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Abstract

Many autoimmune diseases are chronic in nature, so that in general patients expe-
rience periods of recurrence and remission of the symptoms characterizing their specific
autoimmune ailment. In order to describe this very important feature of autoimmunity,
we construct a mathematical model of kinetic type describing the immune system cellular
interactions in the context of autoimmunity exhibiting recurrent dynamics. The model
equations constitute a non-linear system of integro-differential equations with quadratic
terms that describe the interactions between self-antigen presenting cells, self-reactive T
cells and immunosuppressive cells. We consider a constant input of self-antigen presenting
cells, due to external environmental factors that are believed to trigger autoimmunity in
people with predisposition for this condition. We also consider the natural death of all cell
populations involved in our model, caused by their interaction with cells of the host envi-
ronment. We derive the macroscopic analogue and show positivity and well-posedness of
the solution, and then we study the equilibria of the corresponding dynamical system and
their stability properties. By applying dynamical system theory, we prove that steady
oscillations may arise due to the occurrence of a Hopf bifurcation. We perform some
numerical simulations for our model, and we observe a recurrent pattern in the solutions
of both the kinetic description and its macroscopic analogue, which leads us to conclude
that this model is able to capture the chronic behaviour of many autoimmune diseases.
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1 Introduction

In the past, autoimmune diseases were considered to be rare, but rigorous epidemiological
studies have shown that at present they affect around thirty five percent of the world popula-
tion, with autoimmune thyroid disease and type I diabetes being the most common of these
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conditions [24]. In fact, there are nearly one hundred distinct autoimmune diseases, some of
them are organ-specific, such as primary biliary cirrhosis, and some others reflect a variety
of immunological dysfunction involving multiple organs, such as systemic lupus [24].

Cells of the human immune system, called T lymphocytes (T cells), use special recep-
tors on their surfaces to identify foreign antigens, such as bacteria and viruses. Usually, T
cells that react to benign agents (self-antigens) are destroyed by the thymus. However, some
of them survive this selective process and may be activated by a trigger. These cells are
the self-reactive T cells (SRTCs), that produce cytokines after interaction with self-antigen
presenting cells (SAPCs). An inflammatory cascade is then triggered, leading to damage to
healthy tissue causing autoimmune disease. A combination of genetic predisposition and en-
vironmental factors contributes to the development of autoimmune diseases. In fact, there is
growing evidence that environmental factors, such as exposure to infections, drugs, vaccines
and chemicals, can constitute important triggers for the development of autoimmunity in
susceptible people [21, 25]. Also, a diet rich in saturated fat, salt and containing pesticides
and chemical additives is believed to have increasing prevalence in the diseases [17]. The
mechanisms by which environmental factors can shape the immune system to generate au-
toimmunity include molecular mimicry, self-antigen modification, bystander activation, and
immune reactivity modulation [21]. Most of these mechanisms lead to an increase in one way
or another of the concentration of self-antigens in the human body.

An important characteristic of the adaptive immune response is the formation of im-
munological memory after initial antigen exposure that helps the immune system learn with
experience. Naive T cells, upon antigen exposure, can generate T cell clones carrying the
T cell receptor that recognize antigens most effectively and these are preserved in the form
of long-lived memory T cells. On secondary antigen exposure, these expanded clones help
mount a quicker and stronger immune response against invading pathogens.

Over the past decades, it has come to light that immunological memory can exist in the
context of autoimmunity as well. It represents a constant-remembrance of self-antigen [8]. In
fact, when memory T cells are formed against self-antigens they help mount a highly efficient
pathogenic response against the body’s own tissues. It is believed that these memory SRTCs
may be responsible for the chronic nature of autoimmune diseases resulting in the relapse-
remittance behaviour of these conditions. Memory T cells, by virtue of being long-lived,
become very difficult to eliminate and therefore combating autoimmune memory has been a
challenge not just in autoimmune diseases but also in transplantation, where the autoimmune
memory cells attack the transplanted tissue.

All these issues regarding autoimmunity suggest very challenging mathematical problems
at the level of modelling descriptions, rigorous analysis of the complex dynamics of the
variables involved in autoimmunity and biological predictions based on numerical simulations.

There are some recent studies in mathematical modelling of autoimmune diseases and
we quote here some of them. A macroscopic model is proposed in [27] and then revisited
in [28,29], where the theory of dynamical systems is applied to show that recurrent dynamics
is observed in the solution due to a Hopf bifurcation. The authors investigate the existence of
multiple limit cycles, backward bifurcations and turning points, in the context of autoimmu-
nity and of other diseases. In paper [30], the authors construct a variant of the macroscopic
model proposed in [27], that is simpler but retains the intrinsic dynamical behaviour of the
original model, and investigate the influence of the effector-regulatory T cells in autoimmune
diseases. Another interesting macroscopic model, whose solution reproduces a recurrence
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behaviour, is proposed in [9], in view of describing relapsing-remitting stages in multiple
sclerosis.

The aforementioned models [9,27–30] are all of macroscopic type, meaning that the math-
ematical framework consists of a system of ordinary differential equations that describe the
global behaviour of the considered populations. The information on the individual activ-
ity of cells is not incorporated in these models, meaning that the description is given at a
macroscopic scale.

However, it is well known that the cellular activity and the individual behaviour of cells
affect the collective behaviour of its population and mathematical models developed at the
cellular scale can capture these subtle effects. One possible approach to building a model at
the cellular level comes from kinetic theory, in which the interactions among cells and the
changes in their activity are incorporated in the dynamics. Another advantage of the kinetic
approach is that, although models are developed at the cellular scale, suitable averaging
processes and passage to the hydrodynamic limit allow to derive macroscopic equations de-
scribing the global behaviour of the populations. Therefore, the application of kinetic theory
in the development of models of cellular interaction is an appropriate tool for making the con-
nection between the individual behaviour, at the cellular level, and the collective behaviour,
at a macroscopic scale.

A mathematical model of kinetic type is proposed in [13] and then reformulated in [12], in
view of developing some numerical simulations able to describe typical dynamics of autoim-
mune diseases. Such papers do not exploit the interplay between the kinetic description and
its corresponding macroscopic analogue but they are able to reproduce interesting numerical
results describing typical behaviour of various autoimmune conditions, in particular absence
of disease, mild symptoms and chronic disease.

Motivated by previous modelling descriptions of biological systems that are based on
kinetic theory, such as those presented, for example, in papers [2, 3, 5, 7, 11], in Ramos et
al. [14] a mathematical model of kinetic type describing the immune system interactions,
in the context of autoimmune disease, is developed. The interacting populations are self-
antigen presenting cells, self reactive T cells and the set of immunosuppressive cells (ISCs)
consisting of regulatory T cells (Tregs) and Natural Killer cells (NKCs), that are believed to
be important mediators within the immune system [1, 18, 22, 23]. In this work, the authors
model the cellular dynamics when an autoimmune episode occurs, and do not describe the
relapse-remittance behaviour of the autoimmune pathology. Consequently, the corresponding
macroscopic description of the time evolution of the number of cells of each population in
the aftermath of an autoimmune reaction does not model the relapse-remittance behaviour
of the disease.

In the present paper, we construct a kinetic model exhibiting recurrent behaviour at the
cellular scale, by introducing in the dynamics both a constant input of SAPCs, that is due
to external environmental factors, and a natural death of all cells involved, caused by their
interaction with cells of the host environment. The macroscopic model obtained from the ki-
netic system shows very rich dynamics. Choosing a proper bifurcation parameter, we are able
to identify Hopf bifurcation critical points of the dynamical system, showing that the model
may capture the recurrent dynamics characteristic of many autoimmune diseases, also at the
macroscopic scale. Moreover, the macroscopic model presents consistency in terms of the
mathematical properties that are necessary to support the numerical simulations developed
in the work. The model developed here makes a bridge between the individual behaviour of
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the cells and the collective behaviour of the corresponding populations. Moreover, it is such
that the basic information on the kinetic model is contained in the corresponding macroscopic
model, so that the mathematical properties of the macroscopic model and, in particular, the
recurrent dynamics is also observed at the cellular level.

The mathematical framework of the model is described in Section 2, where both mi-
croscopic and macroscopic formulations are given. The positivity and well-posedness of the
solution are also proven. We then study, in Section 3, the dynamical properties of the macro-
scopic system by determining its equilibria, analysing their local stability and identifying
Hopf bifurcation critical points of the dynamical system. In Section 4, we perform numerical
simulations of the macroscopic system and give a rather complete interpretation of the re-
sults in terms of both the analytical predictions and the biological considerations described
above. Finally, in Section 5, we perform numerical simulations for the kinetic system. From
these ones, we conclude that for certain values of the conservative parameters, the recurrent
pattern observed at the macroscopic level is also present at the cellular level.

2 The mathematical framework

In this section, we propose a mathematical model capable of capturing the relapse-remission
pattern typical of many autoimmune diseases due to their chronic nature [20].

We consider four interacting populations of the biological system that are believed to be
important players in the autoimmune process, namely

– the A-population of self-antigen presenting cells (SAPCs),

– the R-population of self-reactive T cells (SRTCs),

– the S-population of immunosuppressive cells (ISCs),

– the H-population of cells of the host environment (HCs).

We use the indexes i = 1, 2, 3, 4 for the populations A, R, S and H, respectively.
We introduce first the system of evolution equations derived at the kinetic level for the dis-

tribution functions associated to the cell populations. This system describes the microscopic
dynamics at the cellular level. Then, we derive the corresponding macroscopic system that
consists in the balance laws describing the evolution of the global cell population densities.

The model derived here, with both kinetic and macroscopic counterparts, appears, in
some sense, as a natural continuation of previous works by the authors, see [14] and [6], in
view of implementing new and more relevant effects in the dynamics of the model, that are
crucial for describing the recurrent behaviour of autoimmunity.

2.1 The microscopic model description

We introduce the distribution functions fi(t, u), i = 1, 2, 3, 4, associated to the populations
considered here, such that fi(t, u) denotes the number of cells of the population i with activity
u ∈ [0, 1] at time t ≥ 0.

The biological activity u ∈ [0, 1] describes the functional state of each cell population A,
R, S and H and is defined as follows.
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• For the A-population, the activity variable u measures the ability to stimulate and
activate the SRTCs.

• For the R-population, the activity variable umeasures the quantity of cytokines secreted
by SRTCs.

• For the S-population, the activity variable u measures the ability to inhibit the autoim-
mune response by either suppressing the activity of SAPCs and SRTCs, or eliminating
SAPCs and SRTCs.

• For the H-population, the activity variable u describes the role of these cells in the
apoptosis of SAPCs, SRTCs and ISCs.

We assume that the S-population is homogeneous with respect to its biological activity,
so that the corresponding distribution function is independent of its functional state, i.e.
f3 = f3(t). We also assume that the cells of the H-population of the host environment exist
in a huge amount, when compared with the other populations. As a consequence, we take
the distribution function associated to the H-population to be constant, so that it does not
appear explicitly in the model equations.

Moreover, we consider that all effective interactions in our model occur between a pair of
cells and that they are instantaneous and homogeneous in space. The admissible interactions
are of proliferative, destructive or conservative type and are the following.

• Proliferative interactions between SAPCs and SRTCs which increase the number of cells
of both populations A and R with constant proliferative rates p12 and p21, respectively.

• Conservative interactions between SAPCs and SRTCs which increase the activity of cells
of both populations A and R at constant conservative rates c12 and c21, respectively,
while maintaining the number of cells of both populations.

• Proliferative interactions between SAPCs and ISCs which increase the number of cells
of population S with a constant proliferative rate p31.

• Destructive interactions between SAPCs and ISCs which decrease the number of cells
of population A with a constant destructive rate d13.

• Conservative interactions between SAPCs and ISCs which decrease the activity of pop-
ulation A at a constant conservative rate c13, while maintaining the number of cells of
both populations.

• Destructive interactions between SRTCs and ISCs which decrease the number of cells
of population R with a constant destructive rate d23.

• Conservative interactions between SRTCs and ISCs which decrease the activity of pop-
ulation R at a constant conservative rate c23, while maintaining the number of cells of
both populations.

• Destructive interactions between SAPCs, SRTCs, ISCs and host environment cells
which decrease the A, R and S cell numbers with constant death rates d1, d2 and
d3, respectively.
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All proliferative interactions are such that the cloned cells inherit the same aggressive state
as their mother cells.

Finally, we consider a source term α representing a constant input of SAPCs, due to the
effect of certain environmental factors, such as exposure to infections, drugs, vaccines and
chemicals as well as due to unhealthy dietary habits. These factors are believed to trigger
mechanisms that lead to the development of autoimmunity, by causing the increase, in direct
or indirect way, of the concentration of self-antigens in the human body [21].

The evolution equations for the distribution functions fi, i = 1, 2, 3, are derived, as usual,
as evolution equations giving the time derivative of fi in terms of the interaction operators
describing all conservative, proliferative or destructive cellular interactions [4]. These inter-
action operators, with the addition of natural death terms and the constant input source α,
are derived in a similar way to that explained in [14], so we omit the details here. The system
so obtained consists of the following three coupled integro-differential equations

∂tf1(t, u) =α+ 2c12

∫ u

0
(u− v)f1(t, v)dv

∫ 1

0
f2(t, w)dw − c12(u− 1)2f1(t, u)

∫ 1

0
f2(t, w)dw

+ 2c13f3(t)

∫ 1

u
(v − u)f1(t, v)dv − c13u

2f1(t, u)f3(t)

+ p12f1(t, u)

∫ 1

0
f2(t, w)dw − d13f1(t, u)f3(t)− d1f1(t, u),

∂tf2(t, u) = 2c21

∫ u

0
(u− v)f2(t, v)dv

∫ 1

w∗
f1(t, w)dw − c21(u− 1)2f2(t, u)

∫ 1

w∗
f1(t, w)dw

+ 2c23f3(t)

∫ 1

u
(v − u)f2(t, v)dv − c23u

2f2(t, u)f3(t)

+ p21f2(t, u)

∫ 1

0
f1(t, w)dw − d23f2(t, u)f3(t)− d2f2(t, u),

ḟ3(t) = p31f3(t)

∫ 1

0
f1(t, w)dw − d3f3(t),

(1)
for all u ∈ [0, 1] and all t ≥ 0, the upper dot being used to denote the time derivative. Here,
w∗ ∈ ]0, 1[ denotes the immunological tolerance of SRTCs to SAPCs, in the sense that the
greater the value of w∗ the less efficient are SAPCs in increasing the activity of SRTCs after
encounter. Note that the last term in each equation of system (1) describes the destructive
interactions with the host environment cells. The distribution function f4 associated to the
H-population does not appear explicitly in these terms because it is assumed to be constant
during the evolution. Therefore, we have rescaled the death rates and used the notation di,
i = 1, 2, 3, for the products dif4.

The initial conditions for the system (1) are given by

f1(0, u) = f0
1 (u), f2(0, u) = f0

2 (u), f3(0) = f0
3 . (2)
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2.2 The macroscopic model description

The macroscopic balance equations can be easily derived from the kinetic system (1), once
we have introduced the expected number of cells of each population, at time t ≥ 0, as follows

A(t) =

∫ 1

0
f1(t, u)du, R(t) =

∫ 1

0
f2(t, u)du, S(t) = f3(t). (3)

Then, we formally integrate the kinetic system (1) over the biological activity variable u ∈
[0, 1], and obtain macroscopic balance equations describing the time evolution of functions
A(t), R(t) and S(t). Conservative interactions do not give any contribution to these balance
equations, since they do not modify the number of cells of each population. Therefore, the
evolution equations for the densities of populations A, R and S are given by the following
non-linear coupled system of ODEs,

Ȧ(t) = α+ p12A(t)R(t)− d13A(t)S(t)− d1A(t), (4a)

Ṙ(t) = p21R(t)A(t)− d23R(t)S(t)− d2R(t), (4b)

Ṡ(t) = p31S(t)A(t)− d3S(t). (4c)

For this system, we consider the positive initial data

A(0) = A0 > 0, R(0) = R0 > 0, S(0) = S0 > 0. (5)

The recruitment term α and the natural death terms di, i = 1, 2, 3, introduced in the kinetic
dynamics, appear in equal manner in the macroscopic system (4), since they are uniform
with respect to the biological activity.

In the kinetic model described in the previous subsection, we have assumed that prolifer-
ative encounters are such that cloned cells inherit the same aggressive state as their mother
cell, at a constant proliferation rate, and, moreover, that the destructive encounters occur at
a constant destruction rate. Under these assumptions, the boundedness of the solution of the
macroscopic system implies the boundedness of the solution of the kinetic system, as proved
in [2] for a rather general class of models. Therefore, the boundedness of the solution of the
macroscopic system (4) implies the boundedness of the solution of the kinetic system (1).

These results imply that relevant information on the solution of the kinetic system (1) can
be extracted from the mathematical analysis of the macroscopic equations (4), which is much
easier to perform. This motivates us to carry out, in the section that follows, a qualitative
mathematical analysis of the macroscopic model (4).

2.3 The consistency properties

This subsection is devoted to the fundamental consistency properties of positivity and well-
posedness of the solution to the Cauchy problem (4)-(5).

Lemma 1. Let (A(t), R(t), S(t)) be a solution of the Cauchy problem (4)-(5) defined on the
time interval [0, T ], with T such that 0 < T <∞. Then, A(t) > 0, R(t) > 0 and S(t) > 0 for
all t ∈ [0, T ].
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Proof. We start by proving the positivity of A(t). By contradiction, let t̄1 ∈ ]0, T ] be the first
time instant at which A vanishes. Then, A(t̄1) = 0 and, from (4a),

Ȧ(t)
∣∣
t=t̄1

= α > 0.

However, since A(0) > 0, this statement contradicts our assumption. Therefore, A(t) > 0 for
all t ∈ [0, T ] with 0 < T <∞.

By applying the same reasoning as in Lemma 4.1 of paper [14], we can prove the positivity
of R(t) and S(t).

We now prove the existence and uniqueness of a global solution to the Cauchy problem
(4)-(5) for the case in which the condition p21/p31 < 1 is satisfied and the solution of the
system does not blow-up. From a biological point of view, this condition corresponds to
assuming that the proliferation of SRTCs, resulting from their encounter with SAPCs, occurs
at a higher rate than that of the proliferation of ISCs, resulting from their encounter with
SAPCs. The behaviour of the solution to system (4) is very sensitive to the value of the ratio
p21/p31, in such a way that it may blow-up when p21/p31 ≥ 1. See paper [2] for a similar and
more detailed analysis in the context of a model for a tumor-host dynamics.

Theorem 2. Let us assume that the proliferative rates p21 and p31 are such that p21 < p31.
Then, the Cauchy problem (4)-(5) has a unique solution (A(t), R(t), S(t)) defined on all R+.

Proof. Similarly to what is done in the proof of Theorem 4.1 in paper [14], we show that

R(t) ≤ CSλ(t)eλd3t, with C =
R(0)

Sλ(0)
, (6)

and 0 < λ < 1 being such that p21 = λp31.
Using inequality (6) and the evolution equation (4a), we can easily prove that

Ȧ(t) ≤ α+
p12

p31
Ceλd3t

(
Ṡ(t)

S(t)
+ d3

)
Sλ(t). (7)

Now, denoting by g(t) the right-hand side of inequality (7) and evaluating its derivative ġ(t)
at values of t where g(t) = 0, we obtain the following inequality

ġ(t) ≤ −αλp31A(t) + α
Ṡ(t)

S(t)
, (8)

where we have also used the evolution equation (4c). If we look at the expression on the right-
hand side of inequality (8), we can easily conclude that this expression is always negative,
since we have Ṡ(t) < 0 when g(t) = 0. In the same way as in [14], we can then conclude that
A(t) is bounded and therefore, from equations (4b)-(4c), so are R(t) and S(t).

The results stated in Lemma 1 and Theorem 2 assure the mathematical consistency of the
model for what concerns the existence of solutions that are biologically significant. Therefore,
they constitute a fundamental support to the numerical simulations for system (4). Also, they
are essential to the study of the equilibria of this system and their stability.
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3 Stability analysis

In this section, we proceed with the study of the dynamical system (4) and we investigate its
ability to reproduce the recurrent behaviour of autoimmunity. More precisely, we determine
the conditions for a Hopf bifurcation to occur, when an equilibrium loses its stability and a
periodic solution arises [10,19].

We restrict our search for equilibria to the set of biologically significant solutions to the
Cauchy problem (4)-(5), namely solutions with all non-negative components, say

D =
{

(A(t), R(t), S(t)) ∈ R3 : A(t) ≥ 0, R(t) ≥ 0, S(t) ≥ 0
}
. (9)

Furthermore, we choose the constant input of SAPCs, α, as bifurcation parameter.

3.1 Equilibria existence

We start by determining the equilibria of system (4) in the set D. One can easily verify that
the following Lemma holds.

Lemma 3. System (4) admits three boundary steady-states in the set (9), namely an equi-
librium with both self-reactive T cells and immunosuppressive cells equal to zero,

E1 =

(
α

d1
, 0, 0

)
; (10)

an equilibrium with no immunosuppressive cells,

E2 =

(
d2

p21
,
d1d2 − p21α

d2p12
, 0

)
, (11)

that exists if α < α̃, with

α̃ =
d1d2

p21
; (12)

and an equilibrium with no self-reactive T cells,

E3 =

(
d3

p31
, 0,
−d1d3 + p31α

d3d13

)
, (13)

that exists if α > ᾱ, with

ᾱ =
d1d3

p31
. (14)

As far as the steady-states internal to D are concerned, system (4) admits a unique interior
equilibrium,

E4 =

(
d3

p31
,
d3d13(d3p21 − d2p31) + d23p31(d1d3 − p31α)

d3d23p12p31
,
d3p21 − d2p31

d23p31

)
, (15)

that exists if both s4 > 0 and α < α∗, with

s4 = d3p21 − d2p31, (16a)

α∗ =
d3d13s4

d23p2
31

+ ᾱ, (16b)

and ᾱ as given in (14).
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Proof. The determination of equilibria E1, E2, E3 and E4 easily follows by setting the right-
hand side of system (4) equal to zero and calculating the corresponding solutions. Equilibria
existence conditions are obtained by requiring the non-negativity of their components and
solving, when possible, in terms of the bifurcation parameter α.

Note that E4 is the unique “biologically-meaningful” equilibrium in the context of our
model, because E1, E2 and E3 predict the extinction of at least one of the interacting popu-
lations.

3.2 Equilibria stability

We now proceed to analyse the stability of the equilibria. The results of this analysis are
summarized in the following theorem.

Theorem 4. Let us consider the equilibria of system (4), Ei, i = 1, . . . , 4. We assume that
they belong to the set D defined in (9), see Lemma 3. Let α̃, ᾱ, s4, α∗ be the quantities
defined in (12)-(14)-(16a)-(16b), respectively. Then,

(i) E1 is unstable if α > α̃ or α > ᾱ. Otherwise, if α < min{α̃, ᾱ}, it is locally asymptoti-
cally stable (LAS).

(ii) E2 is unstable.

(iii) E3 is unstable if α < α∗. Otherwise, if α > α∗, it is LAS.

(iv) E4 is unstable if

α < α∗ − d3d13s4

d23p21p31
.

Otherwise, if

α ≥ α∗ − d3d13s4

d23p21p31
,

there exists a positive value

αH ∈
]
α∗ − d3d13s4

d23p21p31
, α∗
[

such that E4 is unstable for

α∗ − d3d13s4

d23p21p31
≤ α < αH ,

whereas it is LAS for αH < α < α∗. In particular, Hopf bifurcations occur at α = αH

and the bifurcating solution is periodic in time with period T = 2π/ω and frequency

ω =

√
d3s4(α∗ − αH)

p31αH
.
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Proof. The Jacobian of system (4) reads

J =

p12R− d13S − d1 p12A −d13A
p21R p21A− d23S − d2 −d23R
p31S 0 p31A− d3

 . (17)

(i) The matrix (17) evaluated at the equilibrium E1, given in (10), becomes

J(E1) =


−d1

p12α

d1
−d13α

d1

0
p21(α− α̃)

d1
0

0 0
p31(α− ᾱ)

d1

 ,

with α̃, ᾱ given in (12)-(14), respectively. The eigenvalues of J(E1) are the diagonal
entries. Hence, E1 is LAS if α < min{α̃, ᾱ}. Otherwise, if α > α̃ or α > ᾱ, it is
unstable.

(ii) The matrix (17) evaluated at the equilibrium E2, given in (11), becomes

J(E2) =


−p21α

d2

d2p12

p21
−d2d13

p21

p2
21(α̃− α)

d2p12
0 −d23p21(α̃− α)

d2p12

0 0
d2p31

p21
− d3

 .

One can immediately get the eigenvalue λ1(E2) = d2p31/p21 − d3, whereas the other
two eigenvalues are determined by the submatrix

J̃(E2) =

 −p21α

d2

d2p12

p21

p2
21(α̃− α)

d2p12
0

 ,

which has tr
(
J̃(E2)

)
< 0 and det

(
J̃(E2)

)
< 0, whenever E2 exists, see Lemma 3.

Thus, E2 is an unstable equilibrium.

(iii) The matrix (17) evaluated at the equilibrium E3, given in (13), becomes

J(E3) =


−p31α

d3

d3p12

p31
−d3d13

p31

0
d23p31(α∗ − α)

d3d13
0

p2
31(α− ᾱ)

d3d13
0 0

 ,

with α∗ given in (16b). It is straightforward to get the eigenvalue

λ1(E3) =
d23p31(α∗ − α)

d3d13
,
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whereas the other two eigenvalues are determined by the submatrix

J̃(E3) =

 −p31α

d3
−d3d13

p31
p2

31(α− ᾱ)

d3d13
0

 ,

which has tr
(
J̃(E3)

)
< 0 and det

(
J̃(E3)

)
> 0, whenever E3 exists, see Lemma 3.

Hence, E3 is LAS if λ1(E3) < 0, i.e. if α > α∗. Otherwise, if α < α∗, it is unstable.

(iv) Finally, the matrix (17) evaluated at the equilibrium E4, given in (15), becomes

J(E4) =


−p31α

d3

d3p12

p31
−d3d13

p31

p21p31(α∗ − α)

d3p12
0 −d23p31(α∗ − α)

d3p12
s4

d23
0 0

 .

The characteristic polynomial of J(E4) is

p(λ) = λ3 + a2(α)λ2 + a1(α)λ+ a0(α)

with

a2(α) =
p31α

d3
> 0,

a1(α) =
d3d13s4 − d23p21p31 (α∗ − α)

d23p31
,

a0(α) = s4 (α∗ − α) > 0,

and s4 given in (16a), see existence conditions for E4 in Lemma 3. By Descartes’ rule
of signs, it follows that E4 is unstable if a1(α) < 0, i.e. if

α < α∗ − d3d13s4

d23p21p31
.

Otherwise, if a1(α) ≥ 0, then E4 is LAS but can lose stability via a Hopf bifurcation
[10, 19]. More precisely, according to the Routh-Hurwitz criterion, E4 will be LAS if
and only if h(α) = a1(α)a2(α)− a0(α) is positive, equivalently written as

h(α) =
Aα2 + Bα+ C

d3d23
(18)

with

A = d23p21p31, B = d3s4(d13 + d23)− d23p21p31α
∗, C = −d3d23s4α

∗.

Since A > 0 and C < 0, equation h(α) = 0 has a unique positive solution, that we
denote by αH . Furthermore

h(α∗) =
d13s4α

∗

d23
> 0 > − d3d13s

2
4

d23p21p31
= h

(
α∗ − d3d13s4

d23p21p31

)
,

12
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Figure 1: Bifurcation diagram for the equilibrium E4 of system (4) in the parameter space
(d3, α). Region color is black (sector 1 ) where E4 does not exist, it is light grey (sector

2 ) where E4 is LAS and it is dark grey (sector 3 ) where E4 is unstable. Supercritical
Hopf bifurcations occur at the points of the curve α = αH . The other parameter values are
specified in (21)-(22).

yielding

α∗ − d3d13s4

d23p21p31
< αH < α∗.

Thus, E4 is unstable for

α∗ − d3d13s4

d23p21p31
≤ α < αH

and it is LAS for αH < α < α∗. At α = αH the test for non zero speed is fulfilled [10],
that is

∂αh(α)
∣∣
α=αH =

√
B2 − 4AC 6= 0,

implying that a Hopf bifurcation occurs for α = αH . The bifurcating solution is time-
periodic with period T = 2π/ω and frequency ω =

√
a1(αH) =

√
a0(αH)/a2(αH),

see [19].

We note that in the above analysis we have chosen α as the bifurcation parameter since
our intention is to study the effect of external environmental factors on the evolution of an
autoimmune disease.

The results on existence and stability of the equilibrium E4 presented in Lemma 3 and
Theorem 4 are illustrated in Figures 1 and 2.

In Figure 1, we consider the parameter space (d3, α), namely the pairs of the ISCs death
rate, d3, and the bifurcation parameter α, and depict the curves ruling the existence and
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Figure 2: Representation of the parabolic function h(α), as given in (18), ruling the local
stability properties of the equilibrium E4 of system (4). Region color is black (sector 1 )

where E4 does not exist, light grey (sector 2 ) where E4 is LAS and it is dark grey (sector 3 )
where E4 is unstable. At point P , the function h(α) vanishes (α = αH), and a supercritical
Hopf bifurcation occurs. The other parameter values are specified in (21)-(22).

stability properties of E4. All the other parameter values are set as in Section 4. The vertical
line s4 = 0 (i.e. d3 = d2p31/p21) and the parabola α = α∗ are the thresholds for E4 existence;
the parabola

α = α∗ − d3d13s4

d23p21p31
(19)

separates the region where E4 is always unstable from that where it can switch stability.
In the latter the switch occurs in correspondence of the curve α = αH , at which the system
undergoes Hopf bifurcations. Specifically, periodic solutions exist on the underside of α = αH
and are stable. Hence, the bifurcation is supercritical.

Figure 1 exhibits three sectors, labeled by 1 , 2 and 3 . Sector 1 in black corresponds

to the region where the equilibrium E4 does not exist; sector 2 in light grey corresponds to

the region where E4 is LAS, whereas sector 3 in dark grey corresponds to the region where
E4 is unstable. In particular, when α ≈ ]0, 0.045[, E4 is unstable whenever it exists; whereas
for α > 0.045 it can switch stability and passes from sector 2 to sector 3 , or vice versa, by
suitably varying the death rate d3. We notice that, except for an initially slight decreasing
shape, see d3 ≈ ]1.01, 1.06[ in Figure 1, the curve of Hopf bifurcations locus α = αH is an
increasing function of d3. Namely, the higher is the ISCs death rate, d3, or the smaller is the
constant input of SAPCs, α, the lower are the chances of avoiding E4 destabilization.

In Figure 2, we take d3 = 2 and plot the values of the parabolic function h(α), defined
in (18), by varying α ∈ [0, 1]. As stated in proof of Theorem 4, this function rules the local
stability properties of the equilibrium E4. More precisely, for α values above the threshold
(19), the stability of E4 depends on the sign of h(α): it is LAS [resp. unstable] if h(α) > 0
[resp. h(α) < 0]. The function h vanishes at α = αH , that is the locus of a Hopf bifurcation,
see point P in Figure 2. In the diagram, we also depict the straight lines α = αH and α = α∗

14



that identify the three sectors, labeled by 1 , 2 and 3 , for what concerns the existence and
stability of the equilibrium E4, that correspond to those sketched in Figure 1.

4 Numerical simulations: the macroscopic scenario

In this section we numerically solve model equations (4) in order to analyse the behaviour
of the solutions that is predicted in the previous section. In accordance with Theorem 4,
we show that, for suitable parameter values, long term periodic oscillations may take place.
They can reasonably represent the recurrent behaviour of autoimmune diseases.

Numerical simulations are performed in Matlab [16]. We use the ode45 solver for inte-
grating the system and platform-integrated functions for getting the plots.

4.1 Input data

We assume the following initial data

(A0, R0, S0) = (0.2, 0.015, 0.015), (20)

which means an initial state of our biological system with equal number of cells for both R-
and S-populations, of order 10−2, and a larger number of cells of the A-population, of order
10−1. From a biological point of view, this is justified by the fact that initially, before the
immune system reacts wrongly to self-antigens, the number of both R and S cells is very
low. This number increases significantly when they proliferate by encounters with A cells. In
turn, A cells, being self elements of the human body, are initially more abundant in number.

We also set the following values for the proliferative and destructive rates

p12 = 0.07, p21 = 16, p31 = 20, d13 = 0.35, d23 = 0.035, (21)

as well as for the natural death rates of the populations,

d1 = 0.92, d2 = 0.8, d3 = 2. (22)

Since it is difficult to get parameter estimations based on medical data found in specialized
literature, we adopt a heuristic approach. Namely, parameter values are chosen on the basis
of biological descriptions that appear favourable to the occurrence of the recurrent disease
behaviour, associated to periods of relapse and remittance.

4.2 Results and discussion

The main objective of our numerical simulations is to capture the recurrence phenomena in
autoimmunity. Therefore we perform some numerical tests with this idea in mind and vary
the bifurcation parameter α in such a way that equilibrium E4 of system (4) exists and is
unstable, so that the desired oscillatory dynamics for the state variables A(t), R(t) and S(t)
will appear, as predicted by Lemma 3 and Theorem 4. This means that, with reference to
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Figure 3: Numerical simulations of macroscopic model (4), by assuming α = 0.7αH . Panel
(a): dynamics of self-antigen presenting cells (A-population). Panel (b): dynamics of
self-reactive T cells (R-population). Panel (c): dynamics of immunosuppressive cells (S-
population). Panel (d): phase portrait of long term trajectory. The initial data and param-
eter values are specified in (20) and (21)-(22), respectively.

the bifurcation diagram in Figure 1, the simulations are performed by choosing the α values
in sector 3 .

We consider different scenarios, in which the bifurcation parameter α varies from α =
0.7αH to α = 0.8αH . The results are shown in Figures 3, 4, 5, where we represent, on
the left, the temporal dynamics for the population densities A(t), R(t) and S(t), see panels
(a), (b) and (c), respectively, and, on the right, the phase portrait showing the long term
trajectory of the solution of the dynamical system, see panels (d).

All simulations are performed with the initial data as given in (20) and input parameters
for proliferative, destructive and natural death rates as given in (21) and (22).

Figures 3, 4, 5 clearly show the recurrence phenomena predicted by the results obtained
in the previous section. We note that the R cell population proliferates significantly and
we observe a lower proliferation of immunosuppressive cells represented by the S-population,
implying that the S cells are unable to control the progression of the autoimmune reaction.

Furthermore, we can observe in Figures 3, 4, 5 that both maximum and minimum peaks
occur around the same time instances for all populations. This is what we would expect, since
all three cell populations are, in some sense, activated by one another during an attack by
the immune system to self elements. So that, in the logic of the autoimmune reaction, when
SAPCs start to decrease in number, after a certain maximum peak, there is no need for the
immune system to generate more SRTCs to combat the pseudo effects of these self-antigens.
In the same way, when SRTCs start to decrease in number, after a certain maximum peak,
there is no need for the immune system to generate more ISCs to regulate the effect of the
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Figure 4: Numerical simulations of macroscopic model (4), by assuming α = 0.77αH .
Panel (a): dynamics of self-antigen presenting cells (A-population). Panel (b): dynamics
of self-reactive T cells (R-population). Panel (c): dynamics of immunosuppressive cells (S-
population). Panel (d): phase portrait of long term trajectory. The initial data and parameter
values are specified in (20) and (21)-(22), respectively.

SRTCs.
When this recurrence behaviour occurs, we can say that patients suffer a relapse of their

autoimmune disease, which in reality implies that they once again experience symptoms of
their condition. After each peak, representing the relapse phase of the disease, we observe
a decline in the number of cells of all populations involved in the process. This significant
decrease of cells represents the remission phase of the autoimmune disease. The recurrence
of the solution of system (4) observed in Figures 3, 4, 5 represents then the relapse-remission
pattern that is typical of most autoimmune diseases.

When the bifurcation parameter α increases and we move from one diagram to another
through Figures 3, 4, 5, the qualitative behaviour is similar both for the temporal dynamics
of the population densities and for the phase portraits. However, we can observe that the
initial transient period of the solution, before surrounding the limit cycle, increases when
α approaches αH . On the contrary, both the amplitude and the period of the long term
oscillations reduce by increasing α towards αH .

We complete our simulations with a scenario, which is not biologically relevant for the
purpose of capturing the recurrence dynamics of the model, but it serves as a proof-of-
principle verification of the analytical results obtained in Subsection 3.2. More precisely, we
consider the case in which the equilibrium E4 of system (4) exists and is LAS, see Lemma 3
and Theorem 4. To this aim, we maintain all the parameter values except for α, that is we
set the value of α above the threshold value αH , namely α = 1.1αH . With reference to the
bifurcation diagram in Figure 1, the simulations are performed in sector 2 .
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Figure 5: Numerical simulations of macroscopic model (4), by assuming α = 0.8αH . Panel
(a): dynamics of self-antigen presenting cells (A-population). Panel (b): dynamics of
self-reactive T cells (R-population). Panel (c): dynamics of immunosuppressive cells (S-
population). Panel (d): phase portrait of long term trajectory The initial data and parameter
values are specified in (20) and (21)-(22), respectively.

Figure 6 presents the results obtained for this scenario. Panels (a), (b) and (c) show
the evolution of the state variables A(t), R(t) and S(t) towards their respective equilibrium
values, and panel (d) shows the long term trajectory of the system asymptotically approaching
the equilibrium E4.

5 Numerical simulations: the microscopic scenario

We noted at the end of Subsection 2.2 that the qualitative behaviour of the solution of the
kinetic system is similar in nature to that of its macroscopic counterpart. Therefore, the
properties proved in Section 2.3 for the macroscopic system (4) are also valid for the kinetic
system (1). Having this idea in mind, our aim in this subsection is to reproduce, at the
kinetic level, recurrence patterns similar to those observed in Figures 3, 4, 5. In fact, we
illustrate in what follows that, at least for certain values of the conservative rates appearing
in the kinetic system, the recurrence patterns are also obtained at the cellular level.

We solve numerically the kinetic system (1), by discretizing the equations in the activation
variable u and then using a trapezoidal quadrature rule to perform the numerical integration
of the interaction terms. The numerical scheme is explained in detail in paper [14]. In the
numerical simulations presented here, we take the following initial data

(f1(0, u), f2(0, u), f3(0)) = (0.2, 0.015, 0.015), for u ∈ [0, 1], (23)

and proliferation and destruction parameters given in (21) and (22), respectively. As for the
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Figure 6: Numerical simulations of macroscopic model (4), by assuming α = 1.1αH . Panel
(a): dynamics of self-antigen presenting cells (A-population). Panel (b): dynamics of
self-reactive T cells (R-population). Panel (c): dynamics of immunosuppressive cells (S-
population). Panel (d): phase portrait of long term trajectory. The initial data and param-
eter values are specified in (20) and (21)-(22), respectively.

conservative terms appearing in this model, we consider

c12 = 20, c13 = 0.07, c21 = 0.035, c23 = 16. (24)

The kinetic system (1) is numerically solved by discretizing the equations with respect to the
activation variable u and by employing the quadrature rule to approximate the integrals in
the grid points. Proceeding in this way, we transform the integro-differential equations (1)
into a larger system of nonlinear ODEs. The resulting nonlinear system of ODEs with initial
conditions (2) is then numerically solved in Maple [15]. We use the Maple function dsolve
with the option numeric that implements, by default, the Runge-Kutta-Fehberg method. See
paper [14] for a detailed description of the numerical method.

The numerical simulations for the kinetic system are presented in Figures 7 and 8, for
two different values of the recruitment term, namely for α = 0.77αH and α = 0.8αH , re-
spectively. The panels show similar recurrence patterns in the distribution functions fi as
those observed for the population densities in Figures 4 and 5, respectively. Comparing the
profiles shown in Figures 4 and 7, we can acknowledge that the matching between the results
obtained with the microscopic system and its macroscopic analogue is very good. In fact, we
can see that both exhibit nine peaks with identical period occurring around the same time
instances for all populations. Moreover, both maximum and minimum peaks of the distri-
bution function observed in the profiles of Figure 7 occur around the same time instances
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(a) (b) (c)

Figure 7: Numerical simulations of kinetic model (1), by assuming α = 0.77αH . Panel (a):
Cellular time-activity dynamics of self-antigen presenting cells (A-population). Panel (b):
Cellular time-activity dynamics of self-reactive T cells (R-population). Panel (c): Cellu-
lar time-activity dynamics of immunosuppressive cells (S-population). The initial data and
parameter values are specified in (23) and (21)-(22)-(24), respectively.

than the corresponding peaks for the densities of the respective populations observed in the
profiles of Figure 4.

The same happens if we compare the profiles shown in Figures 5 and 8, both showing ten
peaks. Also, both maximum and minimum peaks of the distribution function occur around
the same time instances for all populations, in accordance to what can be observed for the
densities of these populations in Figure 5. Once again, both maximum and minimum peaks
of the distribution function observed in Figure 8 occur around the same time instances than
the corresponding peaks for the densities of the respective populations in Figure 5.

We can also observe that the peaks for f1(t, u) and f2(t, u), shown in panels (a) and (b)
of Figures 7 and 8, occur for high values of the activity, mainly due to the fact that in the
simulations of the microscopic model we include considerably high values for the conservative
terms, that are responsible for the increase in number of more active SAPCs and SRTCs.
Also, the peaks for f1(t, u) and f2(t, u), shown in panels (a) and (b) of Figures 7 and 8
achieve higher values than those shown in Figures 4 and 5 for the corresponding macroscopic
densities A(t) and R(t). This can be easily explained, since Figures 4 and 5 show an averaged
behaviour with respect to the biological activity u, see the definitions (3).

6 Summary and perspectives

In this work, we establish a new kinetic model and derive its macroscopic counterpart, in or-
der to describe the oscillating behaviour of the cellular dynamics involved in the development
of chronic autoimmunity. This recurrent pattern is obtained by considering a recruitment
term, α, representing a constant renewal of self-antigen presenting cells due to external envi-
ronmental factors, along with a death term for each population, di, i = 1, . . . , 3, representing
the natural death of the cells caused by their interaction with the host environment.

We prove the existence and uniqueness of a global solution of our macroscopic system
under a certain assumption on two of the proliferative parameters of the model, as well as
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(a) (b) (c)

Figure 8: Numerical simulations of kinetic model (1), by assuming α = 0.8αH . Panel (a):
Cellular time-activity dynamics of self-antigen presenting cells (A-population). Panel (b):
Cellular time-activity dynamics of self-reactive T cells (R-population). Panel (c): Cellu-
lar time-activity dynamics of immunosuppressive cells (S-population). The initial data and
parameter values are specified in (23) and (21)-(22)-(24), respectively.

positivity of this solution in a general scenario.
We then study the dynamical properties of the macroscopic system and identify Hopf

bifurcation critical points that lead to steady oscillations.
We perform numerical simulations for both the macroscopic and the kinetic systems and

the results show recurrent behaviour of the solution, with repeated increase and decrease of
the cellular densities of the populations involved in the process, at regular intervals of time. A
significant increase of the cell numbers describes the relapse stage of the disease implying the
flare up of the symptoms, while the decrease of these cell numbers represents the remission
stage of the disease implying a relaxation or even disappearance of the symptoms. Based
on the numerical results, the period of the oscillations observed in the numerical solution
increases with the increasing of the bifurcation parameter α, indicating the possibility of
determining certain subtypes of autoimmune diseases by the intrinsic value of its bifurcation
parameter, related to the renewal of self-antigen presenting cells by external factors, and
respective pattern of the recurrence behaviour, as already discussed in [26] and [27]. We also
find that, for given parameter values, the chance of observing long term oscillating solutions
is higher when the death rate of immunosuppressive cells, d3, is higher, or when the constant
input of self-antigen presenting cells, α, is smaller, see the bifurcation diagram in Figure 1.

We conclude that both the analytical and numerical outcome of our study suggests that
the model developed in this work is able to describe not only the evolution in time of the cell
populations that are believed to be the main players in the development of autoimmunity,
but also the chronic nature of most autoimmune conditions.

Moreover, the model proposed here presents, in our opinion, some features that should be
highlighted. One important aspect is that the individual cellular behaviour is incorporated
in the kinetic dynamics and thus the model is able to describe the interactions among cells
and the changes on their activity. At the same time, the macroscopic analogue derived
from the kinetic system reflects the cellular behaviour on the global dynamical pattern of
the populations and therefore allows us to relate both cellular and global performances.
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This duality is an advantage over the macroscopic models studied in papers [9, 27–30] and
[12, 13], where the individual behaviour of cells is not taken into account, and also over the
kinetic models developed in [12, 13], where the relation to the macroscopic behaviour of the
populations is not considered. Another very important aspect of our work is that, at variance
with papers [13] and [27, 29], where the recurrent behaviour of the solution of the models is
mainly due to the imbalance of the cells of the immune system, in our model we show that
factors external to the immune system could produce, as well, recurrent dynamics in the
model solution.

In future research, we plan, using clinical data, to consider different types of autoimmune
diseases based on the recurrence pattern, and to investigate optimal therapies. This can be
done by including, in the model developed here, a new variable representing a therapeutic
procedure, and studying the impact of the therapy on the recurrent behaviour of the system
solutions.

A more challenging problem that we plan to tackle in the future is the introduction of
suitable memory terms in the kinetic model, so that, in practice, the interaction between
pairs of cells may generate an output with a certain time delay generated by these memory
terms.
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