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Abstract

COVID-19 is a respiratory illness caused by an RNA virus prone to mutations. In December 2020,
variants with different characteristics that could affect transmissibility emerged around the world. To address
this new dynamic of the disease, we formulate and analyze a mathematical model of a two-strain COVID-
19 transmission dynamics with strain 1 vaccination. The model is theoretically analyzed and sufficient
conditions for the stability of its equilibria are derived. In addition to the disease-free and endemic equilibria,
the model also has single-strain 1 and strain 2 endemic equilibria. Using the center manifold theory, it is
shown that the model does not exhibit the phenomenon of backward bifurcation, and global stability of the
model equilibria when the basic reproduction number R0 is either less or greater than unity as the case maybe
are proved using various approaches. Simulations to support the model theoretical results are provided. We
calculate the basic reproductive number for both strains R1 and R2 independently. Results indicate that -
both strains will persist when R1 > 1 and R2 > 1 - Stain 2 could establish itself as the dominant strain if
R1 < 1 and R2 > 1, or when R2 is at least two times greater than R1. However, with the current knowledge
of the epidemiology of the COVID-19 pandemic and the availability of treatment and an effective vaccine
against strain 1, it is expected that eventually, strain 2 will likely be eradicated in the population due to de
novo herd immunity provided the threshold parameter R2 is controlled to remain below unity.

Keywords Two-strain COVID-19, Vaccination, Dynamical system, Reproduction number, Bifurcation,
Lyapunov function.

1 Introduction

The potential for SARS coronavirus circulating inside bats to mutate to humans was noted in [1]. COVID-19
is a deadly respiratory disease caused by the Sars-Cov-2 virus, with sustained human-to-human transmission
since December 2019 when the first case of the novel virus was detected in Wuhan, China [2, 3]. COVID-19
has a general mortality rate below 5%, with an average of 2.3% [4], but the older populations is the higher
risk group with mortality rate of 8% for individuals between 70-79 years and 14.8% for people older than 80
years [5]. Despite the seemingly low mortality rate, the number of hospitalizations is quite high, presenting
global health burden and a major challenge to health care systems worldwide [6]. COVID-19 is transmitted
from human-to-human through direct contact with contaminated objects or surfaces and through inhalation
of respiratory droplets from both symptomatic and -infectious humans [7, 8]. The 2019 COVID-19 outbreak
is still ongoing and represents a serious challenge for communities around the globe, endangering the health
of millions of people, and resulting in severe socioeconomic consequences due to lock-down measures. In
fact, Usaini et al., [9] noted that reducing the influx of immigrants could play a significant role in decreasing
the number of infected individuals when the recruitment rate of immigrants is below a certain critical value.

COVID-19 transmission dynamics models are flourishing and abounds in the literature [10, 11, 12, 13],
to cite a few and the reference therein. Availability of COVID-19 vaccines brings hope to the potential end
of the pandemic [13]. Vaccines provide a determining pharmacological measure in the struggle against the
COVID-19 pandemic, as we now face a very different epidemiological landscape from the early pandemic [14],
thereby opening the possibility to explore real scenarios that combine the effects of both non-pharmaceutical
public health interventions (e.g., face mask, hand washing, social distancing) and therapeutic measures such
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as treatment and mass vaccination strategies [15]. Compartmental models have been crucial to study the
evolution of several disease outbreaks. COVID-19 outbreak has provided a platform for the several research
activities based on compartmental-like epidemic models have been conducted to investigate different key
aspects of the spread, control, and mitigation of the disease [15]. Deterministic compartmental disease
transmission models are characterized by the subdivision of the population into compartments based on
individuals’ health status. The history of mathematical epidemiologic models date as far back as Bernouilli
[16, 17, 18]. Mathematical models of a two-strain disease are numerous in the literature [19]: malaria
[20], influenza [21, 22], SARS-CoV-2 [23], dengue [24], disease with age structure and super-infection [25],
influenza with a single vaccination [26, 29] to cite but a few and the references therein.

While studies on the dynamics of two viral infections have considered cross-immunity and co-infection [30],
others described effects of two competing strains characterized by cross-immunity [31]. Our proposed model
is a mirror of a multi strain (two-strain) dynamics flu model with a single vaccination by [29] and modified
by [26] to include the force of infection in both infected compartments and extending the incidence function
to a more general form. With COVID-19 specificity, we included infections from vaccinated individuals
against strain 1 (the resident strain), as well as strain 2 (the wild strain), since vaccination against strain
1 may not procure any or very limited protection against the second and more virulent strain 2. Because
variant strains have the potential to substantially alter transmission dynamics and vaccine efficacy, Gonzalez-
Parra et al., [23] investigated the impact of more infectious strain of the transmission dynamics of the
COVID-19 pandemic, but they did not consider vaccination. They concluded that a new variant with higher
transmissibility may cause more devastating outcomes in the population. While Puga et al., [32] investigated
co-circulation of two infectious diseases and the impact of vaccination against one of them, our proposed
model is seemingly new and to the best of our knowledge, no COVID-19 modelling study has accounted for
strain 1 vaccination with possibility of infection with strain 1 even when vaccinated as well as infection with
strain 2 for which strain 1 vaccination may not provide any protection.

This paper is organized as follows. We formulate a deterministic compartmental epidemic model of the
transmission dynamics of COVID-19 in a homogeneously mixed population in Section 2. Section 3 is devoted
to well-posedness of the proposed mathematical model, derivation of its equilibria, the basic reproduction
number, and analysis using dynamical systems theory of the COVID-19 transmission dynamics with strain 1
vaccination. Section 4 covers several numerical simulations of the disease dynamics in the presence of strain
1 vaccination in a community where treatment is administered to infected individuals. The and graphical
illustrations are based on various scenarios when the basic reproduction number R0 = max{R1, R2} is either
greater or less than unity. The conclusion is provided in Section 5.

2 Model Formulation

It is assumed that the population is homogeneous-mixed and individuals have equal probability of acquiring
the infection. Only human-to-human transmission of COVID-19 is considered. According to individuals dis-
eases status, the human population at time t denoted by Nh(t) is divided into sub-populations of susceptible
individuals S(t), vaccine individuals V1(t), individuals infected with strain 1 I1(t), individuals infected with
strain 2 I2(t) and recovered R(t). The total human population Nh(t) is given by

Nh(t) = S(t) + V (t) + I1(t) + I2(t) +R(t).

Homogeneous mixing of individuals in the population is assumed so that the standard incidence (rate of

infection of strain 1 per unit time) is β1I1(t)
N(t)

. Thus, at any given time t, the probability that an individuals

will carry strain 1 infection is I1(t)
N

. Infected individuals with strain 1 either die naturally at a constant rare
µ or at a constant disease-induced death rate δ1. The per capita life expectancy is given by 1

µ
while 1

µ+δ1
is

the death adjusted average infectious life of a individual infected with strain 1. For simplicity of notations
in what follows, we drop the time t from the model variables.

While at the onset of the COVID-19 pandemic, the dynamics of the disease was much faster than that
of birth (or recruitment) and deaths [27] because of the then short period of the pandemic [28], neglecting
these demographic factors was well justified in the plethora of models in the literature. However, since the
disease has been there for a while (since December 2019), at present, it is important to account for the model
vital dynamics when describing the evolution of the COVID-19 pandemic. Therefore, disease-specific death
rate δ1, δ2 respectively for strain 1 and strain and natural death µ are accounted for. We incorporate both
cohort vaccination (where a fraction ρ of the newly recruited members of the community are vaccinated),
and continuous vaccination program (where a fraction v of susceptible individuals is vaccinated per unit
time) [33].
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Figure 1: Flowchart of the state progression of individuals in a population exposed to two strains of COVID-19.
At time t, susceptible individuals S(t) can become infected (primary infection) with Strain 1 I1(t) or Strain
2 I2(t) or vaccinated against strain 1. Vaccinated individuals V (t) can acquire COVID-19 strain 2. Infected
individuals recover from both strains and move into class R. Recovery is not permanent.

From the conceptual model flow diagram in Figure 1, we derive the following deterministic system of
nonlinear differential equations

Ṡ = (1− ρ)Λ + σR− (α1 + α2 + µ+ v)S,

V̇1 = ρΛ + vS − (α2 + (1− ε)α1 + µ)V1,

İ1 = α1S + (1− ε)α1V1 − (τ1 + µ+ δ1)I1,

İ2 = α2(S + V )− (τ2 + µ+ δ2)I2,

Ṙ = τ1I1 + τ2I2 − (σ + µ)R,

(1)

with initial conditions
S(0) ≥ 0, V1(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0, R(0) ≥ 0, (2)

where

α1 = aβ1
I1
N
, α2 = aβ2

I2
N
.

The model system (1) involves both exogenous parameters such as the vaccination rate v, and the recov-
ery/treatment rates τ1 and τ2 - the latter represent the inverse of the length in days of the contagious period,
and endogenous parameters such as the disease transmission rate β1 and β2. The parameter 0 ≤ ε ≤ 1 is the
vaccine effectiveness. Thus, implementation of a vaccination program causes the following transformation
in the model: β → (1 − ε)β, that is the reduction in re-acquiring strain 1 infection for individuals already
vaccinated against strain 1.

The model parameters, their description, values and sources are provided in the Table 1.
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Table 1: Fundamental model parameter
Parameter Description Value Range Reference

Λ Recruitment or inflow into the population 1000
59×365 [23, 40]

v Continuous strain 1 vaccination rate [10−5, 8× 10−2] [41, 42]

a Effective contact rate 0.85 [47, 48]

β1 Transmission probability of strain 1 [0.127, 0.527] [23, 43]

β2 Transmission probability of strain 2 [0.127, 0.527] [43]

ε Strain 1 vaccine efficacy 0.87 [44, 45]

µ Natural death rate 1
59×365 [23, 43]

δi Strain i = {1, 2} disease-induced death rate 6.83× 10−5 [23, 47]

σ Rate of loss of immunity 1
90 [49]

ρ Cohort vaccination rate (0, 0.99] [41, 42]

τ1 Recovery rate of strain 1 infected individuals [ 1
30 ,

1
4 ] [43, 46, 47]

τ2 Recovery rate of strain 2 infected individuals [ 1
30 ,

1
4 ] [43, 46, 47]

3 Model analysis

3.1 Disease-Free equilibrium and basic reproduction number

For system (1) with non-negative initial values, its solutions are non-negative and ultimately bounded. The
proof is routine, see for example [28]. Positivity is important for biologically feasible solutions of the model
while boundedness implies that solutions are finite. Next, we show that the region solutions of model system
(1) enter in a bounded region Ω.

Lemma 3.1 The closed set Ω =

{
(S, V1, I1, I2, R) ∈ R5

+ : N ≤ Λ

µ

}
is positively invariant and attracting.

Proof. By adding all the equations of the model system (1), we obtain:

Ṅ = Λ− µN − δ1I1 − δ2I2 ≤ Λ− µN

Using the comparison theorem as described in [36, 37], we have N(t) ≤ Λ

µ
+

(
N(0)− Λ

µ

)
e−µt. If

N(0) ≤ Λ

µ
then N(t) ≤ Λ

µ
. Thus, the region Ω is positively invariant for the model, while if N(0) ≥ Λ

µ
, then

the solution enter in the region Ω in finite time or N(t) → Λ

µ
when t→ +∞.

Thus, the region attracts all solutions in R5
+. So the system is positively invariant and attracting.

Theorem 3.1 The disease free equilibrium of the system (1) is given by E0 =
(
S0, V 0

1 , 0, 0, 0, 0
)
where

S0 =
(1− ρ)Λ

µ+ v
and V 0

1 =
ρΛ + vS0

µ
=

(µρ+ v)Λ

µ(µ+ v)

The basic reproduction number is R0 = max{R1, R2} with R1 =
aβ1 [µ(1− ρ) + (1− ε)(µρ+ v)]

(µ+ v)(τ1 + µ+ δ1)
and

R2 =
aβ2 [µ(1− ρ) + (µρ+ v)]

(µ+ v)(τ2 + µ+ δ2)
.
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Proof. Using the next generation matrix method in [34] the associated next generation matrix is given by:

F =


aβ1

I1
N

(S + (1− ε)V1)

aβ2
I1
N

(S + V1)

 ,
and the rate of transfer of individual to the compartments is given by:

V =

 −(τ1 + µ+ δ1)I1

−(τ2 + µ+ δ2)I2

 .
Hence, the new infection terms F and the remaining transfer terms V are respectively given by:

F =


aβ1

S0 + (1− ε)V 0

N0
0

0 aβ2
S0 + V 0

1

N0

 ,

V =

 −(τ1 + µ+ δ1) 0

0 −(τ2 + µ+ δ2)

 ,
and

FV −1 =


aβ1

S0 + (1− ε)V 0
1

N0(τ1 + µ+ δ1)
0

0 aβ2
S0 + V 0

1

N0(τ2 + µ+ δ2)

 .
The dominant eigenvalue or spectral radius of the next generation matrix FV −1 which represents the

basic reproductive number is given by:

R0 = max

{
aβ1

S0 + (1− ε)V 0
1

N0(τ1 + µ+ δ1)
, aβ2

S0 + V 0
1

N0(τ2 + µ+ δ2)

}
.

The basic reproductive number of a disease, denoted R0 is defined as the average number of secondary
infections that a single infectious individual will give rise to over the duration of his infection, in an otherwise
entirely susceptible population.

Let

R1 = aβ1
S0 + (1− ε)V 0

1

N0(τ1 + µ+ δ1)
=
aβ1 [µ(1− ρ) + (1− ε)(µρ+ v)]

(µ+ v)(τ1 + µ+ δ1)
,

and

R2 = aβ2
S0 + V 0

1

N0(τ2 + µ+ δ2)
=
aβ2 [µ(1− ρ) + (µρ+ v)]

(µ+ v)(τ2 + µ+ δ2)
.

Then
R0 = max{R1, R2}.

In Section 4, we shall investigate four possible scenarios/combinations when R1 > 1or < 1 and
R2 > 1or < 1.

Theorem 3.2 The disease-free equilibrium E0 is unstable if R0 > 1 while it is locally asymptotically stable
if R0 < 1.

Proof.
The Jacobian matrix associated with the model system (1) at the disease-free equilibrium is given by:

JE0 =



−(µ+ v) 0 −aβ1
S0

N0
−aβ2

S0

N0
σ

v −µ −a(1− ε)β1
V 0
1

N0
−aβ2

V 0
1

N0
0

0 0 aβ1
(S0 + (1− ε)V 0

1 )

N0
− (τ1 + µ+ δ1) 0 0

0 0 0 aβ2
S0 + V 0

1

N0
− (τ2 + µ+ δ2) 0

0 0 τ1 τ2 −(σ + µ)


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JE0 =



−(µ+ v) 0 −aβ1
S0

N0
−aβ2

S0

N0
σ

v −µ −a(1− ε)β1
V 0
1

N0
−aβ2

V 0
1

N0
0

0 0 (τ1 + µ+ δ1)(R1 − 1) 0 0

0 0 0 (τ2 + µ+ δ2)(R2 − 1) 0

0 0 τ1 τ2 −(σ + µ)


Thus the eigenvalues of JE0 are λ1 = −(µ + v), λ2 = −µ, λ3 = −(σ + µ), λ4 = (τ1 + µ + δ1)(R1 −

1) and λ5 = (τ2 + µ+ δ2)(R2 − 1).
If R0 < 1, then λ4, λ5 < 0 and we obtain that the disease-free equilibrium E0 of Model (1) is locally

asymptotically stable. If R0 > 1, then the disease-free equilibrium loses its stability.

Theorem 3.3 The disease-free equilibrium E0 is globally asymptotically stable if R0 < 1.

Proof. Consider the Lyapunov function

V (S, V1, I1, I2) = I1 + I2,

Since I1, I2 > 0, then V (S, V1, I1, I2) > 0 and V (S, V1, I1, I2) attains zero at I1 = I2 = 0.
Now, we need to show V̇ ≤ 0.

V̇ = İ1 + İ2

=
aβ1I1
N

S + (1− ε)aβ1I1
N

V1 − (τ1 + µ+ δ1)I1 +
aβ2I2
N

(S + V1)− (τ2 + µ+ δ2)I2

= (τ1 + µ+ δ1)I1

(
aβ1(S + (1− ε)V1)

N(τ1 + µ+ δ1)
− 1

)
+ (τ2 + µ+ δ2)I2

(
aβ2(S + V1)

N(τ2 + µ+ δ2)
− 1

) (3)

Because S ≤ S0 and V1 ≤ V 0
1 then

V̇ ≤ (τ1 + µ+ δ1)I1 (R1 − 1) + (τ2 + µ+ δ2)I1 (R2 − 1) ≤ 0.

Furthermore,
dV

dt
= 0 if and only if I1 = I2 = 0, so by using the LaSalle’s invariant principle, this implies

that E0 is globally asymptotically stable in Ω.
Remark Using the standard comparison theorem as described in [36, 37] and rigorously applied in

[38, 39, 40], this result can also be proved (see appendix A).

Because the impact of the vaccination on disease dynamics is key to our study, we write R1 and R2 as
functions of the vaccination rate v. That is,

R1(v) =
aβ1 [µ(1− ρ) + (1− ε)(µρ+ v)]

(µ+ v)(τ1 + µ+ δ1)
, R2(v) =

aβ2 [µ(1− ρ) + (µρ+ v)]

(µ+ v)(τ2 + µ+ δ2)
.

(4)

Thus,

R1(0) =
aβ1

τ1 + µ+ δ1
, R1(∞) =

aβ1(1− ε)
τ1 + µ+ δ1

=⇒ R1(∞) < R1(0), and

R2(0) = R2(∞) =
aβ2

τ2 + µ+ δ2
.

(5)

From the first equation in 5, the strain 1 basic reproduction number R1 decreases as vaccination rate
increase. That is, as expected vaccination against strain 1 is always beneficial in controlling strain 1, however
its impact on strain 2 depends on the effective contact rate a and the transmission probability of strain 2
β2, as individuals vaccinated against strain 1 may be less likely to be infected by strain 2 than those who
are not vaccinated [29]. Large vaccination rate v could potentially lead to reducing R2 to some value less
than 1, thereby helping to mitigate the spread of strain 2. Since R1 is a function of daily vaccination rate v
and vaccine efficacy ε, its variation for different values of these parameters is shown in Figure 2. Dark blue
color corresponds to high vaccine coverage and efficacy, indicating the possibility to decrease the value of
R1. That, both high vaccine coverage and efficacy will contribute to the reduction of the value R1.
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Figure 2: Heat map of R1 for different values of vaccination rate v and vaccine efficacy ε.

3.2 Endemic equilibrium

Theorem 3.4 The model (1) admits

1. a unique single-strain 1 infection equilibrium E1 = (S∗, V ∗1 , I
∗
1 , 0, R

∗) if and only if R1 > 1.

2. a unique single-strain 2 infection equilibrium E2 = (S∗, V ∗1 , 0, I
∗
2 , R

∗) if and only if R2 > 1.

3. a 2-strain infection equilibrium E3 = (S∗, V ∗1 , I
∗
1 , I
∗
2 , R

∗) when R0 = max{R1, R2} > 1.

Proof. (1) Equilibrium E1 is the solution of the system

(1− ρ)Λ + σR∗ − (α1 + µ+ v)S∗ = 0,

ρΛ + vS∗ − ((1− ε)α1 + µ)V ∗1 = 0,

α1S
∗ + (1− ε)α1V

∗
1 − (τ1 + µ+ δ1)I∗1 = 0,

τ1I
∗
1 − (σ + µ)R∗ = 0,

(6)

From the first three equations in 6 above, the model system (1) admits a unique single-strain 1 infection
equilibrium E1 = (S∗, V ∗1 , I

∗
1 , 0, R

∗) if and only if R1 > 1 given by

S∗ =
(1− ρ)Λ + σR∗

α∗1 + µ+ v
,

V ∗ =
ρΛ + vS∗

(1− ε)α∗1 + µ
,

I∗1 =
α1S

∗ + (1− ε)α∗1V ∗

τ1 + µ+ δ1
.

Using the last equation of the system 6 and the definition of α∗1, we obtain after some algebraic calculation
that α∗1 is the solution of the equation

α∗1(c2α
∗2
1 + c1α

∗
1 + c0) = 0, (7)

where

c2 = (1− ε1)(µ+ σ + τ1) > 0,
c1 = (µ+ σ + τ1)(µ+ (1− ε)v) + (µ+ σ) [δ1ρ+ (1− ε)(µ+ τ1 + δ1(1− ρ)− aβ1)] ,
c0 = (µ+ σ)(µ+ v)(µ+ τ1 + δ1)(1−R1).

(8)

When R1 > 1, c0 < 0 and the discriminant of the quadratic equation 7 is given by ∆ = c21 − 4c0c2 > 0,

and thus equation 7 admits two reals solutions. In addition, the product of those two solutions is p =
c0
c2
< 0,

implying that the two solutions have different signs. Hence, we can conclude that when R1 > 1, the system
admit a unique single-strain 1 infection equilibrium.
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(2) The proof follows the same approach and steps as in the above case (1).
(3) To find E3, we consider the system

(1− ρ)Λ + σR∗ − (α∗1 + α∗2 + µ+ v)S∗ = 0,

ρΛ + vS∗ − (α∗2 + (1− ε)α∗1 + µ)V ∗1 = 0,

α∗1S
∗ + (1− ε)α∗1V ∗1 − (τ1 + µ+ δ1)I∗1 = 0,

α∗2(S∗ + V ∗1 )− (τ2 + µ+ δ2)I∗2 = 0,

τ1I
∗
1 + τ2I

∗
2 − (σ + µ)R∗ = 0,

(9)

where α∗1 =
aβ1I

∗
1

N∗
, α∗2 =

aβ2I
∗
2

N∗
with N∗ =

Λ + δ1I
∗
1 + δ2I

∗
2

µ
. After some algebraic manipulations we

obtain R∗ =
τ1I
∗
1 + τ2I

∗
2

σ + µ
, S∗ =

(1− ρ)Λ + σR∗

α∗1 + α∗2 + µ+ v
, and V ∗1 =

ρΛ + vS∗

α∗2 + (1− ε)α∗1 + µ
.

Replacing S∗; V ∗1 and R∗ with their values in the third and fourth equation yields the following system
f(I∗1 , I

∗
2 ) = 0,

g(I∗1 , I
∗
2 ) = 0,

(10)

where f and g are monotone functions defined by

f(I∗1 , I
∗
2 ) = −

I1aβ1 (1 − ε)
(
I1Λaβ1µρ+ I1Λaβ1ρσ + I1Nστ1v + I2Λaβ2µρ+ I2Λaβ2ρσ + I2Nστ2v + ΛNµ2ρ+ ΛNµρσ + ΛNµv + ΛNσv

)
(µ+ σ) (I1aβ1 + I2aβ2 +Nµ+Nv) (I1aβ1ε− I1aβ1 − I2aβ2 −Nµ)

+
I1aβ1 (I1στ1 + I2στ2 − Λµρ+ Λµ− Λρσ + Λσ)

(µ+ σ) (I1aβ1 + I2aβ2 +Nµ+Nv)
− I1 (δ1 + µ+ τ1) ,

g(I∗1 , I
∗
2 ) = −

I2aβ2
(
I1Λaβ1µρ+ I1Λaβ1ρσ + I1Nστ1v + I2Λaβ2µρ+ I2Λaβ2ρσ + I2Nστ2v + ΛNµ2ρ+ ΛNµρσ + ΛNµv + ΛNσv

)
(µ+ σ) (I1aβ1 + I2aβ2 +Nµ+Nv) (I1aβ1ε− I1aβ1 − I2aβ2 −Nµ)

+
I2aβ2 (I1στ1 + I2στ2 − Λµρ+ Λµ− Λρσ + Λσ)

(µ+ σ) (I1aβ1 + I2aβ2 +Nµ+Nv)
− I2 (δ2 + µ+ τ2) .

If the system (10) admits a solution, then, the model system (1) will have an endemic equilibrium.
Obtaining the explicitly expression for the exact solution of the non-linear autonomous system (10) is a
daunting task. Also, it not obvious if the system (10) admits multiple solutions, it therefore is important to
explore the uniqueness and global stability of the 2-strain endemic equilibrium. To this end, we investigate
if the model system (10) undergoes the phenomenon of backward bifurcation where a stable disease-free
equilibrium with a stable endemic equilibrium co-existence when R0 < 1.

3.3 Bifurcation analysis

In determining the possibility of backward bifurcation occurring, we use the centre manifold theory approach
[35]. For simplification of the notations and ease of algebraic manipulations, the following change of variables
is made. Let S(t) = x1, V (t) = x2, I1(t) = x3, I2(t) = x4 and R(t) = x5, by using the vector notation
x = (x1, x2, x3, x4, x5)T (where T denote the transpose), our model system (10) can be written in the form
dx

dt
= f(x) with f(x) = (f1, f2, f3, f4, f5)T as follows:

ẋ1 = f1(x) = (1− ρ)Λ + σx5 − (α1 + α2 + µ+ v)x1,

ẋ2 = f2(x) = ρΛ + vx1 − (α2 + (1− ε)α1 + µ)x2,

ẋ3 = f3(x) = α1x1 + (1− ε)α1x2 − (τ1 + µ+ δ1)x3,

ẋ4 = f4(x) = α2(x1 + x2)− (τ2 + µ+ δ2)x4,

ẋ5 = f5(x) = τ1x3 + τ2x4 − (σ + µ)x5,

(11)

where α1 = aβ1
x3

x1 + x2 + x3 + x4 + x5
and α2 = aβ1

x4
x1 + x2 + x3 + x4 + x5

.
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The Jacobian of the system (11) at the DFE is given by

JE0 =



−(µ+ v) 0 −aβ1
µ(1− ρ)

µ+ v
−aβ2

µ(1− ρ)

µ+ v
σ

v −µ −a(1− ε)β1
µρ+ v

µ+ v
−aβ2

µρ+ v

µ+ v
0

0 0 (τ1 + µ+ δ1)(R1 − 1) 0 0

0 0 0 (τ2 + µ+ δ2)(R2 − 1) 0

0 0 τ1 τ2 −(σ + µ)


. (12)

First, consider the case R = R1 =
aβ1 [µ(1− ρ) + (1− ε)(µρ+ v)]

(µ+ v)(τ1 + µ+ δ1)
.

Consider the case when R1 = 1, which is the bifurcation point. Suppose, further that β1 = β∗1 is chosen

as a bifurcation parameter. Solving for β1 from R1 = 1 gives β∗1 =
(µ+ v)(τ1 + µ+ δ1)

a [µ(1− ρ) + (1− ε)(µρ+ v)]

Jβ∗
1

=



−(µ+ v) 0 −aβ∗1
µ(1− ρ)

µ+ v
−aβ2

µ(1− ρ)

µ+ v
σ

v −µ −a(1− ε)β∗1
µρ+ v

µ+ v
−aβ2

µρ+ v

µ+ v
0

0 0 0 0 0

0 0 0 (τ2 + µ+ δ2)(R2 − 1) 0

0 0 τ1 τ2 −(σ + µ)


. (13)

When R1 = 1, the Jacobian of (11) at β1 = β∗1 c (denoted by Jβ∗
1
) has a right eigenvector given by w =

[w1, w2, w3, w4, w5]T , where, w1 = 1, w2 =
µp3(µ+ σ) + v[(µ+ σ)(p1 + p3) + στ1]

µ[στ1 + (µ+ σ)p1]
, w3 =

(µ+ σ)(µ+ v)

στ1 + (µ+ σ)p1
,

w4 = 0 and w5 =
τ1(µ+ v)

στ1 + (µ+ σ)p1
, where p1 = −aβ∗1

µ(1− ρ)

µ+ v
, p2 = −aβ2

µ(1− ρ)

µ+ v
, p3 = −a(1−ε)β∗1

µρ+ v

µ+ v

and p4 = −aβ2
µρ+ v

µ+ v
.

Further, the Jacobian Jβ∗
1

has a left eigenvector v = [v1, v2, v3, v4, v5]T , where v1 = v2 = v4 = v5 = 0 =,
v3 = 1.

a =

5∑
k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(E0, β
∗
1 ),

= −w3aβ
∗
1 (1 + x∗1 + (1− ε)x∗2)

(x∗1 + x∗2)2
,

After some algebraic computations, we obtain

a = − β∗1 (µ+ σ)(µ+ v)(1 + x∗1 + (1− ε)x∗2)

στ1(x∗1 + x∗2)2 [µ(1− ρ)(1− (τ + µ+ δ1)) + (1− ε)(µρ+ v)]

It is evident that a < 0, since 1− ε > 0, 1− ρ > 0 and 1− (τ1 + µ+ δ1) > 0.
The second bifurcation coefficient b is given by

b =

5∑
k,j=1

vkwj
∂2fk

∂xj∂βm
(E0, β

∗
1 ),

=
a(x∗1 + (1− ε)x∗2)

x∗1 + x∗2
> 0

Because a is negative and b is positive, and by Theorem 4.1 in [35], this precludes the model system (10)
from exhibiting the phenomenon of backward bifurcation at R0 = 1. Consequently, the following results
holds.

Lemma 3.2 The unique endemic equilibrium E3 of the model system 1 is globally asymptotically stable if
R0 > 1.
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4 Numerical simulations

To illustrate the basic mechanisms underlying the model dynamics, several graphical representations depict-
ing the dynamical behavior of the model system 1 when the fundamental threshold parameter R0 is either
greater or less than unity are presented to support the analytical results. The model parameter values used
in our simulations are shown in Table 1. The unit of Λ is person per day while all other parameters’ unit
is per day. The initial conditions are: (S(0) = 5000, V1(0) = 100, I1(0) = 70, I2(0) = 30, R(0) = 5. Because
R0 = max{R1, R2}. To investigate the long term dynamics of the co-circulating COVID-19 two-strain, four
scenarios will be considered. Note that values of our proposed COVID-19 model’s basic reproduction number
R0 = max{R1, R2} (with R1 and R2 denoting respectively the strain 1 and strain 2 basic reproduction) are
in agreement with previous COVID-19 modeling studies [50, 51, 52].

4.1 Case 1: R0 > 1 with R1 > 1 and R2 > 1

Time series solution of two infected classes I1(t) and I2(t) are plotted in Figures 3 and 4 when R0 > 1 with
R1 < R2. In this case, the solutions of the model system 1 approach the equilibria E3. These graphs show
the occurrence of a second wave as predicted in [10], and possibly a third wave. However, we note that under
very pessimistic conditions with availability of only strain 1 vaccine, strain 2 could become the dominant
strain in the population if infections with strain 2 are more than double that of strain 1, see Figure 4.

Figure 3: Dynamics of I1 and
I2 for R1 = 2.48 and R2 = 8.58

Figure 4: Dynamcis of I1 and
I2 for R1 = 1.29 and R2 = 4.78

4.2 Case 2: R0 > 1 with R1 < 1 and R2 > 1

Figures 5 and 6 depict the case when R0 > 1 with R1 < 1 and R2 > 1. As depicted in Figure 6, at the
long run, strain 2 could establish itself as the dominant strain in the population. Note that in this case, the
solution profiles approach the equilibrum E2

Figure 5: Dynamics of I1 and
I2 for R1 = 0.77 and R2 = 1.0037

Figure 6: Dynamics of I1 and
I2 for R1 = 0.92 and R2 = 2.27

4.3 Case 3: R0 > 1 with (a) R1 > 1 and R2 < 1 and (b) R1 = R2

Figures 7 and 8 display respectively the cases when (a) R0 > 1 with R1 < 1 and R2 > 1 (left panel) and (b)
R1 = R2 (right panel). Again, the dynamical behavior of the graph of strain 1 depict multiple waves. In both
cases (a) and (b), strain 2 will not establish itself in the population as the solutions approach the equilibrium
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E1. It is surprising to notice that when both strain 1 and strain 2 reproduction numbers are equal but greater
than unity, strain 2 could eventually die out. Several reasons could explain this. First, strain 2 emerged
in the population when efforts to mitigate the strain 1 such as non-pharmaceutical interventions (including
physical distancing, hand hygiene, and mask-wearing) as well as treatment were already well underway.
Secondly, continuous vaccination against strain 1 could likely confer some protection to individuals against
strain 2. In this case,

Figure 7: Dynamics of I1 and
I2 for R1 = 1.92 and R2 = 0.94

Figure 8: Dynamics of I1 andI2 for R1 = R2 = 2.27

4.4 Case 4: R0 < 1

When R0 < 1, that is both R1 and R2 are less than unity with R1 < R2, the evolutionary dynamics of the
solutions approach the disease-free equilibrium E0, see Figure 9. On the other hand, when R0 < 1 with
R1 > R2, it is striking to note that because R1 is very closed to 1, Figure 10, the strain infection I1 will
not be quickly eradicated, and efforts to further reduce the average number of infections from a susceptible
individual in a totally susceptible population is warranted.
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Figure 9: Dynamics of I1 and
I2 for R1 = 0.77 and R2 = 0.91

Figure 10: Dynamics of I1 and
I2 for R1 = 0.96 and R2 = 0.91

5 Conclusion

COVID-19 emerged in December 2019, has rapidly evolved as a pandemic with wide-ranging socio-economic
consequences. The disease causes severe acute respiratory syndrome and results in substantial morbidity
and mortality. While an effective vaccine is essential to containing the spread COVID-19, the emergence
of a second strain could complicate mitigation efforts. We developed a simple compartment model of the
transmission dynamics of a 2-strain of COVID-19 model to examine the impact strain 2 in a population where
vaccination against strain 1 is available. The proposed 2-strain COVID-19 model with strain 1 vaccination
is derived as a deterministic system of nonlinear differential equations. The model is then theoretically
analyzed, its basic reproduction number R0 is derived as well as sufficient conditions for the stability of its
equilibria. We calculate the basic reproductive numbersR1 and R2 for both strains independently. Using
the center manifold theory, it is shown that the model does not exhibit bi-stability also known as backward
bifurcation, and global stability of the model equilibria when R0 is either less or greater than unity is establish
using a suitably constructed Lyapunov function and other approaches such as the comparison method.

To gain insight into whether strain will establish itself in the population as the dominant strain, several
simulations to support the model theoretical results are provided. Results indicate that - both strains will
persist when both R1 > 1 and R2 > 1 - Stain 2 could likely establish itself as the dominant strain if R1 < 1
and R2 > 1, or when R2 is at least two times R1. However, with the current knowledge of the epidemiology
of the COVID-19 pandemic and the availability of treatment effective vaccine against strain 1, strain 2 is
would eventually be eradicated in the population if the threshold parameter R2 is controlled to remain below
unity. That is, two co-circulating strains will not persist simultaneously but only one of the strains may
persist in the long run. We note that if we ignore the model vital dynamics (recruitment and natural death)
to mimic the ongoing epidemic, there is no noticeable impact on the dynamical behavior of the figures.
There are however some contrasting findings with respect to the value of the basic reproduction number.

(i) Under a very pessimistic condition, strain 2 could become the dominant strain in the population if
infections with strain 2 are more than double that of strain 1, see Figure 4.

(ii) When both strain 1 and strain 2 reproduction numbers are equal and greater than unity, strain 2 could
eventually die out while strain 1 persists.

From observation (ii), while R0 provides a good measure for disease dying out or persisting in a pop-
ulation, this threshold quantity when less than but close to unity might mislead the assessment of the
transmission dynamics of the disease. Thus, ensuring that the value of R0 is below unity may depend on
how far from unity this value is in order to ascertain how quickly the disease eventually dies out. That is,
even though the model does not exhibit the possibility of bi-stable behavior of its equilibria, strain 1 could
persist for some time when R1 < 1, but close to 1. From this finding and in the face of waning adherence
to physical distancing, the use of non-pharmaceutical interventions the word has relied upon (such as lock-
downs, travel restrictions, contact tracing, mask wearing, and social/physical distancing), and the emergence
of other COVID-19 variants, it is cautionary to ensure decision on relaxing/lifting these non-pharmaceutical
prevention measures are not solely based on the value of the basic reproduction number being less than
unity, but considerations should be made on how close to 1 this value actually is as well as other socio and
eco-epidemiological factors pertaining to the dynamics of COVID-19, and also account for regional hetero-
geneity in transmission and travel. Nevertheless, there is a glimpse of hope that if individuals concurrently
continue to adhere to non-pharmaceutical interventions (including physical distancing, hand hygiene, and
mask-wearing), and other pharmaceutical efforts to mitigate the strain 1 such as treatment and vaccination
continue, strain 2 could be eradicated.

The proposed model has some limitations. While co-infection of the COVID-19 has not been a major
issue, from a theoretical standpoint, the model could be extended to include the latent class and individuals
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dually infected with both strain 1 and strain 2. In this case, one could compute the invasion reproductive
number for strain 1 when strain 2 is at endemic equilibrium and vice-versa [53]. Due to the severity of the
disease, explicitly incorporating the quarantine and hospitalized class is viable. While these suggestions will
increase the complexity of the model analysis, by construction, there are often uncertainty around some
parameter values, and a detailed uncertainty and sensitivity analyses to determine the parameters that have
the highest effect on the model variables should also be considered [54].
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Appendix A: GAS of DFE using comparaison theorem

The following results provide an alternate proof to Theorem 3.3.

Theorem 5.1 The disease-free equilibrium E0 is globally asymptotically stable if, R0 > 1.

Proof. The proof is based on applying a standard comparison theorem as described in [36, 37] and applied
in [38, 39, 40]. The equations for the infected components in (1) can be written in terms of I ′1(t)

I ′2(t)

 = (F − V )

 I1(t)

I2(t)

−M1Q1

 I1(t)

I2(t)

−M2Q2

 I1(t)

I2(t)

 , (14)

where F and V are matrices defined in section 3.1, M1 = 1 − S + (1− ε)V1

N
× N0

S0 + (1− ε)V 0
1

, M2 =

1− S + V1

N
and Q1 and Q2 are non-negative matrices given respectively by

Q1 =

 aβ1(S0 + (1− ε)V 0
1 )

N0
0

0 0

 , Q2 =

 0 0

0 aβ2

 .
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Thus, since S(t)+V1(t) ≤ N(t) and assuming that for all t ≥ 0,
S(t) + (1− ε)V1(t)

N(t)
× N0

S0 + (1− ε)V 0
1

≤ 1

in Ω, it follows from 14 that  I ′1(t)

I ′2(t)

 ≤ (F − V )

 I1(t)

I2(t)

 . (15)

Using the fact that the eigenvalues of the matrix F − V all have negative real parts, it follows that the
linearized differential inequality system (15) is stable whenever R0 < 1. Consequently, (I1(t), I2(t))→ (0, 0)
as t→∞. Thus, by comparison theorem [36, 37], (I1(t), I2(t))→ (0, 0) as t→∞. Substituting I1 = I2 = 0
in the first and second equations of the model 1 gives S(t) → S0 and V1(t) → V 0

1 as t → ∞. Thus,
(S(t), V1(t), I1(t), I1(t), R(t)) → (S0, V 0

1 , 0, 0, 0) as t → ∞ for R0 < 1. Hence, the DFE E0 is GAS in Ω if
R0 < 1.

16


	Introduction
	Model Formulation
	Model analysis
	Disease-Free equilibrium and basic reproduction number
	Endemic equilibrium
	Bifurcation analysis

	Numerical simulations
	Case 1: R0 > 1 with R1 > 1 and R2 > 1
	Case 2: R0 > 1 with R1 <1 and R2 >1
	Case 3: R0 > 1 with (a) R1 >1 and R2 <1 and (b) R1 =R2 
	Case 4: R0 < 1 

	Conclusion

