
1

5

𝑑2𝑊(𝑋)

𝑑𝑋2
 (13) 

Now, the nonzero elements of the  stress tensor 𝜎𝑖𝑗 = 𝜆tr(𝜀)𝛿𝑖𝑗 + 2𝜇𝜀𝑖𝑗 as well as higher order 

stresses 𝑝𝑖 = 2𝜇𝑙0
2𝛾𝑖, 𝜏𝑖𝑗𝑘

(1)
= 2𝜇𝑙1

2𝜂𝑖𝑗𝑘
(1)

 and 𝑚𝑖𝑗
𝑠 = 2𝜇𝑙2

2𝜒𝑖𝑗
𝑠  are calculated by [51] 



𝜎11 = 𝐸 (
𝑑𝑈(𝑋)

𝑑𝑋
+

1

2
(
𝑑𝑊(𝑋)

𝑑𝑋
)

2

− 𝑍
𝑑2𝑊(𝑋)

𝑑𝑋2
) (14) 

𝑝1 = 2𝜇𝑙0
2 (

𝑑

𝑑𝑋
(
𝑑𝑈(𝑋)

𝑑𝑋
+

1

2
(
𝑑𝑊(𝑋)

𝑑𝑋
)

2

) − 𝑍
𝑑3𝑊(𝑋)

𝑑𝑋3
) (15) 

𝑝3 = −2𝜇𝑙0
2
𝑑2𝑊(𝑋)

𝑑𝑋2
 (16) 

𝜏111
(1)

=
4

5
𝜇𝑙1

2 (
𝑑2𝑈(𝑋)

𝑑𝑋2
− 𝑍

𝑑3𝑊(𝑋)

𝑑𝑋3
+

𝑑2𝑊(𝑋)

𝑑𝑋2 ) (17) 

𝜏113
(1)

= 𝜏311
(1)

= 𝜏131
(1)

= −
8

15
𝜇𝑙1

2
𝑑2𝑊(𝑋)

𝑑𝑋2
 (18) 

𝜏122
(1)

= 𝜏133
(1)

= 𝜏212
(1)

= 𝜏221
(1)

= 𝜏313
(1)

= 𝜏331
(1)

= −
2

5
𝜇𝑙1

2 (
𝑑

𝑑𝑋
(
𝑑𝑈(𝑋)

𝑑𝑋
+

1

2
(
𝑑𝑊(𝑋)

𝑑𝑋
)

2

) − 𝑍
𝑑3𝑊(𝑋)

𝑑𝑋3
) 

 

(19) 

𝜏223
(1)

= 𝜏232
(1)

= 𝜏322
(1)

=
2

15
𝜇𝑙1

2
𝑑2𝑊(𝑋)

𝑑𝑋2
 (20) 

𝜏333
(1)

=
2

5
𝜇𝑙1

2
𝑑2𝑊(𝑋)

𝑑𝑋2
 (21) 

𝑚12 = 𝑚21 = −𝜇𝑙2
2
𝑑2𝑊(𝑋)

𝑑𝑋2
 (22) 

in which 𝐸 is the Young’s modulus of elasticity, 𝑙0, 𝑙1 and 𝑙2 are the length scale parameters and 

𝜆 and 𝜇 are Lamé constants and are obtained using [58] 

𝜆 =
𝑣𝐸

(1 + 𝑣)(1 − 2𝑣)
 (23) 

𝜇 =
𝐸

2(1 + 𝑣)
 (24) 

In Eqs. (23) and (24), 𝑣 denotes the Poison’s ratio. 



Finally, by substituting Eqs. (2), (4)-(7) and (9)-(22) into the potential energy expression 𝑉 =

1

2
∫ ∫ (𝜎𝑖𝑗𝜀𝑖𝑗 + 𝑝𝑖𝛾𝑖 + 𝜏𝑖𝑗𝑘

(1)
𝜂𝑖𝑗𝑘

(1)
+ 𝑚𝑖𝑗

𝑠 𝜒𝑖𝑗
𝑠 )𝑑𝐴𝑑𝑥

 

𝐴

𝐿

0
 [34], the strain energy of the beam is simply 

derived in terms of the displacement field as 

𝑉 =
1

2
∫ ∫{𝐸 (

𝑑𝑈(𝑋)

𝑑𝑋
+

1

2
(
𝑑𝑊(𝑋)

𝑑𝑋
)

2

− 𝑍
𝑑2𝑊(𝑋)

𝑑𝑋2
)

2

+ 𝜇 (2𝑙0
2 +

8

15
𝑙1
2 + 𝑙2

2)(
𝑑2𝑊(𝑋)

𝑑𝑋2 )

2

𝐴

𝐿

0

+ 2𝜇 (𝑙0
2 +

2

5
𝑙1
2)(

𝑑

𝑑𝑥
(
𝑑𝑈(𝑋)

𝑑𝑋
+

1

2
(
𝑑𝑊(𝑋)

𝑑𝑋
)

2

) − 𝑍
𝑑3𝑊(𝑋)

𝑑𝑋3
)

2

}𝑑𝐴𝑑𝑥 
(25) 

where 𝐴 is the area cross section of the beam. By defining 𝜀0(𝑋) = 𝑑𝑈(𝑋) 𝑑𝑋⁄ +

(𝑑𝑊(𝑋) 𝑑𝑋⁄ )2 2⁄  as the axial strain of the neutral axis and performing the inner integral, the strain 

energy expression is simplified as 

𝑉 =
1

2
∫ {𝑘1𝜀0

2(𝑋) + 𝑘2 (
𝑑𝜀0(𝑋)

𝑑𝑋
)

2

+ 𝑘3 (
𝑑2𝑊(𝑋)

𝑑𝑋2 )

2

+ 𝑘4 (
𝑑3𝑊(𝑋)

𝑑𝑋3 )

2

} 𝑑𝑋
𝐿

0

 (26) 

In this equation, the parameters 𝑘1, 𝑘2, 𝑘3 and 𝑘4 are defined by 

𝑘1 = 𝐸𝐴 

𝑘2 = 2𝜇𝐴 (𝑙0
2 +

2

5
𝑙1
2) 

𝑘3 = 𝐸𝐼 + 𝜇𝐴 (2𝑙0
2 +

8

15
𝑙1
2 + 𝑙2

2) 

𝑘4 = 2𝜇𝐼 (𝑙0
2 +

2

5
𝑙1
2) (27) 

where 𝐼 is the second area moment of inertia of the cross section around the neutral axis. 

Applying the variation operator 𝛿 on both sides of Eq. (26) leads to 



𝛿𝑉 = ∫ {𝑘1𝜀0(𝑋)𝛿𝜀0(𝑋) + 𝑘2  
𝑑𝜀0(𝑋)

𝑑𝑋
𝛿 (

𝑑𝜀0(𝑋)

𝑑𝑋
) + 𝑘3  

𝑑2𝑊(𝑋)

𝑑𝑋2
𝛿 (

𝑑2𝑊(𝑋)

𝑑𝑋2 )
𝐿

0

+ 𝑘4  
𝑑3𝑊(𝑋)

𝑑𝑋3
𝛿 (

𝑑3𝑊(𝑋)

𝑑𝑋3 )}  𝑑𝑋 
(28) 

By twice performing the integration by parts and noting that 𝛿𝜀0 = 𝛿(𝑑𝑈 𝑑𝑋⁄ ) +

(𝑑𝑊 𝑑𝑋⁄ )𝛿(𝑑𝑊 𝑑𝑋⁄ ), Eq. (28) can be re-expressed as 

𝛿𝑉 = ∫ {
𝑑

𝑑𝑋
((−𝑘1𝜀0 + 𝑘2  

𝑑2𝜀0

𝑑𝑋2)
𝑑𝑊

𝑑𝑋
) + 𝑘3

𝑑4𝑊

𝑑𝑋4
− 𝑘4

𝑑6𝑊

𝑑𝑋6 } 𝛿𝑊𝑑𝑋
𝐿

0

− ∫
𝑑

𝑑𝑋
(𝑘1𝜀0 − 𝑘2  

𝑑2𝜀0

𝑑𝑋2 )𝛿𝑈𝑑𝑋
𝐿

0

+ [(𝑘1𝜀0 − 𝑘2  
𝑑2𝜀0

𝑑𝑋2 )𝛿𝑈]
𝑋=0

𝑋=𝐿

+ [𝑘2  
𝑑𝜀0

𝑑𝑋
𝛿 (

𝑑𝑈

𝑑𝑋
)]

𝑋=0

𝑋=𝐿

+ [𝑘4

𝑑3𝑊

𝑑𝑋3
𝛿 (

𝑑2𝑊

𝑑𝑋2 )]
𝑋=0

𝑋=𝐿

+ [((𝑘1𝜀0 − 𝑘2  
𝑑2𝜀0

𝑑𝑋2 )
𝑑𝑊

𝑑𝑋
− 𝑘3

𝑑3𝑊

𝑑𝑋3
+ 𝑘4

𝑑5𝑊

𝑑𝑋5
)𝛿𝑊]

𝑋=0

𝑋=𝐿

+ [(𝑘2  
𝑑𝜀0

𝑑𝑋

𝑑𝑊

𝑑𝑋
+ 𝑘3

𝑑2𝑊

𝑑𝑋2
− 𝑘4

𝑑4𝑊

𝑑𝑋4 )𝛿 (
𝑑𝑊

𝑑𝑋
)]

𝑋=0

𝑋=𝐿

 (29) 

On the other hand, based on the principle of virtual work [23], one can say 

𝛿𝑉 = 𝐹𝑋𝛿𝑈𝑡𝑖𝑝 + 𝐹𝑍𝛿𝑊𝑡𝑖𝑝 + 𝑀𝑌𝛿𝜃𝑡𝑖𝑝 (30) 

By comparing (29) and (30) , the governing equations of the system and the corresponded 

boundary conditions can be obtained. To express these equations more conveniently, the following 

normalized variables are defined. 

𝑥 =
𝑋

𝐿
,   𝑢(𝑥) =

𝑈(𝑋)

𝐿
,   𝑤(𝑥) =

𝑊(𝑋)

𝐿
,   𝑓𝑥 =

𝐹𝑋𝐿2

𝐸𝐼
,   𝑓𝑧 =

𝐹𝑍𝐿
2

𝐸𝐼
,   𝑚𝑦 =

𝑀𝑌𝐿

𝐸𝐼
 (31) 



Using these normalized variables, after some mathematical simplifications, the governing 

equations of the strain gradient beam are derived as 

(𝜀0(𝑥) −
𝑎2

𝑎1
𝜀0
′′(𝑥))

′

= 0   (32) 

𝑎4𝑤
(6)(𝑥) − 𝑎3𝑤

(4)(𝑥) + 𝑓𝑥𝑤
′′(𝑥) = 0 (33) 

In these equations, the prime denotes differentiation with respect to 𝑥. Moreover, the parameters 

𝑎𝑖 (𝑖 = 1, 2, 3, 4) in these equations are defined by 

𝑎1 = 12(
𝐿

ℎ
)
2

 

𝑎2 =
12

(1 + 𝜈)ℎ2
(𝑙0

2 +
2

5
𝑙1
2) 

𝑎3 = 1 +
6

(1 + 𝜈)ℎ2
(2𝑙0

2 +
8

15
𝑙1
2 + 𝑙2

2) 

𝑎4 =
1

(1 + 𝜈)𝐿2
(𝑙0

2 +
2

5
𝑙1
2) 

(34) 

The normalized classical and nonclassical boundary conditions of the system are also derived 

as 

𝜀0
′ (0) = 𝜀0

′ (1) = 0 (35) 

𝜀0(1) −
𝑎2

𝑎1
𝜀0
′′(1) =

𝑓𝑥
𝑎1

 (36) 

𝑤(0) = 𝑤′(0) = 𝑤′′(0) = 𝑤′′′(1) = 0 (37) 

𝑎4𝑤
(5)(1)  − 𝑎3𝑤′′′(1) + 𝑓𝑥𝑤

′(1) = 𝑓𝑍 (38) 

𝑎3𝑤
′′(1) − 𝑎4𝑤

(4)(1)  = 𝑚𝑦 (39) 



3- Modified strain gradient BCM 

In this section, the MSGBCM will be developed and applied to derive a strain energy expression 

for a flexure nano/microbeam in terms of its end displacements. To do so, we proceed by 

integrating Eq. (32) from 𝑥 to 1 which by considering boundary condition (36) leads to 

𝜀0(𝑥) −
𝑎2

𝑎1
𝜀0
′′(𝑥) =

𝑓𝑥
𝑎1

 (40) 

Now, by utilizing boundary condition (35) the solution of differential equation (40) is derived 

as 

𝜀0(𝑥) = 𝑢′(𝑥) +
1

2
𝑤′2(𝑥) =

𝑓𝑥
𝑎1

 (41) 

This equation implies that the axial strain of the neutral axis is constant along the beam length. 

By integrating both sides of the second equality in (41) from 0 to 1 while noting that 𝑢(0) = 0 

and 𝑢(1) = 𝑢𝑡𝑖𝑝, one can conclude 

𝑢𝑡𝑖𝑝 =
𝑓𝑥
𝑎1

−
1

2
∫ 𝑤′2(𝑥)𝑑𝑥

1

0

 (42) 

The first term in this equation is the results of elastic stretching of the microbeam resulted from 

the axial tip load, while the second term is the consequence of the kinematic constraint which 

relates the tip axial displacement to the transverse deflection. This equation will be employed later 

to investigate the elastokinematic effects in the axial direction. 

To capture the effect of axial force 𝑓𝑥 on the beam’s deflection, the transverse deflection of the 

beam is perturbed using 𝑓𝑥 as the perturbation parameter as 



𝑤(𝑥) = ∑𝑤𝑖(𝑥)𝑓𝑥
𝑖

2

𝑖=0

+ 𝑂(𝑓𝑥
3) (43) 

By substituting Eq. (43) into Eq. (33) and equating the like powers of 𝑓𝑥 equal to zero, the 

following boundary value differential equations are obtained. 

𝑂(𝑓𝑥
0):    𝑎4𝑤0

(6)(𝑥) − 𝑎3𝑤0
(4)(𝑥) = 0 (44) 

𝑂(𝑓𝑥
1):    𝑎4𝑤1

(6)
(𝑥) − 𝑎3𝑤1

(4)
(𝑥) = −𝑤0

′′(𝑥) (45) 

𝑂(𝑓𝑥
2):    𝑎4𝑤2

(6)
(𝑥) − 𝑎3𝑤2

(4)
(𝑥) = −𝑤1

′′(𝑥) (46) 

Moreover, by considering Eq. (37) and noting that 𝑤(1) = 𝑤𝑡𝑖𝑝 and 𝑤′(1) = 𝜃𝑡𝑖𝑝, the 

boundary conditions for 𝑤𝑖(𝑥), 𝑖 = 0, 1, 2, are derived as 

𝑤𝑖(0) = 𝑤𝑖
′(0) = 𝑤𝑖

′′(0) = 0,       𝑖 = 0, 1, 2 (47) 

𝑤0(1) = 𝑤𝑡𝑖𝑝,   𝑤0
′(1) = 𝜃𝑡𝑖𝑝 (48) 

𝑤𝑖(1) = 𝑤𝑖
′(1) = 𝑤𝑗

′′′(1) = 0,     𝑖 = 1,2, 𝑗 = 1, 2, 3 (49) 

It has to be noted that the natural boundary conditions (38) and (39) will be used later to derive 

the stiffness matrix of the beam. Anyway, the solution of Eqs. (44)-(46) under the boundary 

conditions (47)-(49) is derived as a linear combination of 𝑤𝑡𝑖𝑝 and 𝜃𝑡𝑖𝑝 as 

𝑤𝑖(𝑥) = 𝜉1,𝑖(𝑥)𝑤𝑡𝑖𝑝 + 𝜉2,𝑖(𝑥)𝜃𝑡𝑖𝑝,    𝑖 = 0, 1, 2 (50) 

in which 𝜉𝑗,𝑖(𝑥)s are some complicated functions that are presented in appendix I. By substituting 

Eq. (50) into Eq. (43), the total transverse deflection of the beam is obtained as  

𝑤(𝑥) = (∑𝜉1,𝑖(𝑥)𝑓𝑥
𝑖

2

𝑖=0

)𝑤𝑡𝑖𝑝 + (∑𝜉2,𝑖(𝑥)𝑓𝑥
𝑖

2

𝑖=0

)𝜃𝑡𝑖𝑝 (51) 

Using Eq. (51) in the natural boundary conditions (38) and (39), it is concluded that 



{
𝑓𝑧
𝑚𝑦

} = ∑𝑓𝑥
𝑖 [

𝑘11
(𝑖)

𝑘12
(𝑖)

𝑘21
(𝑖)

𝑘22
(𝑖)

] {
𝑤𝑡𝑖𝑝

𝜃𝑡𝑖𝑝
}

2

𝑖=0

 (52) 

in which all [𝑘(𝑖)]s are independent of 𝑓𝑥. Moreover, in this equation, [𝑘(0)] is called the elastic 

stiffness matrix and [𝑘(1)] and [𝑘(2)] are the load stiffening matrices. The elements of these 

matrices can be explicitly expressed in terms of 𝜉𝑗,𝑖(𝑥)s as 

𝑘1,𝑗
(0)

= 𝑎4𝜉𝑗,0
(5)

(1),     𝑗 = 1,2 (53) 

𝑘1,𝑗
(𝑖)

= 𝑎4𝜉𝑗,𝑖
(5)(1) + 𝜉𝑗,𝑖−1

′ (1),    𝑖, 𝑗 = 1,2 (54) 

𝑘2,𝑗
(𝑖) = 𝑎3𝜉𝑗,𝑖

′′ (1) − 𝑎4𝜉𝑗,𝑖
(4)

(1),    𝑖 = 0,1,2  , 𝑗 = 1,2 (55) 

Upon substitution of 𝜉𝑗,𝑖s from the appendix I, 𝑘𝑖,𝑗
(𝑙)

s can be obtained. Assuming 𝑏1 = √𝑎3 𝑎4⁄ >

20 which is absolutely valid for thin beams, the expressions for 𝑘𝑖,𝑗
(𝑙)

 can be greatly simplified using 

curve fitting technique as 

𝑘𝑖𝑗
(0)

= 𝑏2 (𝓀𝑖𝑗
(1)

𝑏1
2 + 𝓀𝑖𝑗

(2)
𝑏1 + 𝓀𝑖𝑗

(3)
) ,    𝑖, 𝑗 = 1,2 (56) 

𝑘𝑖𝑗
(1)

=
𝓀𝑖𝑗

(4)
𝑏1 + 𝓀𝑖𝑗

(5)

𝑏1 + 𝓀𝑖𝑗
(6)

,                              𝑖, 𝑗 = 1,2 (57) 

𝑘𝑖𝑗
(2)

=
𝓀𝑖𝑗

(7)

𝑏2 (𝑏1
2 + 𝓀𝑖𝑗

(8)
𝑏1 + 𝓀𝑖𝑗

(9)
)
,          𝑖, 𝑗 = 1,2 (58) 

where in these equations, 𝑏2 = 𝑎4. The parameters 𝓀𝑖𝑗
(𝑛)

 in Eqs. (56)-(58) are some constants and 

have been presented in Table 1. The maximum error percentage of Eqs. (56)-(58) is less than 0.1%. 

Table 1 Numerical values of the parameters 𝓀𝑖𝑗
(𝑛)

 appeared in Eqs. (56)-(58) 



𝓀𝑖𝑗
(𝑛)

 

(𝑖, 𝑗) 

(1,1) (1,2) (2,2) 

(𝑛
) 

(1) 12 −6 4 

(2) 36 −12 4 

(3) 150 −62 29 

(4) 6/5 −1/10 2/15 

(5) 5 16/15 11/10 

(6) 3 −11 9 

(7) −1/700 1/1400 −11/6300 

(8) 1 3/2 3 

(9) 62 160 74 

To obtain the axial constraint kinematic equation, we substitute Eq. (51) into Eq. (42) to obtain 

𝑢𝑡𝑖𝑝 =
𝑓𝑥
𝑎1

+ ∑𝑓𝑥
𝑖{𝑤𝑡𝑖𝑝 𝜃𝑡𝑖𝑝} [

𝑔11
(𝑖) 𝑔12

(𝑖)

𝑔21
(𝑖) 𝑔22

(𝑖)
] {

𝑤𝑡𝑖𝑝

𝜃𝑡𝑖𝑝
}

2

𝑖=0

 (59) 

The elements of [𝑔(𝑖)] are independent of 𝑓𝑥 and are functions of 𝜉𝑗,𝑖 as 

𝑔𝑖,𝑗
(0)

= −
1

2
∫ (𝜉𝑖,0

′ 𝜉𝑗,0
′ ) 𝑑𝑥

1

0

,    𝑖, 𝑗 = 1,2 (60) 

𝑔𝑖,𝑗
(1)

= −
1

2
∫ (𝜉𝑖,0

′ 𝜉𝑗,1
′ + 𝜉𝑗,0

′ 𝜉𝑖,1
′ ) 𝑑𝑥

1

0

,    𝑖, 𝑗 = 1,2 (61) 

𝑔𝑖,𝑗
(2)

= −
1

2
∫ (𝜉𝑖,1

′ 𝜉𝑗,1
′ + 𝜉𝑖,0

′ 𝜉𝑗,2
′ + 𝜉𝑗,0

′ 𝜉𝑖,2
′ ) 𝑑𝑥

1

0

,    𝑖, 𝑗 = 1,2 (62) 



By substituting 𝜉𝑗,𝑖 from appendix I and performing a curve fitting technique, the elements of 

[𝑔(𝑖)]s can be accurately expressed in the following compact closed forms with less than 0.1% 

error. 

𝑔𝑖𝑗
(0)

=
ℊ𝑖𝑗

(1)
𝑏1 + ℊ𝑖𝑗

(2)

𝑏1 + ℊ𝑖𝑗
(3)

,    𝑖 = 1,2 (63) 

𝑔𝑖𝑗
(1)

=
ℊ𝑖𝑗

(4)

𝑏2 (𝑏1
2 + ℊ𝑖𝑗

(5)
𝑏1 + ℊ𝑖𝑗

(6)
)
,    𝑖 = 1,2 (64) 

𝑔𝑖𝑗
(2)

=
1

𝑏2
2 (ℊ𝑖𝑗

(7)
𝑏1

4 + ℊ𝑖𝑗
(8)

𝑏1
3 + ℊ𝑖𝑗

(9)
𝑏1

2 + ℊ𝑖𝑗
(10)

𝑏1 + ℊ𝑖𝑗
(11)

)
,    𝑖 = 1,2 (65) 

The numerical values of ℊ𝑖𝑗
(𝑛)

 are as reported in Table 2. 

Finally, by substituting 𝜀0 from Eq. (41) into Eq. (26), the normalized form of the strain energy 

of the system, 𝑣 = 𝑉 𝕍⁄  (in which 𝕍 = 𝐸𝐼/𝐿) is derived as 

𝑣 =
1

2

𝑓𝑥
2

𝑎1
+

1

2
∫ (𝑎3𝑤

′′2 + 𝑎4𝑤
′′′2) 𝑑𝑥

1

0

 (66) 

Now, by utilizing 𝑤 from (51), and performing some mathematical manipulations, Eq. (66) can 

be expressed in the following matrix form. 

𝑣 =
1

2
{𝑤𝑡𝑖𝑝 𝜃𝑡𝑖𝑝} [

𝑣11
(0)

𝑣12
(0)

𝑣21
(0)

𝑣22
(0)

] {
𝑤𝑡𝑖𝑝

𝜃𝑡𝑖𝑝
} +

𝑓𝑥
2

{𝑤𝑡𝑖𝑝 𝜃𝑡𝑖𝑝} [
𝑣11

(1)
𝑣12

(1)

𝑣21
(1)

𝑣22
(1)

] {
𝑤𝑡𝑖𝑝

𝜃𝑡𝑖𝑝
}

+
𝑓𝑥

2

2𝑎1
(1 + 𝑎1{𝑤𝑡𝑖𝑝 𝜃𝑡𝑖𝑝} [

𝑣11
(2)

𝑣12
(2)

𝑣21
(2)

𝑣22
(2)

] {
𝑤𝑡𝑖𝑝

𝜃𝑡𝑖𝑝
}) 

 

(67) 

Table 2 Numerical values of the parameters ℊ𝑖𝑗
(𝑛)

 appeared in equations (63)-(65)  



ℊ𝑖𝑗
(𝑛)

 

(𝑖, 𝑗) 

(1,1) (1,2) (2,2) 

(𝑛
) 

(1) −3/5 1/20 −1/15 

(2) −5/2 −8/15 −11/20 

(3) 3 −11 9 

(4) 1/700 −1/1400 11/6300 

(5) 1 3/2 3 

(6) 62 160 74 

(7) −4.20 × 104 8.40 × 104 −1.80 × 104 

(8) −1.30 × 105 4.20 × 105 −9.00 × 104 

(9) −6.20 × 106 2.20 × 107 −2.00 × 106 

(10) −1.50 × 107 8.00 × 107 −9.50 × 106 

(11) −1.50 × 108 3.00 × 109 −3.00 × 103 

where the elements of [𝑣(𝑖)] matrices are defined in terms of 𝜉𝑗,𝑖s as 

𝑣𝑖,𝑗
(0)

= ∫ (𝑎3𝜉𝑖,0
′′ 𝜉𝑗,0

′′ + 𝑎4𝜉𝑖,0
′′′𝜉𝑗,0

′′′) 𝑑𝑥
1

0

,    𝑖, 𝑗 = 1,2 (68) 

𝑣𝑖,𝑗
(1)

= ∫ (𝑎3(𝜉𝑖,0
′′ 𝜉𝑗,1

′′ + 𝜉𝑗,0
′′ 𝜉𝑖,1

′′ ) + 𝑎4(𝜉𝑖,0
′′′𝜉𝑗,1

′′′ + 𝜉𝑗,0
′′′𝜉𝑖,1

′′′)) 𝑑𝑥
1

0

,    𝑖, 𝑗 = 1,2 (69) 

𝑣𝑖,𝑗
(2)

= ∫ (𝑎3(𝜉𝑖,1
′′ 𝜉𝑗,1

′′ + 𝜉𝑖,0
′′ 𝜉𝑗,2

′′ + 𝜉𝑗,0
′′ 𝜉𝑖,2

′′ ) + 𝑎4(𝜉𝑖,1
′′′𝜉𝑗,1

′′′ + 𝜉𝑖,0
′′′𝜉𝑗,2

′′′ + 𝜉𝑗,0
′′′𝜉𝑖,2

′′′))  𝑑𝑥
1

0

,   𝑖, 𝑗 = 1,2 (70) 

By substituting 𝜉𝑗,𝑖s from appendix I and performing the integrations, the elements of [𝑣(𝑖)]s 

can be easily calculated. By employing curve fitting technique, the expressions for these elements 

can be expressed in a very compact form as 



𝑣𝑖𝑗
(0)

= 𝑏2 (𝓋𝑖𝑗
(1)

𝑏1
2 + 𝓋𝑖𝑗

(2)
𝑏1+𝓋𝑖𝑗

(3)
) ,    𝑖, 𝑗 = 1,2 (71) 

𝑣𝑖𝑗
(1)

= 0,    𝑖, 𝑗 = 1,2 (72) 

𝑣𝑖𝑗
(2)

=
𝓋𝑖𝑗

(4)

𝑏2 (𝑏1
2 + 𝓋𝑖𝑗

(5)
𝑏1 + 𝓋𝑖𝑗

(6)
)
,    𝑖, 𝑗 = 1,2 (73) 

The numerical value of the constants 𝓋𝑖𝑗
(𝑛)

 are listed in Table 3. 

Table 3 Numerical values of the parameters 𝓋𝑖𝑗
(𝑛)

 appeared in equations (71)-(73) 

𝓋𝑖𝑗
(𝑛)

 

(𝑖, 𝑗) 

(1,1) (1,2) (2,2) 

(𝑛
) 

(1) 12 −6 4 

(2) 36 −12 4 

(3) 150 −62 29 

(4) 1/700 −1/1400 11/6300 

(5) 1 3/2 3 

(6) 62 160 74 

An investigation of equations (56)-(58), (63)-(65) and (71)-(73) reveals that the following 

equalities hold between the characteristic matrices [𝑘], [𝑔] and [𝑣]. Note that it has already been 

proven [22] that Eq. (74) is also valid for macro scale beams. 

[𝑣(0)] = [𝑘(0)],    [𝑔(0)] = −
1

2
[𝑘(1)],      [𝑔(1)] = [𝑣(2)] = −[𝑘(2)] (74) 

If 𝑓𝑥 is small, the terms containing 𝑓𝑥
𝑖 (𝑖 ≥ 2) in (59) can be neglected. Then, this equation can 

be easily solved for 𝑓𝑥. Using Eq. (74), the corresponded solution can be expressed as 



𝑓𝑥 =

𝑎1 (𝑢𝑡𝑖𝑝 +
1
2
{𝑤𝑡𝑖𝑝 𝜃𝑡𝑖𝑝} [

𝑘11
(1)

𝑘12
(1)

𝑘21
(1)

𝑘22
(1)

] {
𝑤𝑡𝑖𝑝

𝜃𝑡𝑖𝑝
})

(1 − 𝑎1{𝑤𝑡𝑖𝑝 𝜃𝑡𝑖𝑝} [
𝑘11

(2)
𝑘12

(2)

𝑘21
(2)

𝑘22
(2)

] {
𝑤𝑡𝑖𝑝

𝜃𝑡𝑖𝑝
})

 (75) 

Now, by substituting Eq. (75) into Eq. (67) and utilizing Eq. (74), the strain energy of the strain 

gradient beam is simply expressed as 

𝑣(𝑤𝑡𝑖𝑝, 𝜃𝑡𝑖𝑝, 𝑢𝑡𝑖𝑝) =
1

2
{𝑤𝑡𝑖𝑝 𝜃𝑡𝑖𝑝} [

𝑘11
(0)

𝑘12
(0)

𝑘12
(0)

𝑘22
(0)

] {
𝑤𝑡𝑖𝑝

𝜃𝑡𝑖𝑝
}  

+
𝑎1

2

(𝑢𝑡𝑖𝑝 +
1
2
 {𝑤𝑡𝑖𝑝 𝜃𝑡𝑖𝑝} [

𝑘11
(1)

𝑘12
(1)

𝑘12
(1)

𝑘22
(1)

] {
𝑤𝑡𝑖𝑝

𝜃𝑡𝑖𝑝
})

2

(1 − 𝑎1 {𝑤𝑡𝑖𝑝 𝜃𝑡𝑖𝑝} [
𝑘11

(2)
𝑘12

(2)

𝑘12
(2)

𝑘22
(2)

] {
𝑤𝑡𝑖𝑝

𝜃𝑡𝑖𝑝
})

 (76) 

The importance of Eq. (76) is that it expresses the strain energy of the strain gradient beam 

solely in terms of the tip displacements of the nano/microbeam. So, it will be beneficial for 

obtaining the load-displacement relationships of the system. These equations will be presented 

briefly in the next section. 

By increasing the dimensions of the system and consequently increasing ℎ 𝑙𝑖⁄  , 𝑖 = 1,2,3, the 

results of the strain gradient formulation shall approach those of the classical BCM. In fact, it can 

be easily shown that as ℎ 𝑙𝑖⁄ → ∞, the characteristics matrices [𝑘], [𝑔] and [𝑣] resulted from the 

current formulation tends to the following matrices 

[𝑘(0)] = [
12 −6
−6 4 

],   [𝑘(1)] = [

6

5
−

1

10

−
1

10

2

15
 

],   [𝑘(2)] = [
−

1

700

1

1400
1

1400
−

11

6300
 

] (77) 



[𝑔(0)] = [
−

3

5

1

20
1

20
−

1

15

],   [𝑔(1)] = [

1

700
−

1

1400

−
1

1400

11

6300

],   [𝑔(2)] = [
−

1

42000

1

84000
1

84000
−

1

18000

] (78) 

[𝑣(0)] = [
12 −6
−6 4 

],   [𝑣(1)] = [
0 0
0 0

],   [𝑣(2)] = [

1

700
−

1

1400

−
1

1400

11

6300

] (79) 

which are exactly the same as the characteristic matrices reported in [22]. This verifies the accuracy 

of the proposed formulation. To further study the dependence of the characteristic coefficients 𝑘𝑖𝑗
(𝑛)

 

to the size of the structure, epoxy beams with characteristics given in Table 4 are considered. 

Table 4: Characteristics of the flexure beams under study 

Parameter 𝐸 𝜈 𝑙0 𝑙1 𝑙2 𝑏 ℎ⁄  𝐿 ℎ⁄  

Value 1.44  0.38 17.6  17.6 17.6 10 80 

Unit GPa -- μm μm μm -- -- 

The variations of the 𝑘𝑖𝑗
(0)

, 𝑘𝑖𝑗
(1)

 and 𝑘𝑖𝑗
(2)

 with ℎ for flexure beams with specifications given in Table 

4 have been respectively depicted in Figs. 2-4. It is clear that as the size of the structure is increased, 

the characteristic coefficients resulted from the strain gradient theory approach their corresponded 

value obtained by BCM. Moreover, Figs. 2-4 indicate that if the size of the structure is small, the 

corresponded error resulted from using BCM in predicting the elements of the stiffness matrices 

can be as large as several hundreds of percent. This is especially true for the stiffness matrix [𝑘(0)] 

which plays the main role in the nonlinear strain energy expression (please see Eq. (76)). 



 

Fig. 2: Variations of the elements of the elastic stiffness matrix [𝑘𝑖𝑗
(0)

] of a strain gradient beam 

with ℎ (dashed asymptotes are the corresponded results of the BCM model) 

 

Fig. 3 Variations of the elements of the load stiffening matrix [𝑘𝑖𝑗
(1)

] of a strain gradient beam 

with ℎ (dashed asymptotes are the corresponded results of the BCM model) 



 

Fig. 4 Variations of the elements of the load stiffening matrix [𝑘𝑖𝑗
(1)

] of a strain gradient beam 

with ℎ (dashed asymptotes are the corresponded results of the BCM model) 

Considering Figs. 2-4, it is reasonable to expect the classical theory to provide erroneous 

predictions for the deflection of nano/micro flexure beams under the effect of end loads. To 

investigate this, a group of microbeams with specifications given in Table 4, but with 𝐿 ℎ⁄ = 20 

and 𝑏 ℎ⁄ = 2 is considered. It is assumed that the beams are under the end transverse load of 𝐹𝑍 =

100 μN. In Fig. 5, the transverse deflection of such beams is depicted versus the thickness ℎ, and 

the results obtained from the MSGBCM, classical and couple stress theories are compared. 

Moreover, to verify the accuracy of the proposed technique, the findings of the MSGBCM are also 

compared with those of Kong et al [48] whom used the modified strain gradient theory for their 

analysis, and an excellent agreement is observed. Fig. 5 shows that for the microbeams under 

study, when the thickness ℎ is larger than 150 μm, all mentioned theories lead to almost the same 

deflections. However, at smaller scales, the approach of Kong et al [48] and MSGBCM predict 

smaller deflections for the system.  



 

Fig. 5 Tip deflection of flexure microbeams versus beam thickness for a group of beams with 

specifications reported in Table 4 and with 𝐿 ℎ⁄ = 20, 𝑏 ℎ⁄ = 2 and 𝐹𝑍 = 100 μN 

4- Application of MSGBCM to P-flexures 

In this section, the load displacement formulation of a nano/micro-scale P-flexure will be 

presented. To this end, the P-flexure shown in Fig. 6 is considered. 

 

Fig. 6 Schematic view of the P-flexure under study 

In the upcoming formulations, the upper and the lower beams of this figure are respectively 

denoted as the first and the second beams. Using geometrical relations, the dimensionless tip 



displacements of the first and the second beams in Fig. 6 can be easily expressed in terms of axial 

(i.e. 𝑢𝑂) and transverse (i.e. 𝑤𝑂) dimensionless displacements of the point 𝑂 as well as the rotation 

of the stage (i.e. 𝜃𝑂) as 

𝑤𝑡𝑖𝑝
(𝑖)

= 𝑤𝑂,                                   𝑖 = 1,2 (80) 

𝜃𝑡𝑖𝑝
(𝑖)

= 𝜃𝑂,                                     𝑖 = 1,2 (81) 

𝑢𝑡𝑖𝑝
(𝑖)

= 𝑢𝑂 + (−1)𝑖(𝑑)𝜃𝑂,         𝑖 = 1,2 (82) 

where in Eq. (82), 𝑑 = 𝐷 𝐿⁄  is half of the normalized distance between the stage’s center and the 

beams. Using Eq. (76), the strain energy of the 𝑖’th beam 𝑣 = 𝑣𝑖(𝑤𝑡𝑖𝑝
(𝑖) , 𝜃𝑡𝑖𝑝

(𝑖) , 𝑢𝑡𝑖𝑝
(𝑖) ) can be obtained. 

Then the total strain energy of the flexure is simply derived by 

𝑣 = ∑𝑣𝑖 (𝑤𝑡𝑖𝑝
(𝑖)

, 𝜃𝑡𝑖𝑝
(𝑖)

, 𝑢𝑡𝑖𝑝
(𝑖)

)

2

𝑖=1

=
1

2
𝑎1

∑ (𝑢𝑂 + (−1)𝑖𝑑𝜃𝑂 +
1
2
 {𝑤𝑂 𝜃𝑂} [

𝑘11
(1)

𝑘12
(1)

𝑘12
(1)

𝑘22
(1)

] {
𝑤𝑂

𝜃𝑂
})

2

2
𝑖=1

1 − 𝑎1 {𝑤𝑂 𝜃𝑂} [
𝑘11

(2)
𝑘12

(2)

𝑘12
(2)

𝑘22
(2)

] {
𝑤𝑂

𝜃𝑂
}

 

+{𝑤𝑂 𝜃𝑂} [
𝑘11

(0)
𝑘12

(0)

𝑘12
(0)

𝑘22
(0)

] {
𝑤𝑂

𝜃𝑂
} 

(83) 

Using the virtual work principle 𝛿𝑣 = 𝑓𝑥𝛿𝑢𝑂 + 𝑓𝑧𝛿𝑤𝑂 + 𝑚𝑦𝛿𝜃𝑂, and employing Eq. (83), the 

load displacement relations for the nano/micro scale P-flexure is derived as 

𝑓𝑥 =
𝜕𝑣

𝜕𝑢𝑂
=

𝑎1 (2𝑢𝑂 + 𝑘11
(1)

𝑤𝑂
2 + 2𝑘12

(1)
𝑤𝑂𝜃𝑂 + 𝑘22

(1)
𝜃𝑂

2)

1 − 𝑎1 (𝑘11
(2)

𝑤𝑂
2 + 2𝑘12

(2)
𝑤𝑂𝜃𝑂 + 𝑘22

(2)
𝜃𝑂

2)
 (84) 



𝑓𝑧 =
𝜕𝑣

𝜕𝑤𝑂
=

𝑎1 (𝑘11
(1)

𝑤𝑂 + 𝑘12
(1)

𝜃𝑂) (2𝑢𝑂 + 𝑘11
(1)

𝑤𝑂
2 + 2𝑘12

(1)
𝑤𝑂𝜃𝑂 + 𝑘22

(1)
𝜃𝑂

2)

1 − 𝑎1 (𝑘11
(2)

𝑤𝑂
2 + 2𝑘12

(2)
𝑤𝑂𝜃𝑂 + 𝑘22

(2)
𝜃𝑂

2)

+
1

2

𝑎1
2 (𝑘11

(2)
𝑤𝑂 + 𝑘12

(2)
𝜃𝑂) {(2𝑢𝑂 + 𝑘11

(1)
𝑤𝑂

2 + 2𝑘12
(1)

𝑤𝑂𝜃𝑂 + 𝑘22
(1)

𝜃𝑂
2)

2
+ 4𝑑2𝜃𝑂

2}

(1 − 𝑎1 (𝑘11
(2)

𝑤𝑂
2 + 2𝑘12

(2)
𝑤𝑂𝜃𝑂 + 𝑘22

(2)
𝜃𝑂

2))
2

+ 2(𝑘11
(0)

𝑤𝑂 + 𝑘12
(0)

𝜃𝑂) (85) 

𝑚𝑦 =
𝜕𝑣

𝜕𝜃𝑂
=

𝑎1 (𝑘12
(1)

𝑤𝑂 + 𝑘22
(1)

𝜃𝑂) (2𝑢𝑂 + 𝑘11
(1)

𝑤𝑂
2 + 2𝑘12

(1)
𝑤𝑂𝜃𝑂 + 𝑘22

(1)
𝜃𝑂

2) + 2𝑎1𝑑
2𝜃𝑂

1 − 𝑎1 (𝑘11
(2)

𝑤𝑂
2 + 2𝑘12

(2)
𝑤𝑂𝜃𝑂 + 𝑘22

(2)
𝜃𝑂

2)

+
1

2

𝑎1
2 (𝑘12

(2)
𝑤𝑂 + 𝑘22

(2)
𝜃𝑂) {(2𝑢𝑂 + 𝑘11

(1)
𝑤𝑂

2 + 2𝑘12
(1)

𝑤𝑂𝜃𝑂 + 𝑘22
(1)

𝜃𝑂
2)

2
+ 4𝑑2𝜃𝑂

2}

(1 − 𝑎1 (𝑘11
(2)

𝑤𝑂
2 + 2𝑘12

(2)
𝑤𝑂𝜃𝑂 + 𝑘22

(2)
𝜃𝑂

2))
2

+ 2(𝑘12
(0)

𝑤𝑂 + 𝑘22
(0)

𝜃𝑂) (86) 

If the deflection of the flexure beams in P-flexure is smaller than 0.15𝐿, then comparing to 𝑤𝑂
2, 

the terms containing 𝜃𝑂
2 and 𝑤𝑂𝜃𝑂 can be ignored. By performing the mentioned simplifications, 

the load-displacement relationships are simplified as 

𝑓𝑥 = 𝑎1 (
2𝑢𝑂 + 𝑘11

(1)
𝑤𝑂

2

1 − 𝑎1𝑘11
(2)

𝑤𝑂
2
) (87) 

𝑓𝑧 = 2(𝑘11
(0)

𝑤𝑂 + 𝑘12
(0)

𝜃𝑂) + (𝑘11
(1)

𝑤𝑂 + 𝑘12
(1)

𝜃𝑂)𝑓𝑥 +
1

2
(𝑘11

(2)
𝑤𝑂 + 𝑘12

(2)
𝜃𝑂) 𝑓𝑥

2 (88) 

𝑚𝑦 = 2(𝑘12
(0)

𝑤𝑂 + 𝑘22
(0)

𝜃𝑂) + (𝑘12
(1)

𝑤𝑂 + 𝑘22
(1)

𝜃𝑂) 𝑓𝑥 +
1

2
(𝑘12

(2)
𝑤𝑂 + 𝑘22

(2)
𝜃𝑂)𝑓𝑥

2

+ 2𝑑2
𝑎1𝜃𝑂

1 − 𝑎1𝑘11
(2)

𝑤𝑂
2

 (89) 

To investigate the effect of axial and transverse load on end displacement components, a P-

flexure with ℎ = 50 μm and 𝐷 = 10ℎ and with specifications reported in Table 4 is considered. 



As sample simulations, the axial, transverse and rotational response of the flexure to a wide range 

of 𝑓𝑥 and 𝑓𝑧 have been illustrated in Figs. 7-9. For each load case, Eqs. (87)-(89) are numerically 

solved for (𝑢𝑂 , 𝑤𝑂 , 𝜃𝑂). As Fig. 7 suggests, at each 𝑓𝑥, the axial displacement of the stages center 

with 𝑓𝑧 almost follows a parabolic shape. As physically expected, larger axial forces lead to smaller 

absolute axial displacements of the stage’s center. Fig. 8 shows that transverse movement of the 

stage’s center changes almost linearly with 𝑓𝑧. The slope of this linear relationship however is 

larger for smaller values of 𝑓𝑥. This indicate the physical expectation that when a compressive 𝑓𝑥 

is applied to the system, the system experiences larger transverse displacements with the same 𝑓𝑧. 

Finally, Fig. 9 shows that the variation of the rotation angle of the stage with 𝑓𝑧 at different values 

of 𝑓𝑥, is very similar to the curve of a third order polynomial. Moreover, it is observed that the 

rotational angle of the stage of the micro scale P-flexure under study is very small (less than 0.15°) 

in all simulated loading conditions. 

 

Fig. 7 Axial displacement of small-scale P-flexure versus transverse load at different axial forces 



 

Fig. 8 Transverse displacement of small-scale P-flexure versus transverse load at different axial 

forces 

 

Fig. 9 Rotation of the motion stage of small-scale P-flexure versus transverse load at different 

axial forces 

The load displacement equations (87)-(89) can be utilized for deriving the stiffnesses of the 

micro scale P-flexure. These directional stiffnesses can be easily derived by 



𝑘𝑥 =
𝜕𝑓𝑥(𝑢𝑂, 𝑤𝑂)

𝜕𝑢𝑂
=

2𝑎1

1 − 𝑎1𝑘11
(2)

𝑤𝑂
2

 (90) 

𝑘𝑧 =
𝜕𝑓𝑧(𝑢𝑂, 𝑤𝑂, 𝜃𝑂)

𝜕𝑤𝑂
= 2𝑘11

(0)
+ 𝑘11

(1)
𝑓𝑥 +

1

2
𝑘11

(2)
𝑓𝑥

2 (91) 

𝑘𝜃 =
𝜕𝑚𝑦(𝑢𝑂, 𝑤𝑂 , 𝜃𝑂)

𝜕𝜃𝑂
= 2𝑘12

(0)
+ 𝑘12

(1)
𝑓𝑥 +

1

2
𝑘12

(2)
𝑓𝑥

2 + 2𝑑2
𝑎1

1 − 𝑎1𝑘11
(2)

𝑤𝑂
2

 (92) 

To compare the results of the MSGBCM formulation with those of the BCM, some P flexures 

with 𝐷 = 10ℎ and beam specifications given in Table 4 is considered. It is assumed that the flexure 

deflects solely under the effect of 𝑓𝑧. In Figs. 10-12, the stiffnesses 𝑘𝑥, 𝑘𝑧 and 𝑘𝜃 versus 𝑤𝑂 

resulted from both BCM and MSGBCM formulations have been compared. As it is observed for 

the case of relatively larger ℎ of 200 μm, both MSGBCM and BCM provides almost similar 

predictions for the stiffness of the flexure. However, for smaller sizes of the flexure such as ℎ =

50 μm, the MSGBCM predicts larger stiffnesses. This result is especially interesting for design of 

compliant mechanisms which severely suffer from constraint direction stiffness loss as the motion 

stage moves in the DoF direction. In these cases, the results of the MSGBCM suggests that the 

mentioned stiffness loss is not as critical as predicted by a classical theory. As a result, the design 

process of such micro scale mechanisms can be carried out with much more flexibility in choosing 

the physical and geometrical specifications of the constituent material. 



 

Fig. 10 Axial stiffness drop of a small-scale P-flexure versus 𝑤𝑜 

 

Fig. 11 Transverse stiffness of a small-scale P-flexure versus 𝑤𝑜 



 

Fig. 12 Rotational stiffness of a small-scale P-flexure versus 𝒘𝒐 

 

5- Conclusion 

Powerful techniques are available for design and analysis of macro scale flexure systems. 

However, these tools may not be sufficiently accurate for the design of nano or micro scale 

flexures. On the other hand, in small scales, flexure mechanisms may be the only solution for 

providing highly precise motion guidance. So, the importance of proposing new formulations 

capable of capturing small-scale effects in compliant units is well recognized. In this paper, a novel 

technique called MSGBCM was presented which utilized the modified strain gradient theory to 

amend BCM by enabling it to capture small scale effects. First, nonlinear strain energy expressions 

were presented for nano and micro scale beam flexures. Then the problem was formulated using 

the principle of the virtual work. The resulting equations were solved using the perturbation theory 

and closed-form expressions were presented for the load-displacement behavior of the system. 

Moreover, an analytic formula was presented for the nonlinear strain energy of the flexure beam 



solely in terms of the length scales of the beam’s material as well as its tip displacements. This 

energy expression was utilized to formulate the load-displacement behavior of micron and 

submicron size P-flexures. Overally, the obtained results clearly indicated that the behavior of 

flexure systems under end load conditions severely depends on ℎ 𝑙𝑖⁄  as a measure of the size of the 

structure. If the structure is large enough, then even the BCM can provide accurate prediction for 

the behavior of the flexure. Otherwise, the previously reported BCM may underestimate the 

stiffness of the structure. The methodology and the results presented in this paper can be easily 

extended for accurate modeling of more complex micron and submicron size compliant modules 

such as DP or DP-DP. This will enable design of new flexures with extended stable travel range. 

Appendix I: Definition of the functions 𝜉𝑗,𝑖(𝑥) 

The functions 𝜉𝑗,𝑖(𝑥) are defined by 

𝜉𝑗,𝑖(𝑥) =
𝜚𝑗,𝑖(𝑥)

𝜁𝑗,𝑖(𝑥)
,    𝑗 = 1,2,   𝑖 = 0,1,2 (I-1) 

where 

𝜚1,0(𝑥) = −12(𝑏1 + 1)𝑒𝑏1(𝑥−1) − 6(𝑏1
2 − 2)𝑒−𝑏1(𝑥 − 2) + 12(𝑏1 − 1)𝑒𝑏1(𝑥+1) 

+(−𝑥2(2𝑥 − 3)𝑏1
4 + 2𝑥(𝑥2 − 3)𝑏1

3 − 6(𝑥2 − 1)𝑏1
2 + 12𝑏1𝑥 − 12)𝑒2𝑏1 

−6(𝑏1
2 − 2)𝑒𝑏1𝑥 + 12(𝑥(𝑥 − 2)𝑏1

2 + 3)𝑒𝑏1 − (2𝑥 − 3)𝑥2𝑏1
4 − 2𝑥(𝑥2 − 3)𝑏1

3 

−6(𝑥2 − 1)𝑏1
2 − 12(𝑏1𝑥 + 1) 

(I-2) 

𝜁1,0(𝑥) = (𝑏1
4 − 4𝑏1

3 + 24𝑏1 − 24)𝑒2𝑏1 + 𝑏1
4 + 4𝑏1

3 − 24𝑏1
2𝑒𝑏1 − 24𝑏1 + 48𝑒𝑏1 − 24 (I-3) 

𝜚2,0(𝑥) = 6(𝑏1
2 + 2𝑏1 + 2)𝑒−𝑏1(𝑥−1) + 2(𝑏1

3 − 6)𝑒−𝑏1(𝑥−2) − 6(𝑏1
2 − 2𝑏1 + 2)𝑒𝑏1(𝑥+1) 

+(𝑥2(𝑥 − 1)𝑏1
5 + 2𝑥(−𝑥2 + 1)𝑏1

4 + (2𝑥3 − 2)𝑏1
3 + 6(𝑏1

2𝑥2 − 2𝑏1𝑥 + 2)) 𝑒2𝑏1 
(I-4) 



+2(𝑏1
3 + 6)𝑒𝑏1𝑥 − 4(𝑥(𝑥2 + 3𝑥 − 3)𝑏1

2 − 6𝑥 + 6)𝑏1𝑒
𝑏1 + 𝑥2(𝑥 − 1)𝑏1

5
 

+2𝑥(𝑥2 − 1)𝑏1
4 + 2(𝑥3 − 1)𝑏1

2 − 6(𝑏1
2𝑥2 + 2𝑏1𝑥 + 2) 

𝜁2,0(𝑥) = 𝑏1 ((𝑏1
4 − 4𝑏1

3 + 24𝑏1 − 24)𝑒2𝑏1 + 𝑏1
4 + 4𝑏1

3 − 24𝑒𝑏1𝑏1
2 − 24𝑏1 + 48𝑒𝑏1 − 24) (I-5) 

𝜚𝑗,𝑖(𝑥) = {6(𝑏1
2 − 2)𝑒𝑏1(−1+𝑥) + (0.5𝑏1

4 + 2𝑏1
3)𝑒−𝑏1𝑥 − 12 + 𝑥(𝑥 − 1)2𝑏1

5 − 2(𝑥3 − 3𝑥2 + 2)𝑏1
3 

−6(𝑥2 − 2𝑥)𝑏1
2 − 12(𝑥 − 1)𝑏1 + (((2𝑥3 − 3𝑥2)𝑏1

4 + 2(𝑥3 − 3𝑥)𝑏1
3 + 6(𝑥2 − 1)𝑏1

2 

+12𝑏1𝑥 + 12)𝑒−𝑏1 + (−0.5𝑏1
4 + 2𝑏1

3 − 12𝑏1 + 12)𝑒𝑏1𝑥}𝕀1
(𝑗,𝑖)

 

+2𝑏1{3(𝑏1
2 − 2)𝑒−𝑏1(𝑥−1) + 3(𝑏1

2 − 2)𝑒𝑏1(𝑥−1) + 6(𝑏1 + 1)𝑒−𝑏1𝑥 

+(6 + 𝑥2(𝑥 − 1.5)𝑏1
4 + (𝑥3 − 3𝑥)𝑏1

3 + 3(𝑥2 − 1)𝑏1
2 + 6𝑏1𝑥)𝑒

−𝑏1 

+(6 + 𝑥2(𝑥 − 1.5)𝑏1
4 − (𝑥3 − 3𝑥)𝑏1

3+3(𝑥2 − 1)𝑏1
2 − 6𝑏1𝑥)𝑒𝑏1 

−6(𝑏1 − 1)𝑒𝑏1𝑥 − 12 − 6(𝑥2 + 2𝑥)𝑏1
2}𝕀2

(𝑗,𝑖)
 

+{2(𝑏1
3 − 6)𝑒−𝑏1(𝑥−1) + 2(𝑏1

3 + 6)𝑒𝑏1(𝑥−1) + 6(𝑏1
2 + 2𝑏1 + 2)𝑒−𝑏1𝑥 

+(−12 + 𝑥2(−1 + 𝑥)𝑏1
5 + 2(𝑥3 − 𝑥)𝑏1

4 + 2(𝑥3 − 1)𝑏1
3 − 6𝑥2𝑏1

2 − 12𝑏1𝑥)𝑒
−𝑏1  

+(𝑥2(𝑥 − 1)𝑏1
5−2(𝑥3 − 𝑥)𝑏1

4 + 2(𝑥3 − 1)𝑏1
3 + 6𝑥2𝑏1

2 − 12𝑏1𝑥 + 12)𝑒𝑏1 

−6(𝑏1
2 − 2𝑏1 + 2)𝑒𝑏1𝑥 −4𝑏1 ((𝑥3 + 3𝑥2 − 3𝑥)𝑏1

2 − 6𝑥 + 6)} 𝕀3
(𝑗,𝑖)

,   𝑗, 𝑖 = 1,2 

(I-6) 

𝜁𝑗,𝑖(𝑥) = 2𝑏2𝑏1
3
((𝑏1

4 − 24) cosh(𝑏1) − 4 (𝑏1
3 + 6𝑏1) sinh(𝑏1) − 12𝑏1

2 + 24) ,   𝑗, 𝑖 = 1,2 (I-7) 

In Eq. (I-6), the parameters 𝕀𝑘
(𝑗,𝑖)

s are defined by 

𝕀1
(𝑗,𝑖)

= ∫ 𝜉𝑗,𝑖−1

1

0
(𝑥)𝑒−𝑏1(𝑥−1)𝑑𝑥 (I-8) 

𝕀2
(𝑗,𝑖)

= ∫ (𝑥 − 1)𝜉𝑗,𝑖−1

1

0
(𝑥)𝑑𝑥 (I-9) 

𝕀3
(𝑗,𝑖)

= ∫ 𝜉𝑗,𝑖−1

1

0

(𝑥)𝑑𝑥 (I-10) 
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