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Abstract

In this paper, a conservative compact difference scheme for the generalized Kawahara equation
is constructed based on the scalar auxiliary variable (SAV) approach. The discrete conservative
laws of mass and Hamiltonian energy and boundedness estimates are studied in detail. The error
estimates in discrete L∞-norm and L2-norm of the presented scheme are analyzed by using the
discrete energy method. We give an efficiently algorithm of the presented scheme which only needs
to solve two decoupled equations.
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1. Introduction

A dispersive model describing numerous wave phenomena, such as mogneto-acoustic waves in
a cold plasma and the propagation of long wave in a shallow liquid beneath an ice sheet, was
expressed by the following generalized Kawahara equation with periodic condition [1, 2, 3]:

ut − αuxxxxx + βuxxx + γux + µ(uk)x = 0, (x, t) ∈ R× (0, T ], (1.1a)

u(x, 0) = u0(x), x ∈ R, (1.1b)

u(x+ L, t) = u(x, t), (x, t) ∈ R× (0, T ], (1.1c)

where α > 0, β, µ ̸= 0, γ ≥ 0, k ≥ 2 and u0(x) is known smooth periodic function with period
L. This equation was proposed firstly by Kawahara in [1], and also referred as the singularly
perturbed KdV equation or fifth-order KdV-type equation [4, 5]. It suffices to model only a single
period Ω ∈ [0, L]. We can be easily derive that the system (1.1) has important three conservative
laws defined in the following

d

dt
M =

d

dt

∫
Ω

1

2
udx = 0, (1.2)

d

dt
E =

d

dt

∫
Ω

1

2
u2dx = 0, (1.3)

d

dt
H =

d

dt

∫
Ω

(
α

2
u2xx +

β

2
u2x −

γ

2
u2 − µ

k + 1
uk+1

)
dx = 0, (1.4)
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for t > 0, where M, E and H are the mass, momentum and Hamiltonian energy of the system (1.1),
respectively. For details of the physical description of Kawahara equation, the reader is advised to
read [6, 7] and the references therein.

There are a great amount of works devoting to the traveling wave solution for the Kawahara
equation. The nonsingular periodic-wave solutions of the Kawahara equation (k = 2, 3) were
presented by using the elliptic Jacobi snoidal and cnoidal functions in [8]. Wazwaz [9] used the sine-
cosine method, the tanh method, the extended tanh method and ansatze of hyperbolic functions
for analytic treatment for the modified Kawahara equation (k = 3). The exact traveling wave
solutions of the generalized Kawahara equation were presented by applying the modified extended
direct algebraic method in [10]. Well-posedness and unique continuation property for the solutions
to the generalized Kawahara equation below the energy space were studied in [11].

For the study of the numerical methods, Yuan et al. [12] proposed the numerical scheme of both
the Kawahara equation and modified Kawahara equation, which consists of dual-Petrov-Galerkin
method in space and Crank-Nicolson-leap-frog in time. The homotopy-analysis method was used
to find the traveling wave solution of the Kawahara equation in [13, 14]. This method contains
the auxiliary parameters to adjust and control the convergence region of solution. Bibi et al. [15]
proposed an algorithm based on method of lines coupled with radial basis functions namely meshless
method of lines for the Kawahara-type equation. Karakoc et al. [16] proposed a septic B-spline
collocation method for the Kawahara equation, which is unconditionally stable proved by the von-
Neumann stability analysis. Bashan [17, 18] developed the Crank-Nicolson-differential quadrature
method based on modified cubic B-splines and fifth-order quintic B-spline, respectively. Gong et
al. [19] derived a multi-symplectic Fourier pseudo-spectral scheme for the Kawahara equation with
special attention to the relationship between the spectral differentiation matrix and discrete Fourier
transform. Besides this, finite difference method for approximating the solution of the Kawahara
equation has also been considered. Sepulveda et al. [20, 21] proposed implicit finite difference
schemes for the Kawahara-type equation and proved its unconditionally stability. Koley et al. [22]
developed the convergence of full discrete semi implicit and Crank-Nicolson implicit finite difference
schemes. Wang and Cheng [23] derived the exact solutions of the 1D generalized Kawahara equation
and proposed three-time level second order accuracy difference scheme for solving the 1D and 2D
generalized Kawahara equation. To further improve the accuracy of the numerical solution, new
compact fourth order, standard fourth order and standard second order finite difference schemes
for the Kawahara equation were constructed by Chousuion et al. [24]. The standard fourth order
and standard second order schemes can preserve both mass and energy.

Motivated by the above numerical methods for the Kawahara equation, we are interested in
constructing a new high order accurate conservative compact difference scheme for solving the
generalized Kawahara equation in (1.1). Note that the scalar auxiliary variable (SAV) approach is
presented for solving a large class of gradient flow problems in [25]. The SAV approach is built upon
the invariant energy quadratization (IEQ) approach in [26, 27, 28]. This method is not restricted to
the nonlinear part of the free energy (see [28] and many works afterwards), and leads to conservative
and unconditionally energy stable numerical schemes, which has been applied successfully to the
gradient flows model (see [29, 30] and the references therein), the Camassa-Holm equation (see
[31]), the Schrödinger equation (see [32, 33]), etc. Therefore, we shall apply the SAV approach to
construct conservative scheme for solving the generalized Kawahara equation in (1.1) and prove
the convergence order and energy stability for our scheme. The contributions of this work are
concluded as follows:

• The presented compact difference scheme guarantees the discrete conservative laws of mass
and energy.
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• Under the conditions of
∫
Ω(

γ
2u

2+ µ
k+1u

k+1)dx ≥ −C0 for a positive constant C0 and h4τ−1 =

o(1), the presented scheme achieves a convergence rate of O(τ2 + h4) in discrete L∞-norm
and L2-norm. The boundedness of numerical solutions and convergence analysis are given by
applying the matrix properties and the discrete energy method.

• An efficient algorithm for the presented scheme is given in detail. The first algorithm can
be directly concluded by the presented scheme. This algorithm only needs to solve two
decoupled equation by using a block-Gaussian elimination process. Numerical results verify
the feasibility of the algorithm.

The rest of this paper are arranged as follows. In Section 2, some auxiliary notations and
lemmas are introduced in detail. In Section 3, we construct high order conservative compact
difference scheme based on SAV method for solving the generalized Kawahara equation. The
discrete conservative laws and boundedness of the numerical solution are analyzed in Section 4.
The convergence order O(τ2 + h4) in L∞-norm and L2-norm of the presented scheme are proved
by the matrix properties and discrete energy method in Section 5. An efficient algorithm of the
presented scheme is given in Section 6. Some numerical results are provided to verify our theoretical
analysis in Section 7. Finally, some concluding remarks are given in Section 8.

2. Notations and lemmas

In this section, we introduce some useful notations and lemmas. We first divide the domain
[0, L] × [0, T ]. Let h = L/J and τ = T/N be the space-step and time-step, respectively, where
J and N are given to be two positive integers. Defined u = {unj |0 ≤ j ≤ J, 0 ≤ n ≤ N} be a
discrete grid function on Ωh,τ = {(xj , tn)|xj = jh, tn = nτ, 0 ≤ j ≤ J, 0 ≤ n ≤ N}, we denote the
following notations

δtu
n
j =

1

τ
(un+1

j − unj ), u
n+ 1

2
j =

1

2
(un+1

j + unj ), δxu
n
j =

1

h
(un+1

j − unj ),

δx̄u
n
j =

1

h
(unj − unj−1), δx̂u

n
j =

1

2h
(unj+1 − unj−1), δ2xu

n
j = δxδx̄u

n
j =

1

h2
(unj+1 − 2unj + unj−1),

δ4xu
n
j = δ2xδ

2
xu

n
j , Aunj =

1

12
(unj+1 + 10unj + unj−1), Bunj =

1

6
(unj+1 + 4unj + unj−1).

The compact operators A,B satisfy

A∂2
xu(xj , tn) = δ2xu(xj , tn) +O(h4), B∂xu(xj , tn) = δx̂u(xj , tn) +O(h4),

which are diagonally dominant and invertible, i.e.

∂2
xu(xj , tn) = A−1δ2xu(xj , tn) +O(h4), ∂xu(xj , tn) = B−1δx̂u(xj , tn) +O(h4),

∂4
xu(xj , tn) = A−2δ4xu(xj , tn) +O(h4).

Denote the discrete space

Uh
per = {u | u = (uj), uj+J = uj , j ∈ Z}.

For any grid function u, v ∈ Uh
per, we define the discrete inner products and the corresponding

norms as follows

(u, v) = h
J∑

j=1

ujvj , ∥u∥ =
√

(u, u), ∥u∥∞ = max
1≤j≤J

|uj |,

∥δxu∥ =
√

(δxu, δxu) =
√

(δ2xu, u), ∥δ2xu∥ =
√

(δ2xu, δ
2
xu) =

√
(δ4xu, u).
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Throughout this paper, C is a positive real constant independent of mesh size h and time step τ .
We introduce the following matrix notations as

S1 =


0 1 0 · · · 1
1 0 1 · · · 0
...

...
...

. . .
...

0 · · · 1 0 1
1 · · · 0 1 0


J×J

, S2 =


0 −1 0 · · · 1
1 0 −1 · · · 0
...

...
...

. . .
...

0 · · · 1 0 −1
−1 · · · 0 1 0


J×J

,

and A = 1
12(S1 + 10I), B = 1

6(S1 + 4I), D1 = 1
2hS2, D2 = 1

h2 (S1 − 2I), where I is an identity
matrix with size J . It can be easily see that the matrices A, B, D2 and H1 = A−1, H2 = B−1 are
J × J real circulate symmetric positive define. We set H1, H2, D1, D2 be the circulant matrices
corresponding to the inverse operators of H1 = A−1, H2 = B−1 and the operators δx̂, δ

2
x.

We now present some lemmas here, which are useful in the subsequent analysis.

Lemma 2.1. (See [34]) For any grid function u ∈ Uh
per, we have

∥u∥∞ ≤
√
L

2
∥δxu∥, ∥u∥ ≤ L√

6
∥δxu∥, ∥δx̂u∥ ≤ ∥δxu∥.

In addition, for arbitrary ε > 0, we have

∥u∥∞ ≤ ε∥δxu∥+
1

2ε
∥u∥.

Lemma 2.2. (See [35]) For any grid function u ∈ Uh
per and H1 = Q⊤Q, H2 = R⊤R, we have

(H1δ
2
xu, u) = −∥Qδxu∥2, (H2

1δ
4
xu, u) = ∥H1δ

2
xu∥2, (H2δx̂u, u) = 0,

and

∥u∥2 ≤ (H1u, u) = ∥Qu∥2 ≤ 3

2
∥u∥2, ∥u∥2 ≤ (H2u, u) = ∥Ru∥2 ≤ 3∥u∥2,

∥u∥2 ≤ (H2
1u, u) = ∥H1u∥2 ≤

9

4
∥u∥2,

where Q = Chol(H1), R = Chol(H2) are the Cholesky factorizations of H1 and H2, respectively.

Lemma 2.3. (See [36]) For any grid function u ∈ Uh
per, we have

J∑
j=1

B−1unj =

J∑
j=1

unj =

J∑
j=1

Bunj .

3. Compact difference scheme based on SAV method

In this section, we reformulate the generalized Kawahara equation in (1.1) into an equivalent
form based on quadratic energy function, which provides and platform for constructing our scheme.
Firstly, it can be see that Eq. (1.1) can be rewritten equivalently into the Hamiltonian system as
follows

∂u

∂t
= −D δH

δu
, D = ∂x,
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where H =
∫
ΩH(u, ux, uxx)dx and δH/δu denotes the variational derivative of H with respect to

u (see [37] and many works afterwards):

δH
δu

=
∂H

∂u
− ∂

∂x

∂H

∂ux
.

We introduce the scalar auxiliary variable

r(t) =
√

S(u), S(u) =
∫
Ω

(
γ

2
u2 +

µ

k + 1
uk+1

)
dx+ C0,

where C0 is a positive constant, then the system (1.1) can be rewritten as

ut = −vx, (3.1a)

v = −αuxxxx + βuxx +
rG(u)√
S(u)

, (3.1b)

rt =
(G(u), ut)

2
√

S(u)
, (3.1c)

where G(u) = γu+ µuk and (·, ·) means the L2-inner product over Ω defined by (f, g) =
∫
Ω fg dx.

Taking the inner product of (3.1a) with v, of (3.1b) with −ut, multiplying (3.1c) with 2r, and
summing the resulting formulas, we have

d

dt

(
α

2
∥uxx∥2 +

β

2
∥ux∥2 − r2

)
= 0,

which corresponds to the Hamiltonian energy (1.4).
Define the grid function

unj ≈ Un
j = u(xj , tn), vnj ≈ V n

j = v(xj , tn), rn ≈ Rn = r(tn),

for 0 ≤ j ≤ J , 0 ≤ n ≤ N . Considering the system (3.1) at the point (xj , tn), and applying the
Crank-Nicolson method for temporal discretization and the compact difference method for spatial
discretization, we obtain

δtU
n
j = −H2δx̂V

n+ 1
2

j + Tn
1 , 1 ≤ j ≤ J, 0 ≤ n ≤ N − 1, (3.2a)

V
n+ 1

2
j = −αH2

1δ
4
xU

n+ 1
2

j + βH1δ
2
xU

n+ 1
2

j +
rn+

1
2G(Ũn

j )√
S(Ũn)

+ Tn
2 , 1 ≤ j ≤ J, 0 ≤ n ≤ N − 1,

(3.2b)

δtR
n =

(
G(Ũn), δtU

n
)

2

√
S(Ũn)

+ Tn
3 , 0 ≤ n ≤ N − 1, (3.2c)

U0
j = u0(xj), R0 =

√
S(U0), 0 ≤ j ≤ J, (3.2d)

Un
j+J = Un

j , 1 ≤ j ≤ J, 1 ≤ n ≤ N, (3.2e)

where Ũn = (3Un − Un−1)/2 when n ≥ 1, Ũn = Un when n = 0, and

max{|Tn
1 |, |Tn

2 |, |Tn
3 |} ≤ C(τ2 + h4), max{|δtTn

1 |, |δtTn
2 |} ≤ Ch4. (3.3)
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S(Ũn) is the composite Simpson formula of S(Ũn), that is,

S(Ũn) =
h

3

J∑
j=1

[
γ

2
(Ũn

j )
2 +

µ

k + 1
(Ũn

j )
k+1 +

γ

4
(Ũn

j+1 + Ũn
j )

2 +
µ

2k(k + 1)
(Ũn

j+1 + Ũn
j )

k+1

]
.

Replacing the exact solutions Un
j , V

n
j , Rn by unj , v

n
j , r

n in (3.2), and omitting the truncation
errors Tn

1 , T
n
2 , T

n
3 , we construct the following compact difference scheme for the system (3.1):

δtu
n
j = −H2δx̂v

n+ 1
2

j , 1 ≤ j ≤ J, 0 ≤ n ≤ N − 1, (3.4a)

v
n+ 1

2
j = −αH2

1δ
4
xu

n+ 1
2

j + βH1δ
2
xu

n+ 1
2

j +
rn+

1
2G(ũnj )√
S(ũn)

, 1 ≤ j ≤ J, 0 ≤ n ≤ N − 1, (3.4b)

δtr
n =

(G(ũn), δtu
n)

2
√

S(ũn)
, 0 ≤ n ≤ N − 1, (3.4c)

u0j = u0(xj), r0 =
√

S(u0), 0 ≤ j ≤ J, (3.4d)

unj+J = unj , 0 ≤ j ≤ J, 1 ≤ n ≤ N. (3.4e)

4. Discrete conservative laws and boundedness

In this section, we give the analysis of the discrete conservative laws and boundedness for the
presented compact difference scheme (3.4) in detail. In the following analysis, we assume the exact
solutions (u, v, r) of the system (3.1) satisfy the following regularity condition

u(x, t) ∈ L∞(0, T ;H6(Ω)), ut(x, t) ∈ L2(0, T ;H4(Ω)) ∩ L∞(0, T ;L∞(Ω)). (4.1)

Supposed that there exists a positive constant C, s.t.

max
0≤n≤N

{∥Un∥L∞ , ∥Un
x ∥L∞ , ∥Un

xx∥L∞ , ∥Un
t ∥L∞} ≤ C.

Theorem 4.1. The compact difference scheme (3.4) unconditionally preserves the discrete mass
and Hamiltonian energy in the sense of

Mn+1 = M0 with Mn =
h

2

J∑
j=1

unj , (4.2)

Hn+1 = H0 with Hn =
α

2
∥H1δ

2
xu

n∥2 + β

2
∥Qδxu

n∥2 − (rn)2, (4.3)

for 1 ≤ n ≤ N .

proof. Multiplying both-hand sides of (3.4a) with h, summing up j from 1 to J , and using
Lemma 2.3, we obatin

h

τ

J∑
j=1

(un+1
j − unj ) = 0,

which implies (4.2) by the definition of Mn.

Taking the inner product of (3.4a) with vn+
1
2 , of (3.4b) with −δtu

n, multiplying (3.4c) with

2rn+
1
2 , using Lemma 2.2 and summing the resulting formulas, we obatin

α

2τ
(∥H1δ

2
xu

n+1∥2 − ∥H1δ
2
xu

n∥2) + β

2τ
(∥Qδxu

n+1∥2 − ∥Qδxu
n∥2)− 1

τ
((rn+1)2 − (rn)2) = 0.

which implies (4.3) by the definition of Hn. This completes the proof. �
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Theorem 4.2. Suppose that S(Un) ≥ 0, then we have the following estimates

∥un∥+ ∥δxun∥+ ∥δ2xun∥+ rn ≤ C, ∥un∥∞ + ∥δxun∥∞ ≤ C, (4.4)

for 1 ≤ n ≤ N .

proof. First, taking the inner product of (3.4a) with v
1
2 , of (3.4b) with −δtu

0, multiplying (3.4c)

with −2r
1
2 and applying Lemmas 2.1 and 2.2, we obtain

α

2τ
(∥H1δ

2
xu

1∥2 − ∥H1δ
2
xu

0∥2) + β

2τ
(∥Qδxu

1∥2 − ∥Qδxu
0∥2) + 1

τ
((r1)2 − (r0)2)

= r
1
2

(
G(u0)√
S(u0)

, δtu
0

)

≤ 1

4τ

(
6β

L2
∥u1∥2 + (r1)2

)
+ C

≤ 1

4τ

(
β∥δxu1∥2 + (r1)2

)
+ C.

Using Lemma 2.3, we have
α∥δ2xu1∥2 + β∥δxu1∥2 + 2(r1)2 ≤ C,

which holds (4.4) by applying Lemma 2.1 and the discrete Sobolev inequality.
Next, we use the mathematical induction. Assume that

max
1≤l≤n

{∥ul∥, ∥δxul∥, ∥δ2xul∥, rl} ≤ C,

then using Lemma 2.1 and the discrete Sobolev inequality, we have

max{∥ul∥∞, ∥δxul∥∞} ≤ C.

Taking the inner product of (3.4a) with vn+
1
2 , of (3.4b) with −δtu

n, multiplying (3.4c) with −2rn+
1
2 ,

then replacing n by l, summing up for l from 1 to n and applying Lemma 2.2, we obtain

α

2
(∥H1δ

2
xu

n+1∥2 − ∥H1δ
2
xu

1∥2) + β

2
(∥Qδxu

n+1∥2 − ∥Qδxu
1∥2) + ((rn+1)2 − (r1)2)

= rn+
1
2

(
G(ũn)√
S(ũn)

, un+1 − un

)
+ τ

n−1∑
l=1

rl+
1
2

(
G(ũl)√
S(ũl)

, δtu
l

)

≤ 1

4τ

(
6β

L2
∥un+1∥2 + (rn+1)2

)
+ C

≤ 1

4τ

(
β∥δxun+1∥2 + (rn+1)2

)
+ C,

which implies
α∥δ2xun+1∥2 + β∥δxun+1∥2 + 2(rn+1)2 ≤ C.

Thus, we get
∥un+1∥ ≤ C, ∥un+1∥∞ + ∥δxun+1∥∞ ≤ C.

It can be seen that the conclusions are also valid for l = n+ 1. This completes the proof. �
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5. Convergence analysis

This section will given the strictly proof of the error estimates of the compact difference scheme
(3.4). We denote the error function as

en = Un − un, fn = V n − vn, gn = Rn − rn.

Substituting (3.2) from the compact difference scheme (3.4), we derive the error equations

δte
n
j = −H2δx̂f

n+ 1
2

j + Tn
1 , 1 ≤ j ≤ J, 0 ≤ n ≤ N − 1, (5.1a)

f
n+ 1

2
j = −αH2

1δ
4
xe

n+ 1
2

j + βH1δ
2
xe

n+ 1
2

j + P
n+ 1

2
1 + Tn

2 , 1 ≤ j ≤ J, 0 ≤ n ≤ N − 1, (5.1b)

δtg
n = P

n+ 1
2

2 + Tn
3 , 0 ≤ n ≤ N − 1, (5.1c)

e0j = 0, g0 = 0, 0 ≤ j ≤ J, (5.1d)

enj+J = enj , 1 ≤ j ≤ J, 1 ≤ n ≤ N, (5.1e)

where

P
n+ 1

2
1 =

Rn+ 1
2G(Ũn)√
S(Ũn)

− rn+
1
2G(ũn)√
S(ũn)

, P
n+ 1

2
2 =

 G(Ũn)√
S(Ũn)

, δtU
n

−

(
G(ũn)√
S(ũn)

, δtu
n

)
.

Theorem 5.1. Suppose that the exact solutions of (3.1) satisfy the condition (4.1) and h4τ−1 =
o(1), then we have the following error estimates

∥en∥+ ∥δxen∥+ ∥δ2xen∥ ≤ C(τ2 + h4), ∥en∥∞ + ∥δxen∥∞ ≤ C(τ2 + h4), (5.2)

for 1 ≤ n ≤ N .

proof. At first, we consider the convergence results when n = 0. Taking the inner product of
(5.1a) with 1

2f
1, of (5.1b) with − 1

τ e
1 and multiplying (5.1c) with −g1, we have

α

2τ
∥H1δ

2
xe

1∥2 + β

2τ
∥Qδxe

1∥2 + 1

τ
∥g1∥2

= −(f1, T 0
1 ) +

1

τ
(T 0

2 , e
1) + g1T 0

3 +
1

τ

g1G(Ũ0)√
S(Ũ0)

, e1


≤ ∥f1∥∥T 0

1 ∥+
2

τ
∥T 0

2 ∥∥e1∥+ ∥g1∥∥T 0
3 ∥+

1

τ
∥g1∥∥e1∥

∥∥∥∥∥∥ G(Ũ0)√
S(Ũ0)

∥∥∥∥∥∥ . (5.3)

It follows from (5.1a) and Lemmas 2.1, 2.3 that

√
6

L
∥f1∥ ≤ ∥H2δx̂f

1∥ ≤ 2

τ
∥e1∥+ 2∥T 0

1 ∥.

Applying Lemma 2.3 to (5.3), we obatin

α∥δxe1∥2 + β∥δ2xe1∥2 + 2∥g1∥2 ≤ C(∥e1∥2 + ∥g1∥2) + C(1 + τ)∥T 0
1 ∥2 + ∥T 0

2 ∥2 + τ∥T 0
3 ∥2

≤ C(β∥δxe1∥2 + ∥g1∥2) + C(τ2 + h4)2,
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which holds (5.2) by using Lemma 2.1 and the discrete Sobolev inequality.
Next, we adopt mathematical induction as in [38] to further analyze the error estimate. Assume

that there exists a constant h0 > 0, τ0 > 0 such that, for 0 < h < h0, 0 < τ < τ0,

∥δtel−1∥ ≤ 1, max{∥el∥, ∥δxel∥, ∥δ2xel∥, ∥gl∥} ≤ C(τ2 + h4),

for 1 ≤ l ≤ n, which implies

max{∥el∥∞, ∥δxel∥∞} ≤ C(τ2 + h4).

Taking the inner product of (5.1a) with fn+ 1
2 , of (5.1b) with −δte

n and multiplying (5.1c) with

−gn+
1
2 , summing up them, we have

α

2τ
(∥H1δ

2
xe

n+1∥2 − ∥H1δ
2
xe

n∥2) + β

2τ
(∥Qδxe

n+1∥2 − ∥Qδxe
n∥2) + 1

τ

(
∥gn+1∥2 − ∥gn∥2

)
= −(Tn

1 , f
n+ 1

2 ) + (P
n+ 1

2
1 , δte

n) + (Tn
2 , δte

n) + gn+
1
2 (P

n+ 1
2

2 + Tn
3 ). (5.4)

It follows from (5.1a) that

√
6

L
∥fn+ 1

2 ∥ ≤ ∥H2δx̂f
n+ 1

2 ∥ ≤ ∥δten∥+ ∥Tn
1 ∥,

we have

|(Tn
1 , f

n+ 1
2 )| ≤ C∥Tn

1 ∥∥δten∥+ C∥Tn
1 ∥2 ≤ C(∥en+1∥2 + ∥en∥2 + ∥δtTn

1 ∥2 + ∥Tn
1 ∥2). (5.5)

Since

P
n+ 1

2
1 =

gn+
1
2G(Ũn)√
S(Ũn)

+ rn+
1
2

 G(Ũn)√
S(Ũn)

− G(ũn)√
S(ũn)


=

gn+
1
2G(Ũn)√
S(Ũn)

+
rn+

1
2

(
G(Ũn)−G(ũn)

)
√

S(Ũn)
+

rn+
1
2G(ũn)

(
S(Ũn)− S(ũn)

)
√
S(Ũn)S(ũn)

(
S(Ũn) + S(ũn)

)
:= gn+

1
2M1 + rn+

1
2 (M2 +M3), (5.6)

P
n+ 1

2
2 =

 G(Ũn)√
S(Ũn)

, δte
n

+

 G(Ũn)√
S(Ũn)

− G(ũn)√
S(ũn)

, δtu
n


= (M1, δte

n) + (M2 +M3, δtu
n) , (5.7)

we have

∥M1∥ ≤ C, (5.8)

∥M2∥ ≤ C
∥∥∥G′(ξ̃n)(Ũn − ũn)

∥∥∥ ≤ C∥ẽn∥, (5.9)

∥M3∥ ≤ C
∥∥∥S′(η̃n)(Ũn − ũn)

∥∥∥ ≤ C∥ẽn∥, (5.10)
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where ξ̃n, η̃n are on the segment that connects Ũn and ũn, then it implies from (5.6)-(5.10) that

(P
n+ 1

2
1 , δte

n) + gn+
1
2P

n+ 1
2

2 =
(
2gn+

1
2M1 + rn+

1
2 (M2 +M3), δte

n
)
+ gn+

1
2 (M2 +M3, δtu

n)

≤ C(2∥gn+
1
2 ∥∥δten∥+ ∥δten∥∥ẽn∥+ ∥gn+

1
2 ∥∥δten−1∥). (5.11)

Applying the Cauchy-Schwarz inequality, we have

(Tn
2 , δte

n) + gn+
1
2Tn

3 ≤ C(∥en+1∥2 + ∥en∥2 + ∥gn+1∥2 + ∥gn∥2) + 1

2
(∥δtTn

2 ∥2 + ∥Tn
3 ∥2). (5.12)

Substituting (5.5), (5.11) and (5.12) into (5.4), replacing n by l and summing up for l from 0 to n,
we have

α∥H1δ
2
xe

n+1∥2 + β∥Qδxe
n+1∥2 + 2∥gn+1∥2

≤ Cτ

n+1∑
l=0

(∥el∥2 + ∥gl∥2) + Cτ

n∑
l=0

(2∥gl+
1
2 ∥∥δtel∥+ ∥δtel∥∥ẽl∥+ ∥gl+

1
2 ∥∥δtel−1∥)

+Cτ
n∑

l=0

(∥δtT l
1∥2 + ∥T l

1∥2 + ∥δtT l
2∥2 + ∥T l

3∥2)

≤ Cτ(∥en+1∥2 + ∥gn+1∥2) + Cτ
[
2∥gn+

1
2 ∥∥δten∥+ ∥δten∥∥ẽn∥+ ∥gn+

1
2 ∥∥δten−1∥

]
+Cτ

n∑
l=0

(∥el∥2 + ∥gl∥2) + Cτ

n−1∑
l=0

(2∥gl+
1
2 ∥∥δtel∥+ ∥δtel∥∥ẽl∥+ ∥gl+

1
2 ∥∥δtel−1∥) + C(τ2 + h4)2

≤
(
1

2
+ Cτ

)
(β∥en+1∥2 + ∥gn+1∥2) + Cτ

n∑
l=0

(∥el∥2 + ∥gl∥2) + C(τ2 + h4)2, (5.13)

where

Cτ
n∑

l=0

(∥δtT l
1∥2 + ∥T l

1∥2 + ∥δtT l
2∥2 + ∥T l

3∥2)

≤ Cnτ · max
0≤l≤n

{∥δtT l
1∥2, ∥T l

1∥2, ∥δtT l
2∥2, ∥T l

3∥2} ≤ C(τ2 + h4)2.

It follows from Lemmas 2.1, 2.3 that

∥δ2xen+1∥2 + ∥δxen+1∥2 + ∥gn+1∥2 ≤ Cτ

n∑
l=0

(∥δ2xel∥2 + ∥δxel∥2 + ∥gl∥2) + C(τ2 + h4)2. (5.14)

for τ sufficiently small, s.t. τ < 1/(2C). By using the discrete Gronwall inequality, we have

∥δ2xen+1∥2 + ∥δxen+1∥2 + ∥gn+1∥2 ≤ C(τ2 + h4)2.

Applying the discrete Sobolev inequality, we obtain

∥en+1∥ ≤ C(τ2 + h4), ∥en+1∥∞ + ∥δxen+1∥∞ ≤ C(τ2 + h4)

and

∥δten∥ ≤ 1

τ
∥en+1 − en∥ ≤ C(τ + h4τ−1).

We can see that, from the inequalities above, our assumptions holds for l = n + 1 by setting
τ + h4τ−1 → 0 as h → 0, τ → 0 and taking h sufficiently small, which implies that our assumption
is valid for l = n+ 1 and holds (5.2). This completes the mathematical induction and proof. �
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6. Algorithm

In this section, we propose two algorithms of the presented compact scheme (3.4) for solving
the generalized Kawahara equation.

The compact scheme (3.4) can be rewritten as the following matrix-vector equations:

Bδtu
n = −D1v

n+ 1
2 , (6.1a)

A2vn+ 1
2 = −αD2

2u
n+ 1

2 + βAD2u
n+ 1

2 +
rn+

1
2√

S(ũn)
A2G(ũn), (6.1b)

δtr
n =

1

2
√

S(ũn)
(G(ũn), δtu

n) , (6.1c)

for 0 ≤ n ≤ N − 1, then the we conclude (6.1) in the following form A1 A2 0
A3 A4 a1
a⊤2 0⊤ 1

 un+1

vn+1

rn+1

 =

 A1 −A2 0
−A3 −A4 −a1
a⊤2 0⊤ 1

 un

vn

rn

 , (6.2)

where

A1 =
1

τ
B, A2 =

1

2
D1, A3 =

α

2
D2

2 −
β

2
AD2, A4 =

1

2
A2,

G(ũn) = [G(ũn1 ), G(ũn2 ), . . . , G(ũnJ)]
⊤ , a1 = − 1

2
√

S(ũn)
A2G(ũn), a1 = − h

2
√

S(ũn)
G(ũn).

It can be easy to see that this method needs the condition v0 and solve a (2J+1)×(2J+1) matrix,
which may leads to slow calculation efficiency when h takes a sufficiently small value.

Note that vn+1 is just an intermediate variable which can be eliminated and un+1 is coupled
by rn+1 in system (6.1). Therefore, the system (6.1) can be decoupled by using a block-Gaussian
elimination process. From (6.1c), we have

rn+1 = rn +

(
G(ũn)

2
√

S(ũn)
,un+1 − un

)
. (6.3)

Setting

ηn+1 =

(
G(ũn)

2
√

S(ũn)
,un+1

)
,

and substituting (6.1b) and (6.3) into (6.1a), we obtain(
1

τ
A2B− α

2
D1D

2
2 +

β

2
AD1D2

)
un+1 +

ηn+1

2
√

S(ũn)
A2D1G(ũn)

=

(
1

τ
A2B+

α

2
D1D

2
2 −

β

2
AD1D2

)
un − 2rn − ηn

2
√

S(ũn)
A2D1G(ũn). (6.4)

Let

un+1 = un+1
1 + ηn+1un+1

2 , (6.5)
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in (6.4), we obtain the following two decoupled equations:(
1

τ
A2B−C

)
un+1
1 =

(
1

τ
A2B+C

)
un − 2rn − ηn

2
√

S(ũn)
A2D1G(ũn), (6.6a)(

1

τ
A2B−C

)
un+1
2 = − 1

2
√

S(ũn)
A2D1G(ũn), (6.6b)

where C =
α

2
D1D

2
2 −

β

2
AD1D2. Taking the inner product of (6.5) with G(ũn)/

(
2
√

S(ũn)
)
, we

have [
1−

(
G(ũn)

2
√

S(ũn)
,un+1

2

)]
ηn+1 =

(
G(ũn)

2
√

S(ũn)
,un+1

1

)
, (6.7)

from which ηn+1 can be determined.
To summarize, we can obtain un+1 and rn+1 from (6.1) as follows:

Step 1. Solve (un+1
1 ,un+1

2 ) from (6.6);

Step 2. Determine ηn+1 from (6.7);

Step 3. Compute un+1 from (6.5), then determined rn+1 from (6.3).

7. Numerical experiments

In this section, numerical results are presented to test our numerical schemes. The accuracy
of the present scheme is measured by the discrete L2-norm and L∞-norm. We take C0 = 0. The
momentum E in (1.3) is approximated by

En =
h

2

J∑
j=1

(unj )
2.

Example 1. We consider the parameters to be α = β = 1, γ = 0, 1, µ = 1/2 and k = 2. For this
case, the system (1.1) is called to the classical Kawahara equation [15]. The exact traveling wave
solution is

u(x, t) =
105

169
sech4

(
1

2
√
13

(
x− 36t

169
− x0

))
,

when γ = 0 and

u(x, t) =
105

169
sech4

(
1

2
√
13

(
x− 205t

169
− x0

))
,

when γ = 1.
First, we chose x0 = 0, Ω = [−60, 100] and T = 120. The results of errors and convergence

rates with γ = 0, h = 0.5, τ = h2 are reported in Table 1. Table 2 lists the error results at
T = 5, 15, 25 with γ = 0, x0 = 2 and h = 0.2, which are compared with MQ, GA in [15], septic
B-spline collocation method (SBC) in [16], MCBC-DQM in [17] and Scheme 3 in [24]. We can be
seen that the present scheme is fourth-order accuracy in space and has much small error than the
schemes in [15, 16, 17, 24] even if a larger temporal step was used. Numerical traveling waves and
absolute errors at difference times with γ = 1, h = 0.0625, τ = h2 are shown in Figure 1. It can be
seen that the maximum error occurs near each highest peak.
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Table 1: The errors and convergence rates at T = 120 with γ = 0, h = 0.5, τ = h2 for Example 1.

∥en∥∞ Rate ∥en∥ Rate

h = 0.5 8.7823E-4 − 2.5964E-3 −
h = 0.25 5.3151E-5 4.0464 1.5722E-4 4.0457
h = 0.125 3.2843E-6 4.0165 9.7499E-6 4.0113

Table 2: The comparisons of errors with γ = 0 and h = 0.2 for Example 1.

T Scheme ∥en∥ ∥en∥∞ Scheme ∥en∥ ∥en∥∞
5 Present scheme 4.867E-6 1.2888E-5 Scheme 3 [24] 2.85426E-4 1.02518E-4
15 (τ = 0.05) 6.933E-6 1.7388E-5 (τ = 0.01) 4.52481E-4 1.76969E-4
25 8.221E-6 2.4561E-5 6.16321E-4 2.43811E-4

5 MQ [15] 9.468E-5 4.669E-5 GA [15] 1.0075E-4 3.4297E-5
15 (τ = 0.001) 1.5362E-4 5.939E-5 (τ = 0.001) 1.0113E-4 3.830E-5
25 1.6818E-4 4.660E-5 1.3160E-4 3.990E-5

5 SBC [16] 3.249E-4 1.116E-4 MCBC-DQM [17] 6.3E-5 2.8E-5
15 (τ = 0.01) 1.807E-4 7.44E-5 (τ = 0.01) 5.6E-5 1.9E-5
25 1.395E-4 5.11E-5 7.2E-5 2.9E-5

-40 -20 0 20 40 60 80 100

x

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

un

T=0
T=10
T=20
T=30
T=40

-40 -20 0 20 40 60 80 100

x

0

1

2

3

4

5

6

7

8

A
bs

ol
ut

e 
er

ro
r

×10-5

T=0
T=10
T=20
T=30
T=40

Figure 1: Numerical traveling waves (left) and absolute errors (right) at different times with γ = 1, h = 0.0625,
τ = h2 for Example 1.
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Table 3: The errors and convergence rates at T = 40 with γ = 0, h = 0.5, τ = h2 for Example 2.

∥en∥∞ Rate ∥en∥ Rate

h = 0.5 1.2079E-3 − 3.3931E-3 −
h = 0.25 7.4071E-5 4.0274 2.0814E-4 4.0270
h = 0.125 4.6994E-6 3.9784 1.2953E-5 4.0062

Table 4: The comparisons of errors with γ = 0 and h = 0.4 for Example 2.

Scheme T = 0.1 T = 0.2 T = 0.4 T = 0.5

DPGM [12] τ = 0.0002 7.071E-5 1.173E-4 2.076E-4 2.531E-4
τ = 0.0001 1.77E-5 2.93E-5 5.19E-5 6.33E-5

MSFPM [19] τ = 0.0002 2.1300E-5 3.9106E-5 7.3106E-5 9.0011E-5
τ = 0.0001 5.3255E-6 9.7775E-5 1.8279E-5 2.2506E-5

Present scheme τ = 0.005 4.4644E-6 5.0265E-6 5.9881E-6 6.3340E-6

Example 2. We consider the parameters to be γ = 0, 1 and k = 3. For this case, the system (1.1)
is called to the modified Kawahara equation [18]. The exact traveling wave solution is

u(x, t) = − 3β√
30αµ

sech2

(
1

2

√
β

5α

(
x− 4β2

25α
t

))
,

when γ = 0 and

u(x, t) = ± 3β√
30αµ

sech2

(
1

2

√
β

5α

(
x+

25α+ 4β2

25α
t

))
,

when γ = 1.
We chose the parameters α = β = 1, µ = 1/3 and Ω = [−40, 100], T = 40. Table 3 shows

the results of errors and convergence rates with γ = 0, h = 0.5, τ = h2. It means that the present
scheme is fourth-order accuracy. Tables 4 and 5 list the error results at T = 0.1, 0.2, 0.4, 0.5, 1 with
γ = 0 and h = 0.4, which are compared with dual-petrov-Galerkin method (DPGM) in [12], multi-
symplectic Fourier pseudo-spectral method (MSFPM) in [19] and three-level linear difference scheme
(TLDS) in [23]. We can be seen that the present scheme has much small error than the schemes
in [12, 19, 23]. The errors of the long time discrete mass Mn, momentum En and Hamiltonian
energy Hn with γ = 1, h = 0.0625 and τ = h2 are shown in Figure 2, which illustrates that Theorem
4.1 holds for the present scheme with small variation error. Numerical traveling waves at different
times with h = 0.125, τ = h2 are displayed in Figure 3. We see that numerical solutions agree with
the exact solutions in Figure 3.

Example 3. We now consider oscillatory solitary waves which consist of a packet of solitary waves
with arbitrary small perturbations (see [6, 12] and the references therein). It can be described as
the following perturbed KdV equation [1]:

ut + 6uux + uxxx + ϵ2uxxxxx = 0. (7.1)

The asymptotic solution can be fined by assuming that the solution of (7.1) takes form of a small-
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Table 5: The comparisons of errors at T = 1 with γ = 0 and different h and τ for Example 2.

Present scheme TLDS [23]

∥en∥ ∥en∥∞ ∥en∥ ∥en∥∞
τ = 0.001 h = 0.4 4.6815E-6 9.9437E-6 1.5096E-3 6.8396E-4

h = 0.2 5.7421E-7 9.7182E-7 3.8035E-4 1.7360E-4
h = 0.1 3.8538E-7 9.5274E-7 9.5267E-5 4.3286E-5
h = 0.05 3.9368E-7 9.6407E-7 2.3829E-5 1.0833E-5
h = 0.025 3.9311E-7 9.7477E-7 5.9592E-6 2.7087E-6

τ/h = 0.1 τ = 0.04 1.5589E-5 9.2197E-6 1.5056E-3 6.8371E-4
τ = 0.02 3.7049E-6 1.6793E-6 3.8091E-4 1.7364E-4
τ = 0.01 9.5274E-7 3.8538E-7 9.5405E-5 4.3389E-5
τ = 0.005 2.4068E-7 9.6870E-8 2.3862E-5 1.0855E-5
τ = 0.0025 7.7179E-8 3.7225E-8 5.9663E-6 2.7121E-6
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Figure 2: The errors of the long time discrete conservative properties with γ = 1, h = 0.0625 and τ = h2 for Example
2.
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Figure 3: Numerical traveling waves at different times with h = 0.125, τ = h2 for Example 2.
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Table 6: The errors between the numerical solutions and the asymptotic solution at different times for Example 3.

T = 0.05 T = 0.1 T = 0.15 T = 0.2

∥en∥ 2.1864E-5 2.9656E-5 2.9719E-5 3.5008E-5
∥en∥∞ 7.6791E-5 1.2620E-5 1.3258E-5 1.7396E-5

amplitude modulated wave packet and using two-scale expansion [12] correct to O(ϵ2),

uex(x, t) =

√
2

19
ϵ cos(θξ + ϕ0) sechX + ϵ2

{
187

57
√
19

sin(θξ + ϕ0) sechX tanhX

− 4

19

(
3 +

1

3
cos(2θξ + 2ϕ0)

)
sech2X

}
+O(ϵ3)

:= ū(x, t) +O(ϵ3), (7.2)

where ξ = x− ct and X = ϵξ, 0 < ϵ ≪ 1.
We rescale (7.1) with (x̃, t̃) = (−L−1x, L−1t), still use (x, t) to denote (x̃, t̃), we are leads to

consider the following problem [12]:

ut − 6uux −
1

L2
uxxx −

1

L4
uxxxxx = 0, (7.3a)

u(±1, t) = ux(±1, t) = uxx(1, t) = 0, (7.3b)

u(x, 0) = ū(Lx, 0). (7.3c)

We take ϵ = 0.01, θ =
√
0.5, ϕ0 = 0, c = 0.25 and L = 2000. In this example, we use τ = 10−5, h =

10−3. Table 6 lists the errors between the numerical solutions of (7.3) and the asymptotic solution at
different times T = 0.05, 0.1, 0.15, 0.2 which correspond to original times T = 100, 200, 300, 400. It
can be seen that the numerical accuracy is affected by the accuracy of the asymptotic solution which
is accurate to the order of ϵ3. We display the numerical solutions and the asymptotic solutions at
three different times and shown the errors of the discrete conservative properties in Figures 4-7.
These solutions exhibit a highly oscillating behavior in Figures 4-6, but which are well computed by
our present scheme.

8. Conclusion

In this work, we develop a new conservative compact difference scheme based on SAV approach
for solving the generalized Kawahara equation. The present compact scheme unconditionally pre-
serves the discrete mass and Hamiltonian energy. The boundedness and convergence estimates are
strictly analyzed in detail. Further, We present a fast algorithm of the present scheme and verify
the theoretical analysis in the numerical experiments.
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Figure 4: Numerical solution (left) and asymptotic solution (right) at t = 0.05 for Example 3.
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Figure 5: Numerical solution (left) and asymptotic solution (right) at t = 0.1 for Example 3.
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Figure 6: Numerical solution (left) and asymptotic solution (right) at t = 0.2 for Example 3.
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Figure 7: The errors of the discrete conservative properties at different times for Example 3.
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