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Abstract. In this paper, the fixed-time projective synchronization issue

for a class of delayed memristive neural networks is studied via ape-

riodically intermittent switching control. Firstly, according to the ex-

isting aperiodically intermittent switching strategy, a novel theorem for

aperiodically intermittent switching fixed-time stability is proposed and

proved through mathematical induction. Subsequently, an aperiodically

intermittent switching controller is designed to reach fixed-time projec-

tive synchronization for drive-response systems. The power exponent

is a function of error system state rather than one or two fixed con-

stants. With the help of the extended differential inclusion framework,

the inequality technique and the analysis method, some novel sufficient

conditions are derived to ensure fixed-time projective synchronization for

the considered systems. The settling time is closely related to the num-

ber of neurons and the maximum ratio of the rest width to the aperiodic

time span, but independent of the initial value conditions. Furthermore,

the fixed-time complete synchronization, fixed-time anti-synchronization

and fixed-time stability obtained are special cases of the main theorem.

Meanwhile, the conclusions of this paper improve some previous relevant

works. Finally, a numerical example is given to verify the effectiveness

and feasibility of the obtained results.
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1 Introduction

In 1971, Professor Chua initially proposed the concept of memristor which reflects

the relationship between magnetic flux and charge [1]. The memristor is a kind of non-

linear resistance device meomrizing the amount of charge. Besides, its resistance value

changes according to the current and voltage flowing through it. However, it has not

attracted much attention until HP engineering researchers successfully manufactured

the first physical memristive device nearly forty years later [2]. In addition, memristor

similar to the biological synapse, and memory ability is more prominent than resistance

[3]. So that, researchers use it to replace the resistance in the artificial neural network

to simulate biological neural network, which is called memristor neural network. In

recent years, the memristor neural network has attracted increasing attention from

researchers due to its wide application in various fields of science and engineering,

such as quadratic optimization, bioinspired engineering, associative memory, signal

processing, nonvolatile memory, information storage, boolean logic operation function,

and so forth[4-9].

In the past few decades, researchers have undertaken extensive studies on the dy-

namic behaviors of neural networks, especially synchronous ones. Synchronization

of neural network means that the dynamic systems achieve identical state behaviors

through mutual adjustment, which is common in the real world and has a wide range

of applications, such as secure communications[10], image processing[11], optimization

problems[13] and intelligent control[12],etc. Yet the synchronization of neural network

dynamic systems can only be achieved by adding an appropriate controller to each

neuron. So far, many different effective control approaches have been applied [22-29],

including feedback control, switching control, adaptive control, quantized control, slid-

ing mode control, intermittent control, impulsive control, event-triggered control, etc.

Those methods can be classified as either continuous or discontinuous[22-29]. Com-

pared with the continuous control approaches, the discontinuous control methods have

attracted increasing attention from researchers because they are not only more eco-

nomical and practical but also can reduce the amount of information transmission.

Generally, discontinuous control methods include impulsive control [22], intermittent

control[31,38,48] and switching control[14,24], etc.

Intermittent control, which was first proposed to control linear econometric sys-

tems in [35], has been used in wipers, transportation, ecosystem management, control

of hyperuricemia in the treatment of gout, manufacturing. It is well known that in-

termittent control strategy is divided into the first intermittent subinterval and the

second intermittent subinterval [48]. When the control intermittent subinterval time
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is reduced to a certain point, the intermittent control becomes impulsive ones. In oth-

er words, impulsive control is only activated at some instants and effective when the

state is observable. If the state of the controlled system is unobservable, it becomes

ineffective[47]. Thus, intermittent control is more effective and practical than impul-

sive control in applications. Periodic intermittent synchronization control has been

widely studied recently [30,31,33,34]. For example, in [31], the authors considered the

exponential synchronization of delayed memristor-based chaotic neural networks by

designing a periodically intermittent controller. In [33], the exponential stabilization

and synchronization for the fuzzy model of memristive neural networks by periodically

intermittent control was discussed.

However, the requirement of periodic intermittent control has limitations and maybe

unreasonable and unnecessary in practice. For instance, the generation of wind power

is obviously aperiodically intermittent. Therefore, it is necessary to consider the syn-

chronization problem under aperiodically intermittent control strategy in practical use

and theoretical analysis. Fig.1 is a brief description of the aperiodically intermittent

control approach to be investigated. The time span [tm, tm+1), t0 = 0,m = 0, 1, 2, · · · ,
is divided into the first-intermittent subinterval [tm, sm) in which the systems are acti-

vated with a controller, and the second [sm, tm+1) in which the systems are activated

with another controller [37,39,48]. The control strategy is more general than periodic

ones, because when tm+1 − tm ≡ T, sm − tm ≡ δ, where T and δ are positive constants,

t0 = 0,m = 0, 1, 2, · · · , the intermittent control type becomes the periodic one. Many

achievements have been made in the periodic intermittent control synchronization of

neural networks [33,34]. When tm+1 − sm ≡ 0,m = 0, 1, 2, · · · the intermittent control

strategy becomes the continuous type which has been studied in [21,23,36].

Figure 1: Aperiodically intermittent control strategy.

Compared with periodic intermittent control, aperiodic intermittent control has

better practicability. The aperiodic intermittent control of neural network synchro-

nization has been widely studied and some excellent and useful results have been

obtained[37-40]. For example, under an aperiodically intermittent controller the syn-

chronization of neural networks with stochastic perturbation was discussed in [37]. In

[40], the authors paid attention to pinning synchronization of nonlinear and delayed

coupled neural networks with multi-weights by designing an aperiodically intermittent
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controller. From papers [37-40], one can know that the trajectories of the dynamic er-

ror systems about drive-response systems can achieve synchronization when time goes

to infinity. However, in actual engineering and theoretical research, to save time and

cost, it is expected that the synchronization convergence speed is as high as possible.

Neural network synchronization is segregated into infinite-time synchronization and

finite-time synchronization based on the convergence speed. Different from infinite-

time synchronization, finite-time synchronization means that the systems can realize

synchronization in a finite time. Recently, increasing attention has been paid to the

finite-time synchronization[42-45] of neural networks due to faster convergence rate,

better robustness against uncertainties and disturbance rejection properties [41]. How-

ever, the settling time of finite-time synchronization is a function depending on the

initial conditions of considered systems, which may bring inconvenience to practical

application. To overcome this problem, the fixed-time stability theory was proposed in

[46]. As the fixed-time synchronization of neural networks has important applications

in engineering management and theoretical analysis in recent years, it has received

more and more attention from scientific researchers and technical workers[10,16,24,26].

For example, under a novel sliding mode controller, the fixed-time synchronization of

delayed Cohen-Grossberg neural networks was discussed in [26].

There are many different concepts of neural network synchronization in practical use

[14-21], such as exponential synchronization, bipartite synchronization, finite-time syn-

chronization, fixed-time synchronization, prespecified-time synchronization, complete

synchronization, projective synchronization, etc. In particular, considering the unpre-

dictability of projective coefficient and the proportional relationship between drive-

response systems, the security of communication can be enhanced and fast communi-

cation can be realized, respectively [16]. In addition, the projective synchronization

is a more general type of synchronization. When the projective coefficients are 1, -1

and 0, complete synchronization, anti-synchronization and stability can be obtained

as its special cases, respectively. Therefore, the projective synchronization has been

widely concerned about [16,20, 42,43]. For example, in [16], the fixed-time projective

synchronization of memristive neural networks with discrete delay was investigated.

In [20], under the pinning impulsive control method, the projective synchronization of

fuzzy memristive neural networks was studied.

As we all know that due to the finite switching speed of amplifiers and the finite

speed of information transmitting, time delays usually exist in in the synchronization

of many physical neural network systems, which may lead to neural network instability

or poor performance. Generally, mixed time delays can be divided into discrete delays
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and distributed delays. In order to describe the real memristor-based neural network

dynamics more accurately, the mixed-time delays should be taken into consideration.

A lot of efforts have been devoted to the synchronization of memristor-based neural

networks with mixed-time delays[14,15,28,36,42]. For example, the authors studied

the adaptive synchronization of a class of memristor-based BAM neural networks with

mixed delays through designing two kinds of adaptive feedback controllers[36]. Howev-

er, to the best of our knowledge, there has not been any study concerning the fixed-time

projective synchronization of delayed memristive neural networks via aperiodically in-

termittent switching control.

Motivated by the above discuss, we will investigate fixed-time projective synchro-

nization of delayed memristive neural networks via aperiodically intermittent switching

control. The paper mainly has four contributions. Firstly, based on the existing ape-

riodically intermittent switching strategy, a novel and vital theorem for aperiodically

intermittent switching fixed-time stability is proposed and proved though mathemat-

ical induction. Secondly, a simple aperiodically intermittent switching controller for

saving energy and reducing information transmission is designed to realize fixed-time

projective synchronization of drive-response systems. Thirdly, some novel sufficient

conditions are derived to ensure fixed-time projective synchronization for the consid-

ered systems, and the settling time is estimated and closely related to neural network

scale and the maximum ratio of the rest width to the aperiodic time span. Besides,

fixed-time complete synchronization, fixed-time anti-synchronization and fixed-time

stability are special cases of the main theorem in this paper. Meanwhile, the conclu-

sions of this paper improve some previous research results. Finally, a numerical example

is given to demonstrate the effectiveness and feasibility of the obtained results.

The rest of This paper is organized as follows. Section 2 introduces model de-

scriptions and preliminaries are given. In section 3, the addressed memristive neural

networks are investigated and some fixed-time projective synchronization condition-

s are obtained by designing an aperiodically intermittent switching controller. The

effectiveness of the designed methods is shown by a numerical example in section 4.

Conclusions are drawn in the final part.
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2 Problem formulation and preliminaries

In this paper, we consider a class of memristive neural networks with mixed time-

varying delays described by the following equation in [14]:

ẋi(t) = −ai(xi(t))xi(t) +
n∑

j=1

bij(xi(t))fj(xj(t)) +
n∑

j=1

cij(xi(t))

×gj(xj(t− τj(t))) +
n∑

j=1

dij(xi(t))

∫ t

t−δj(t)

fj(xj(s))ds+ Ii,

(1)

where i ∈ I = {1, 2, · · · , n}, n ≥ 2 denotes the number of neurons in the neural

networks; xi(t) denotes the state variable of the ith neuron at time t; fj(.) and gj(.)

are the activation functions; τj(t) and δj(t) are the discrete time-varying delay and the

distributed time delay, respectively, and satisfying τj(t) ≤ τ , 0 ≤ δj(t) ≤ δ; Ii is the

external bias on the ith unit, and | Ii |≤ ß; ai(.), bij(.), cij(.) and dij(.) represent the

memristive connection weights, i, j ∈ I.

According to the property of memristor and current-voltage characteristics, the

memristive connection weights are described as follows with mathematical model:

ai(xi(t)) =

{
âi, | xi(t) |≤ Ti

ǎi, | xi(t) |> Ti

, bij(xi(t)) =

{
b̂ij | xi(t) |≤ Ti

b̌ij | xi(t) |> Ti

,

cij(xi(t)) =

{
ĉij, | xi(t) |≤ Ti

čij, | xi(t) |> Ti

, dij(xi(t)) =

{
d̂ij, | xi(t) |≤ Ti

ďij, | xi(t) |> Ti

.

for i, j ∈ I, where âi, ǎi, b̂ij, b̌ij, ĉij, čij, d̂ij, ďij are known constants, and Ti > 0 it

denotes the switching jumps. Interested readers can further understand the structure

of memristive neural networks by consulting relevant references[3,14,15,19,22,31,42].

The initial values conditions of system (1) are given by xi(s) = ϕi(s), s ∈ [−r, 0], i ∈
I, where r = max

j∈I
{τj, δj} .

Throughout this paper, we denote ai = min{âi, ǎi}, āi = max{âi, ǎi},b∗ij = min{b̂ij, b̌ij},
b∗∗ij = max{b̂ij, b̌ij}, bij = max{| b̂ij |, | b̌ij |}, c∗ij = min{ĉij, čij}, c∗∗ij = max{ĉij, čij}, cij =
max{| ĉij |, | čij |},d∗ij = min{d̂ij, ďij}, d∗∗ij = max{d̂ij, ďij}, dij = max{| d̂ij |, | ďij |
}, i, j ∈ I.

Then it is not difficult to obtain that

K[ai(xi(t))] =


âi, | xi(t) |≤ Ti

[ai, ai], | xi(t) |= Ti

ǎi, | xi(t) |> Ti

, K[bij(xi(t))] =


b̂ij, | xi(t) |≤ Ti

[b∗ij, b
∗∗
ij ], | xi(t) |= Ti

b̌ij, | xi(t) |> Ti

,
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K[cij(xi(t))] =


ĉij, | xi(t) |≤ Ti

[c∗ij, c
∗∗
ij ], | xi(t) |= Ti

čij, | xi(t) |> Ti

, K[dij(xi(t))] =


d̂ij, | xi(t) |≤ Ti

[d∗ij, d
∗∗
ij ], | xi(t) |≤ Ti

ďij, | xi(t) |> Ti

.

In order to obtain our main results in the next section, for the memristive neural

networks system (1), it is necessary to introduce the following assumptions.

(H1) The activation functions fj and gj are bounded. That is, there exist positive

constants Nj and Mj satisfy that

| fj(u) |≤ Nj, | gj(u) |≤ Mj, ∀u ∈ R, j ∈ I.

(H2) For ∀u, v ∈ R, there exist positive constants Lf
j and Lg

j such that the continuous

neuron activation functions fj(.) and gj(.) satisfy

| fj(v)− fj(u) |≤ Lf
j | v − u |, | gj(v)− gj(u) |≤ Lg

j | v − u |, j ∈ I.

Considering memristive neural networks (1) as the drive system, the corresponding

controlled response system is expressed by:

ẏi(t) = −ai(yi(t))yi(t) +
n∑

j=1

bij(yi(t))fj(yj(t)) +
n∑

j=1

cij(yi(t))

×gj(yj(t− τj(t))) +
n∑

j=1

dij(yi(t))

∫ t

t−δj(t)

fj(yj(s))ds+ Ii +Ki(t),

(2)

where Ki(t) denotes an aperiodically intermittent switching controller to be designed

later. The memristive connection weights of the response system (2) are the same as

defined in drive system (1). The initial values conditions of response system (2) are

given by yi(s) = φi(s), s ∈ [−r, 0], i ∈ I.

Obviously, the right side of the drive-response systems (1) and (2) are discontinu-

ous. , which makes the classic solution not suitable for drive-response systems (1) and

(2). To our knowledge, the Filippov solution is an effective tool to solve the differential

equations with discontinuous right side. Thus, based on the solution of the Filippov’s

sense, similar to that in [14-19,31,42,49,50], the theories of set-valued maps and differ-

ential inclusion are used to transform the drive-response systems (1) and (2) into the

following differential inclusions:

ẋi(t) ∈ −K[ai(xi(t))]xi(t) +
n∑

j=1

K[bij(xi(t))]fj(xj(t)) +
n∑

j=1

K[cij(xi(t))]

×gj(xj(t− τ j(t))) +
n∑

j=1

dij(xi(t))

∫ t

t−δj(t)

fj(xj(s))ds+ Ii,

(3)
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and

ẏi(t) ∈ −K[ai(yi(t))]yi(t) +
n∑

j=1

K[bij(yi(t))]fj(yj(t)) +
n∑

j=1

K[cij(yi(t))]

×gj(yj(t− τ j(t))) +
n∑

j=1

K[dij(yi(t))]

∫ t

t−δj(t)

fj(yj(s))ds+ Ii +Ki(t),

(4)

or equivalently, based on the measurable selection theorem[32], for i, j ∈ I there exist

measurable functions ãi(t) ∈ K[ai(xi(t))], b̃ij(t) ∈ K[bij(xi(t))], c̃ij(t) ∈ K[cij(xi(t))], d̃ij(t) ∈
K[dij(xi(t))], ài(t) ∈ K[ai(yi(t))], b̀ij(t) ∈ K[bij(yi(t))], c̀ij(t) ∈ K[cij(yi(t))] and d̀ij(t) ∈
K[dij(yi(t))], such that

ẋi(t) = −ãi(t)xi(t) +
n∑

j=1

b̃ij(t)fj(xj(t)) +
n∑

j=1

c̃ij(t)gj(xj(t− τ j(t)))

+
n∑

j=1

d̃ij(t)

∫ t

t−δj(t)

fj(xj(s))ds+ Ii,

(5)

and

ẏi(t) = −ài(t)yi(t) +
n∑

j=1

b̀ij(t)fj(yj(t)) +
n∑

j=1

c̀ij(t)gj(yj(t− τ j(t)))

+
n∑

j=1

d̀ij(t)

∫ t

t−δj(t)

fj(yj(s))ds+ Ii +Ki(t).

(6)

From [14,49,50], we can know that the drive system (1) and response system (2)

have at least one Filippov solution x(t) and y(t) on the interval [0,+∞), respectively.

Let ei(t) = yi(t)− ζxi(t), i ∈ I is the system of error, and ζ denotes the projective

coefficient. From systems (5) and (6), we get the error system as follows:

ėi(t) = −(ài(t)yi(t)− ζãi(t)xi(t)) +
n∑

j=1

(b̀ij(t)fj(yj(t))− b̀ij(t)fj(ζxj(t)))

+
n∑

j=1

(c̀ij(t)gj(yj(t− τ j(t)))− c̀ij(t)gj(ζxj(t− τ j(t))))

+
n∑

j=1

(d̀ij(t)

∫ t

t−δj(t)

fj(yj(s))ds− ζd̃ij(t)

∫ t

t−δj(t)

fj(xj(s))ds)

+
n∑

j=1

(b̀ij(t)fj(ζxj(t))− ζb̃ij(t)fj(xj(t))) +
n∑

j=1

(c̀ij(t)gj(ζxj(t

−τ j(t)))− ζc̃ij(t)gj(xj(t− τ j(t)))) + Ii(1− ζ) +Ki(t), i ∈ I.

(7)

8



Definition 1.The drive-response systems (1) and (2) will reach the finite-time projec-

tive synchronization if, there exists a constant T (e0) > 0 such that

lim
t→T (e0)

∥ y(t)− ζx(t) ∥= 0, ∥ y(t)− ζx(t) ∥= 0, t > T (e0),

where x(t) and y(t) are the solutions of drive-response systems (1) and (2) with initial

conditions ϕ and φ, respectively.

Definition 2.The drive-response systems (1) and (2) will reach the fixed-time projec-

tive synchronization, if for any initial condition, there exist a fixed-time Tmax and a

settling time function T (e0) such that

lim
t→T (e0)

∥ e(t) ∥= 0, ∥ e(t) ∥= 0, ∀t ≥ T (e0)

where T (e0) ≤ Tmax, e(t) = (e1(t), e2(t), · · · , en(t)).
To obtain the main results, we need to introduce the following lemmas.

Lemma 1.(see [48]) For aperiodically intermittent strategy, if θ(t) =
t− sm
t− tm

, t ∈
(sm, tm+1], and m ∈ D is a strictly increasing function, one can get that

θ(t) ≤ tm+1 − sm
tm+1 − tm

≤ lim
m→+∞

sup
tm+1 − sm
tm+1 − tm

= θ.

Then, one can derive 0 ≤ θ ≤ 1.

Lemma 2.(see [49]) If z1, z2, ..., zn are positive constants and 0 < ϵ < l, then

(
n∑

j=1

| zj |l)
1
l ≤ (

n∑
j=1

| zj |ϵ)
1
ϵ , (

1

n

n∑
j=1

| zj |l)
1
l ≥ (

1

n

n∑
j=1

| zj |ϵ)
1
ϵ .

Lemma 3.(see [51]) If there exists a continuous and radially unbounded function

V : Rn → R+

∪
{0} such that any solution x(t) of system (1) satisfies the inequality

V̇ (t) ≤ −µ(V (t))γ+sign(V (t)−1), (8)

in which µ > 0, 1 < γ < 2, then the origin of system (1) is globally fixed-time stable.

In addition, for any initial state x0 of system (1), the settling time is described as

T ≤ 1

µ(2− γ)
+

1

µγ
.

Lemma 4. (see [48]) For a given scalar function V (t) : Rn → R with V (0) = 0 and

V (t) > 0, t ∈ R\{0}, the following inequality holds

V 1−η(t) ≤ V 1−η(0)− α(1− η)(1− θ)t, 0 ≤ t ≤ T,
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where T is the settling finite time. If function V (t), t ∈ [0,+∞) satisfies that{
V̇ (t) ≤ −αV η(t), tm ≤ t < sm,

V̇ (t) ≤ 0, sm ≤ t < tm+1,

where α > 0, T > 0, 0 < η < 1,m ∈ D, the settling time T =
V 1−η(0)

α(1− θ)(1− η)
.

3 Main results

In this section, a novel aperiodically intermittent switching fixed-time stability theo-

rem is established. And we will derive some criteria to guarantee the fixed-time pro-

jective synchronization for the drive-response systems (1) and (2) by designing an

aperiodically intermittent switching controller.

Theorem 1. Suppose that function V (t) is non-negative for ∀t ∈ [0,+∞) and satisfies

the following conditions:{
V̇ (t) ≤ −µ(V (t))γ+sign(V (t)−1), tm ≤ t < sm,

V̇ (t) ≤ 0, sm ≤ t < tm+1,
(9)

where µ > 0, 1 < γ < 2, 0 < θ < 1,m ∈ D. Then V (t) ≡ 0, if T ≥ 1

µ(2− γ)(1− θ)
+

1

µγ(1− θ)
.

Proof. The following proof process are divided into two cases: Case(I) 0 ≤ V (t) < 1

and Case(II) V (t) ≥ 1.

First of all, Case (I) is proved as follows

Case (I): When 0 ≤ V (t) < 1, (9) becomes as the following form:{
V̇ (t) ≤ −µ(V (t))(γ−1), tm ≤ t < sm,

V̇ (t) ≤ 0, sm ≤ t < tm+1,
(10)

Supposing M0 = ( sup
s∈[−r,0]

V (s))2−γ, set F (t) = V 2−γ(t) + µt(2− γ), and

G(t) = F (t)− hM0,

where h > 1 is a constant. It is easy to get that, for ∀t ∈ [−r, 0],

G(t) < 0. (11)

In the following, we will prove that

G(t) < 0, for all t ∈ [0, s0). (12)
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For ∀t ∈ [0, s0), according to the first inequality in (10), we have

Ġ(t) = (2− γ)V 1−γ(t)V̇ (t) + µ(2− γ)

≤ (2− γ)V 1−γ(t)(−µV γ−1(t)) + µ(2− γ)

= 0.

(13)

From (13), one can get that G(t) is a monotonous decreasing function in [0, s0).

Combing (11) , one can derive that G(t) ≤ G(0) < 0, for ∀t ∈ [0, s0).

Let

G(t) = F (t)− hM0 − µ(2− γ)(t− s0), t ∈ [s0, t1). (14)

Next, we will prove that G(t) < 0, for t ∈ [s0, t1).

For ∀t ∈ [s0, t1), on account of the second inequality in (10), we can derive that

Ġ(t) = (2− γ)V 1−γ(t)V̇ (t) + µ(2− γ)− µ(2− γ)

≤ (2− γ)V 1−γ(t)(−µV γ−1(t)) + µ(2− γ)− µ(2− γ)

= −µ(2− γ)

< 0.

(15)

Together with (12) and (15), one can obtain that G(t) ≤ G(s0) = G(s0) = F (s0)−
hM0 < 0, for ∀t ∈ [s0, t1).

From (11), (12) and (14), for ∀t ∈ [−r, t1), one can get that

F (t) < hM0 + µ(2− γ)(t1 − s0). (16)

For ∀ ∈ t ∈ [t1, s1), supposing

G(t) = F (t))− hM0 − µ(2− γ)(t1 − s0), (17)

the derivative of G(t) is calculated as follows

Ġ(t) = (2− γ)V 1−γ(t)V̇ (t) + µ(2− γ)

≤ (2− γ)V 1−γ(t)(−µV γ−1(t)) + µ(2− γ)

= 0,

and one can get that G(t) is decreasing in [t1, s1). According to (14), one can obtain

that G(t) < 0, for ∀t ∈ [t1, s1). So, for ∀t ∈ [t1, s1), the following formula holds

F (t)) < hM0 + µ(2− γ)(t1 − s0). (18)
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For ∀t ∈ [s1, t2), let

G(t) = F (t)− hM0 − µ(2− γ)(t1 − s0)− µ(2− γ)(t− s1). (19)

The derivative of G(t) is as follows

Ġ(t) = (2− γ)V 1−γ(t)V̇ (t) + µ(2− γ)− µ(2− γ)

≤ (2− γ)V 1−γ(t)(−µV γ−1(t))

= −µ(2− γ)

< 0.

(20)

From (20), one can get that G(t) is decreasing in [s1, t2). Combing (18), one can

easily obtain that G(t) < 0, for ∀t ∈ [s1, t2). Thus, for ∀t ∈ [s1, t2), the following

formula holds

F (t)) < hM0 + µ(2− γ)(t1 − s0) + µ(2− γ)(t− s1). (21)

In the following part, we will use mathematical induction method to prove that the

following statements are true.

For ∀t ∈ [tm, sm),

F (t) ≤ hM0 + µ(2− γ)
m∑
k=1

(tk − sk−1), (22)

and for ∀t ∈ [sm, tm+1),

F (t) ≤ hM0 + µ(2− γ)
m∑
k=1

[(tk − sk−1) + (t− sm)]. (23)

Assuming that inequalities (22) and (23) are true for m ≤ p − 1, where p is a

positive integer. Then, for any integer q satisfying 0 ≤ q ≤ p− 1, and ∀t ∈ [tq, sq)

F (t) ≤ hM0 + µ(2− γ)

q∑
k=1

(tk − sk−1) + µ(2− γ)(tq+1 − sq)

= hM0 + µ(2− γ)

q+1∑
k=1

(tk − sk−1)

= hM0 + µ(2− γ)

p∑
k=1

(tk − sk−1).

(24)

12



For ∀t ∈ [tp, sp), assuming

G(t) = F (t)− hM0 − µ(2− γ)

p∑
k=1

(tk − sk−1), (25)

similar to the proof of (17), one can prove that inequality G(t) ≤ 0 holds for t ∈ [tp, sp).

For ∀t ∈ [sq, tq+1),

F (t) ≤ hM0 + µ(2− γ)

q∑
k=1

[(tk − sk−1) + (t− sq)]

+µ(2− γ)[tq+1 − sq) + (t− sq+1])

= hM0 + µ(2− γ)

q+1∑
k=1

[(tk − sk−1) + (t− sq+1)]

= hM0 + µ(2− γ)

p∑
k=1

[(tk − sk−1) + (t− sp)].

(26)

For ∀t ∈ [sp, tp+1), let

G(t) = F (t)− hM0 − µ(2− γ)

p∑
k=1

[(tk − sk−1) + (t− sp)]. (27)

Similar to the proof of (19), one can prove that inequality G(t) ≤ 0 holds for

t ∈ [sp, tp+1).

Therefore, according to the mathematical induction, we get that Eqs (22) and (23)

hold for any natural number m and ∀t ∈ [0,+∞). For any nonnegative integers m and

∀t ∈ [tm, tm+1), we can deduce the following estimation of F (t).

For ∀t ∈ [tm, sm), by using Lemma 1

F (t) ≤ hM0 + µ(2− γ)
m∑
k=1

(tk − sk−1)

= hM0 + µ(2− γ)
m∑
k=1

tk − sk−1

tk − tk−1

(tk − tk−1)

≤ hM0 + µ(2− γ)θ
m∑
k=1

(tk − tk−1)

= hM0 + µ(2− γ)θtm

≤ hM0 + µ(2− γ)θt.

(28)

13



Moreover, for ∀t ∈ [sm, tm+1), by applying Lemma 1

F (t) ≤ hM0 + µ(2− γ)
m∑
k=1

[(tk − sk−1 + (t− sm)]

= hM0 + µ(2− γ)
m∑
k=1

[
tk − sk−1

tk − tk−1

(tk − tk−1) +
t− sm
t− tm

(t− tm)]

≤ hM0 + µ(2− γ)
m∑
k=1

[θ(tk − tk−1) +
tm+1 − sm
tm+1 − tm

(t− tm)]

≤ hM0 + µ(2− γ)θ
m∑
k=1

[(tk − tk−1) + (t− tm)]

= hM0 + µ(2− γ)θt.

(29)

According to the Eqs (28) and (29), we can derive that F (t) ≤ hM0 + µ(2 − γ)θt

holds for ∀t ∈ [0,+∞).

From the definition of F (t), one can get that

V 2−γ(t) ≤ hM0 + θµ(2− γ)t− µt(2− γ)

= hM0 − µ(2− γ)(1− θ)t,
(30)

Let h → 1, one can obtain that

V 2−γ(t) ≤ 1− µ(1− θ)(2− γ)t. (31)

Let Ĝ(t) = 1 − µ(1 − θ)(2 − γ)t. It can be found that Ĝ(t) is a strictly monotone

decreasing function with respect to t. If Ĝ(t) = 0, we can get that

T1 =
1

µ(1− θ)(2− γ)
. (32)

It is known that lim
t→T1

V 2−γ(t) = 0. According to the (31) and (32) and the strict

monotone decreasing property of Ĝ(t), one can obtain that lim
t→T1

V (t) = 0 and V (t) ≡ 0

for all t ≥ T1.

Next, we will prove the Case(II) as follows.

Case (II): When V (t) ≥ 1, one can get the following form:{
V̇ (t) ≤ −µ(V (t))(γ+1), tm ≤ t < sm,

V̇ (t) ≤ 0, sm ≤ t < tm+1,
(33)

If M̃0 = ( sup
s∈[−r,0]

V (s))−γ and Q(t) = V −γ(t)− γµt.

14



Let

P (t) = Q(t)− lM̃0, (34)

where l ∈ [0, 1] and it is a constant and small enough. It is easy to see that, for

∀t ∈ [−r, 0].

P (t) > 0. (35)

In the following, we will prove that

P (t) > 0,which is true for all t ∈ [0, s0).

For ∀t ∈ [0, s0), calculating the derivative of P (t) with respect to time t, and

combining the first inequality in (33), one can derive that

Ṗ (t) = −γV −γ−1(t)V̇ (t)− µγ

≥ γV −γ−1(t)µV γ+1(t)− µγ

= 0.

(36)

From (36), we know that P (t) is monotonically increasing in the interval [0, s0).

From (35), one can know that

P (t) ≥ P (0) > 0, (37)

which is true for all t ∈ [0, s0).

Next, the following inequality will be proved.

P (t) = Q(t)− lM̃0 + µγ(t− s0) > 0,

which is true for ∀t ∈ [s0, t1).

For ∀t ∈ [s0, t1), calculating the derivative of P (t) with respect to time t and

together with the second inequality in (33), one can obtain that

Ṗ (t) = −γV −γ−1(t)V̇ (t)− µγ + µγ ≥ γV −γ−1(t)× 0− µγ + µγ = 0. (38)

From (37) and (38) and the continuity of P (t), one can get that

P (t) ≥ P (s0) = P (s0) > 0, (39)

which is true for all t ∈ [s0, t1).

And from (39), we have

Q(t) > lM̃0 − µγ(t1 − s0). (40)
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Similar to the proof of (37), one can verify that

Q(t)) > lM̃0 − µγ(t1 − s0), (41)

which is true for all t ∈ [t1, s1).

Similar to the proof of (40), one can prove that

Q(t) > lM̃0 − µγ(t1 − s0)− µγ(t− s1), (42)

which is true for all t ∈ [s1, t2).

In the following, we will use mathematical induction method to prove that the

following statement is true.

For ∀t ∈ [tm, sm),

Q(t) > lM̃0 − µγ
m∑
k=1

(tk − sk−1), (43)

and for ∀t ∈ [sm, tm+1),

Q(t) > lM̃0 − µγ
m∑
k=1

[(tk − sk−1) + (t− sm)]. (44)

Assuming that inequalities (43) and (44) are true for m ≤ p − 1, where p is a

positive integer, then, for any integer q satisfying 0 ≤ q ≤ p − 1, and ∀t ∈ [tq, sq), we

can derive that

Q(t) > lM̃0 − µγ

q∑
k=1

(tk − sk−1)

> lM̃0 − µγ

q∑
k=1

(tk − sk−1)− µγ(tq+1 − sq)

= lM̃0 − µγ

q+1∑
k=1

(tk − sk−1)

= lM̃0 − µγ

p∑
k=1

(tk − sk−1).

(45)

Similar to the proof of (37), we can get that P (t) = Q(t)−lM̃0+µγ

p∑
k=1

(tk−sk−1) > 0

in [tp, sp).

For ∀t ∈ [sq, tq+1), we can get

Q(t) > lM̃0 − µγ

q∑
k=1

[(tk − sk−1) + (t− sq)]

16



> lM̃0 − µγ

q∑
k=1

[(tk − sk−1) + (t− sq)]− [µγ(tq+1 − sq) + (t− sq+1)]

= lM̃0 − µγ

q+1∑
k=1

[(tk − sk−1) + (t− sq+1)]

= lM̃0 − µγ

p∑
k=1

[(tk − sk−1) + (t− sp)].

(46)

Similar to the proof of (40), we can obtain that P (t) = Q(t)− lM̃0 + µγ

p∑
k=1

[(tk −

sk−1) + (t− sp)] > 0 for t ∈ [sp, tp+1). From the above proof, it can be concluded that

inductive hypotheses (43) and (44) hold in the interval [0,+∞), for any nonnegative

integer m. Therefore, we can deduce the following estimate of Q(t) for any nonnegative

integer m and t ∈ [tm, tm+1).

For ∀t ∈ [tm, sm), with the help of Lemma 1 and (43), we can derive

Q(t) > lM̃0 − µγ

m∑
k=1

(tk − sk−1)

= lM̃0 − µγ
m∑
k=1

tk − sk−1

tk − tk−1

(tk − tk−1)

≥ lM̃0 − µγθ
m∑
k=1

(tk − tk−1)

= lM̃0 − µγθtm

≥ lM̃0 − µγθt.

(47)

For ∀t ∈ [sm, tm+1), based on Lemma 1 and (44), we can get that

Q(t) > lM̃0 − µγ
m∑
k=1

[(tk − sk−1) + (t− sm)]

= lM̃0 − µγ
m∑
k=1

[
tk − sk−1

tk − tk−1

(tk − tk−1) +
t− sm
t− tm

(t− tm)]

≥ lM̃0 − µγ
m∑
k=1

[
tk − sk−1

tk − tk−1

(tk − tk−1) +
tm+1 − sm
tm+1 − tm

(t− tm)]

≥ lM̃0 − µγ

m∑
k=1

[θ(tk − tk−1) + θ(t− tm)]
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≥ lM̃0 − µθγ

m∑
k=1

[(tk − tk−1) + (t− tm)]

= lM̃0 − µθγt.

(48)

From the definition of Q(t), (47) and (48), we can obtain that

V −γ(t) > lM̃0 + γµt− µθγt > µ(1− θ)γt. (49)

From (49), one can obtain that

V γ(t) <
1

µγ(1− θ)t
. (50)

Let G(t) =
1

µγ(1− θ)t
. It is not difficult to find that G(t) is a strictly monotone

decreasing function with respect to t. If G(t) = 1, we can get that

T2 =
1

µ(1− θ)γ
. (51)

It is known that lim
t→T2

V γ(t) = 1. According to (50) and (51) and the strict monotone

decreasing property of G(t), one can obtain that lim
t→T2

V (t) = 1 and V (t) ≤ 1 are for all

t ≥ T2.

Combining Case (I) with Case (II), we can obtain that lim
t→T1+T2

V (t) = 0 and V (t) ≡
0 hold for all t ≥ T1 + T2.

This completes the proof.

Remark 1. In paper [48], the authors established and proved an aperiodic intermittent

adjustment differential inequality within finite-time stability. It’s not hard to see that,

the settling time for finite-time synchronization depends on the initial values of the

systems, which may bring difficulties and inconvenience to solving practical problems,

while in Theorem 1 can avoid this problem. Therefore, the conclusion of Theorem 1 is

more practical.

Remark 2. Compared with the differential inequalities for fixed-time stability of

aperiodic intermittent switching control method in [55], the differential inequality in

this paper is simpler for there is only one power exponent which is a function of the

error system state rather than two fixed constants.

For convenience, assuming

α̃i + ai − 2
n∑

j=1

bjiL
f
i ≥ 0, λi − 2

n∑
j=1

cjiL
g
i ≥ 0, i ∈ I. (52)
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βi − ζ | a∗i − a∗∗i | Ti −
n∑

j=1

(dijNjδj(1 + ζ)

+Nj | b̂ij − ζb̌ij | +Mj | ĉij − ζčij |)− ß(1− ζ) ≥ 0, i ∈ I.

(53)

The aperiodically intermittent switching controller in response system (2) is de-

signed as follows

Ki(t) =


−α̃iei(t)− sign(ei(t))(βi + λi | ei(t− τi(t)) |

+ωi | ei(t) |γ+sign(V (t)−1)), tm ≤ t < sm,m ∈ D,

−α̃iei(t)− sign(ei(t))(βi + λi+ | ei(t− τi(t)) |),
sm ≤ t < tm+1,m ∈ D,

(54)

where the positive constants α̃i, βi, λi, ωi are control parameters and 1 < γ < 2, i ∈ I.

Theorem 2. Suppose that (H1)-(H2) hold. If the control parameters α̃i, βi and γi

satisfy (52) and (53). Then the drive-response systems (1) and (2) can realize fixed-time

projective synchronization under the controller (54). More importantly, the settling

time for fixed-time projective synchronization is estimated by

T ≤ 2nγ

ωγ(2− γ)(1− θ)
.

Proof. We construct a Lyapunov function as follows

V (t) =
n∑

i=1

| ei(t) | .

Based on the switching characteristics of aperiodic intermittent switching controller

(54), the proof of the above Theorem 1 will be divided into two parts, one is when

t ∈ [tm, sm), and the other one is when t ∈ [sm, tm+1),m ∈ D.

First, when ∀t ∈ [tm, sm), we calculate the upper right derivative of V (t) along with

the trajectory of (7), and we can obtain that

D+V (t) =
n∑

i=1

sign(ei(t))ėi(t)

=
n∑

i=1

sign(ei(t))[−(ài(t)yi(t)− ζãi(t)xi(t))

+
n∑

j=1

(b̀ij(t)fj(yj(t))− b̀ij(t)fj(ζxj(t)))

+
n∑

j=1

(c̀ij(t)gj(yj(t− τ j(t)))− c̀ij(t)gj(ζxj(t− τ j(t))))

19



+
n∑

j=1

(d̀ij(t)

∫ t

t−δj(t)

fj(yj(s))ds− ζd̃ij(t)

∫ t

t−δj(t)

fj(xj(s))ds)

+
n∑

j=1

(b̀ij(t)fj(ζxj(t))− ζb̃ij(t)fj(xj(t))) +
n∑

j=1

(c̀ij(t)

×gj(ζxj(t− τ j(t)))− ζc̃ij(t)gj(xj(t− τ j(t)))) + Ii(1− ζ) +Ki(t)].

(55)

Together with the characteristics of switching for memristive connection weights of

ai(.), the following formula can be derived

−sign(ei(t))(ài(t)yi(t)− ζãi(t)xi(t))

= −sign(ei(t))[(ài(t)yi(t)− ài(t)ζxi(t)) + (ài(t)ζxi(t)− ζãi(t)xi(t)))]

≤ −ai | ei(t) | +ζ | a∗i − a∗∗i | Ti.

(56)

With the help of (H2), one can get that

|
n∑

j=1

(b̀ij(t)fj(yj(t))− b̀ij(t)fj(ζxj(t))) |≤
n∑

j=1

bijL
f
j | ej(t) | . (57)

|
n∑

j=1

(c̀ij(t)gj(yj(t−τ j(t)))− c̀ij(t)gj(ζxj(t−τ j(t)))) |≤
n∑

j=1

cijL
g
j | ej(t−τ j(t)) | . (58)

By applying (H1), one can derive that

|
n∑

j=1

(d̀ij(t)

∫ t

t−δj(t)

fj(yj(s))ds− ζd̃ij(t)

∫ t

t−δj(t)

fj(xj(s))ds) |≤
n∑

j=1

dijNjδj(1+ ζ). (59)

|
n∑

j=1

(b̀ij(t)fj(ζxj(t))− ζb̃ij(t)fj(xj(t))) |

= |
n∑

j=1

[(b̀ij(t)fj(ζxj(t))− b̀ij(t)fj(yj(t)) + b̀ij(t)fj(yj(t))− ζb̃ij(t)fj(xj(t))) |

≤
n∑

j=1

(bijL
f
j | ej(t) | +Nj | b̂ij − ζb̌ij |).

(60)

Similar to the proof of (60), it is easy to get that

|
n∑

j=1

(c̀ij(t)gj(ζxj(t− τ j(t)))− ζc̃ij(t)gj(xj(t− τ j(t)))) ||

≤
n∑

j=1

(cijL
g
j | ej(t− τ j(t)) | +Mj | ĉij − ζčij |).

(61)
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Substituting (56)-(61) into (55), and with the help of the conditions (52) and (53)

of Theorem 1, we can get that

D+V (t) ≤
n∑

i=1

[−ai | ei(t) | +ζ | a∗i − a∗∗i | Ti

+
n∑

j=1

bijL
f
j | ej(t) | +

n∑
j=1

cijL
g
j | ej(t− τ j(t)) |

+
n∑

j=1

dijNjδj(1 + ζ) +
n∑

j=1

(bijL
f
j | ej(t) | +Nj | b̂ij − ζb̌ij |)

+
n∑

j=1

(cijL
g
j | ej(t− τ j(t)) | +Mj | ĉij − ζčij |)

+ß(1− ζ)− α̃i | ei(t) | −βi − λi | ei(t− τi(t)) |

−ωi | ei(t) |γ+sign(V (t)−1)]

=
n∑

j=1

{| ei(t) | (−ai + 2
n∑

j=1

bjiL
f
i − α̃i) + [ζ | a∗i − a∗∗i | Ti

+
n∑

j=1

(dijNjδj(1 + ζ) +Nj | b̂ij − ζb̌ij | +Mj | ĉij − ζčij |)

+ß(1− ζ)− βi]+ | ei(t− τ i(t)) | (2
n∑

j=1

cjiL
g
i − λi)

−ωi | ei(t) |γ+sign(V (t)−1)}

≤ −
n∑

j=1

ωi | ei(t) |γ+sign(V (t)−1) .

(62)

Next, based on the Lemma 2 we will deal with −ω
n∑

i=1

| ei(t) |γ+sign(V (t)−1), and the

following inequalities can be derived:

When 0 ≤ V (t) < 1, one can obtain that

−ω
n∑

i=1

| ei(t) |γ+sign(V (t)−1)= −ω
n∑

i=1

| ei(t) |γ−1 .

As 0 < γ − 1 < 1, according to the first inequality in Lemma 2, we can get

−ω
n∑

i=1

| ei(t) |γ−1≤ −ω(V (t))γ−1. (63)
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When V (t) ≥ 1, one can have

−ω
n∑

i=1

| ei(t) |γ+sign(V (t)−1)= −ω
n∑

i=1

| ei(t) |γ+1 .

As γ + 1 > 1, on the basis of the second inequality in Lemma 2, one can obtain

−ω
n∑

i=1

| ei(t) |γ+1≤ −ωn−γ(V (t))γ+1. (64)

From (63) and (64), the following inequality can be derived

D+V (t)) ≤

{
−ω(V (t))γ−1, 0 ≤ V (t) < 1,

−ωn−γ(V (t))γ+1, V (t) ≥ 1,
(65)

It’s easy to get that ω ≥ n−γω. Then, from (65), we can get that

D+V (t) ≤ −ωn−γ(V (t))γ+sign(V (t)−1), t ∈ [tm, sm). (66)

On the other hand, for ∀t ∈ [sm, tm+1). Based on (62), it’s easy to get that

D+V (t) ≤ 0, t ∈ [sm, tm+1). (67)

So, together with (66) and (67) one can derive the following formula holds, for

∀t ∈ [0,+∞).{
D+V (t) ≤ −ωn−γ(V (t))γ+sign(V (t)−1), tm ≤ t < sm,m ∈ D,

D+V (t) ≤ 0, sm ≤ t < tm+1,m ∈ D,

where ω = min
1≤i≤n

{ωi}. By applying Lemma 5, the settling time of fixed-time projective

synchronization can be estimated as

T ≤ 2nγ

ωγ(2− γ)(1− θ)
.

According to Definition 2 and Theorem 1, the drive-response systems (1) and (2)

can achieve fixed-time projective synchronization under the aperiodically intermittent

switching controller (54).

The proof of Theorem 1 is completed. 2

Remark 3. In paper [16], the fixed-time projective synchronization for a class of

discrete delay memristive neural networks was studied by designing a common feedback

controller ui(t) = −αiei(t) − sign(ei(t))(βi + γi | ei(t) |q), q > 1 rather than a simple

and reducing of the control cost and reducing the amount of information transmission
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aperiodically intermittent switching controller. In this paper, the influence of mixed

time-varying delay on fixed-time projective synchronization is considered, but it was not

considered in [16] was not. Thus the control method and neural network mathematical

model in this paper is more general.

When the projective coefficient ζ = 1, ζ = −1 and ζ = 0, we know that the

fixed-time complete synchronization, fixed-time anti-synchronization, and fixed-time

stability are special cases of fixed-time projective synchronization, respectively. From

Theorem 1, we can directly get the following three Corollaries.

Corollary 1. Suppose that (H1)-(H2) hold. If the control parameters α̃i,λi and βi

satisfy (52) and (53), i ∈ I, and the projective coefficient ζ = −1, then the drive-

response systems (1) and (2) are anti-synchronized in a fixed-time under controller

(54). Moreover, the settling time is defined the same as in Theorem 1.

Corollary 2. Suppose that (H1)-(H2) hold. If the control parameters α̃i and λi satisfy

(52) and βi− | a∗i −a∗∗i | Ti−
n∑

j=1

(2dijNjδj +Nj | b̂ij − b̌ij | +Mj | ĉij − čij |) ≥ 0, i ∈ I ,

then the drive-response systems (1) and (2) achieve fixed-time complete synchronization

under the controller (54). And the settling time of fixed-time complete synchronization

is defined the same as in Theorem 1.

Corollary 3. Suppose that (H1)-(H2) hold. If the control parameters α̃i and λi satisfy

(52) and βi−
n∑

j=1

(dijNjδj+Nj | b̂ij | +Mj | ĉij |)−ß ≥ 0, i ∈ I, then the drive-response

systems (1) and (2) realize fixed-time stability under controller (54).

It is not difficult to see that compared with aperiodic intermittent switching control

method, periodic intermittent switching control method is a special case of aperiodic

intermittent switching control method. That is to say, when each aperiodic intermittent

switching control subinterval satisfy sm − tm = ρ and tm+1 − tm = T, ρ and T are two

positive real numbers, m ∈ D, it degenerates into a periodic intermittent switching

control subinterval.

Theorem 3. Suppose that function V (t) is non-negative for ∀t ∈ [0,+∞) and satisfies

the following conditions:{
V̇ (t) ≤ −µ(V (t))γ+sign(V (t)−1),mT ≤ t < (m+ ϑ)T,m ∈ D,

V̇ (t) ≤ 0, (m+ ϑ)T ≤ t < (m+ 1)T,m ∈ D,

where µ > 0, 1 < γ < 2, 0 < ϑ < 1,m ∈ D. Then V (t) ≡ 0, if T ≥ 1

µ(2− γ)(1− ϑ)
+

1

µγ(1− ϑ)
.
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Remark 4. In the literature [53], the authors established a differential inequality

about the periodic intermittent stability of the dynamic system in a finite time. It

is worth noting that in the literature [53], the finite time T obtained by the authors

depends on the initial value conditions of the system, but not in the above Theorem

3. For this reason, Theorem 3 improves the results in [53].

The aperiodic intermittent switching controller (54) is modified as follows periodic

intermittent switching controller,

K̃i(t) =


−α̃iei(t)− sign(ei(t))(βi + λi | ei(t− τi(t)) |

+ωi | ei(t) |γ+sign(V (t)−1),mT ≤ t < (m+ ϑ)T,m ∈ D,

−α̃iei(t)− sign(ei(t))(βi + λi+ | ei(t− τi(t)) |),
(m+ ϑ)T ≤ t < (m+ 1)T,m ∈ D,

(68)

where the control parameters are defined as the same as in (54), and 1 < γ < 2,

0 < ϑ < 1.

Proof. The proof process is similar to Theorem 1, so it is omitted here.

From Theorem 3, the following conclusion can be obtained.

Corollary 4. Suppose that (H1)-(H2) hold. If the control parameters α̃i, λi and βi

satisfy (52) and (53), i ∈ I. Then the drive-response systems (1) and (2) realize fixed-

time projective synchronization under the controller (68). Moreover, the settling time

is estimated the same as in Theorem 1.

Proof. Based on Theorem 1, the proof process is similar to Theorem 2, it is omitted

here.

Let f = γ + sign(V (t)− 1), through simple calculation, one can get that 0 < f <

3. Based on controller (54), then one can derive the following aperiodic intermittent

switching controller

Ki(t) =


−α̃iei(t)− sign(ei(t))(βi + λi | ei(t− τi(t)) |

+ωi | ei(t) |f, tm ≤ t < sm,m ∈ D,

−α̃iei(t)− sign(ei(t))(βi + λi+ | ei(t− τi(t)) |),
sm ≤ t < tm+1,m ∈ D,

(69)

where the control parameters α̃i, βi, λi and ωi are defined as the same as in (54),

f ∈ (0, 1).

Corollary 5. Suppose that (H1)-(H2) hold. If the control parameters α̃i, λi and βi

satisfy (52) and (53), i ∈ I. Then the drive-response systems (1) and (2) realize finite-

time projective synchronization under controller (69). In addition, the settling time of
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finite-time projective synchronization is estimated by

T =
V 1−f(0)

ω(1− θ)(1−f)
.

Proof. Based on Lemma 4 and the proof process is similar to the (63) and (67) in

proving Theorem 2. Thus, it is omitted here.

Remark 5. In paper [42], the finite-time projective synchronization of memristor-

based neural networks with leakage and time-varying delays was discussed through

continuous control that keeps the control intensity constant. However, in practice, the

continuous controller with constant control strength does not reduce control cost. In

order to improve the control efficiency, the aperiodic intermittent switching controller

(69) for finite-time projective synchronization is constructed. The controlled intensity is

divided into two parts: the strong control stage and the weak control stage. Compared

with the controller in [42], the aperiodic intermittent switching controller (69) proposed

in this paper can save more control costs and achieve better results.

Remark 6. Due to the sign function that exists in the controllers (54),(68),(69) and

(70), as a hard switcher, it may cause an unexpected chattering phenomenon. In or-

der to avoid the chattering phenomenon, the sign function in the controllers of [52]

were replaced by continuous tanh(.). Based on the method in reference [52], the sign

function in controller (54),(68),(69) and (70) are replaced by continuous tanh(.) to e-

liminate chattering phenomenon. For example, the aperiodically intermittent switching

controller (54) can be modified as follows

Ki(t) =


−α̃iei(t)− tanh(ei(t))(βi + λi | ei(t− τi(t)) |

+ωi | ei(t) |γ+sign(V (t)−1)), tm ≤ t < sm,m ∈ D,

−α̃iei(t)− tanh(ei(t))(βi + λi+ | ei(t− τi(t)) |),
sm ≤ t < tm+1,m ∈ D,

(70)

where the control parameters αi, βi, λi and ωi are same as in (54), for i ∈ I.

Corollary 6. Suppose that (H1)-(H2) hold. If the control parameters α̃i, λi and βi

satisfy (52) and (53), i ∈ I. Then the drive-response systems (1) and (2) achieve fixed-

time projective synchronization under the controller (70). In addition, the settling time

for fixed-time projective synchronization is estimated the same as in Theorem 1.

If θ = 0, controller (54) is modified as following feedback controller

K̂i(t) = −α̃iei(t)− sign(ei(t))(βi + λi+ | ei(t− τi(t)) | +ωi | ei(t) |γ+sign(V (t)−1)). (71)

In addition, when the projective coefficient ζ = 1, from Theorem 1, we can obtain

the following Corollary.
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Corollary 7. Suppose that (H1)-(H2) hold. If the control parameters α̃i and λi satisfy

(52) and βi− | a∗i − a∗∗i | Ti −
n∑

j=1

(2dijNjδj +Nj | b̂ij − b̌ij | +Mj | ĉij − čij |) ≥ 0, i ∈ I.

Then the drive-response systems (1) and (2) are reached fixed-time synchronization

under controller (71). What is more, the settling time for fixed-time synchronization

is estimated as

T ≤ 2nγ

ωγ(2− γ)
.

Proof. The proof process of Corollary 7 is similar to formula (66) in Theorem 2. So,

it is omitted here.

Remark 7. In the paper [54], the authors studied the finite-time synchronization of

memristor-based neural networks with mixed delays. Compared with the settling time

of finite-time synchronization in [54], the settling time T in Corollary 7 is independent

of the system’s initial value. Therefore, Corollary 7 has improved some of the previous

related conclusions.

Now, we consider a special case of the drive system (1) and the response system

(2). If the distributed time delays memristive connection weights dij(.) = 0, i, j ∈ I

the drive system (1) is reduced to the following form:

ẋi(t) = −ai(xi(t))xi(t)+
n∑

j=1

bij(xi(t))fj(xj(t))+
n∑

j=1

cij(xi(t))gj(xj(t−τj(t)))+Ii. (72)

Accordingly,the response system (2) is degenerated to the following form:

ẏi(t) = −ai(yi(t))yi(t)+
n∑

j=1

bij(yi(t))fj(yj(t))+
n∑

j=1

cij(yi(t))gj(yj(t−τj(t)))+Ii+Ki(t).

(73)

According to Theorem 1, the following conclusion can be obtained

Corollary 8. Suppose that (H1)-(H2) hold. If the control parameters α̃i and λi satisfy

(52) and βi − ζ | a∗i − a∗∗i | Ti −
n∑

j=1

(Nj | b̂ij − ζb̌ij | +Mj | ĉij − ζčij |)− ß(1− ζ) ≥ 0,

i ∈ I. Then the drive-response systems (72) and (73) achieve fixed-time projective

synchronization under controller (70). What is more, the settling time for fixed-time

projective synchronization is defined the same as in Theorem 1.

Remark 8. In [24] and [45], the anti-synchronization of neural networks with time-

varying delays by designing a feedback controller and an intermittent adjustment con-

troller was investigated, respectively. In this paper, we consider the fixed-time pro-

jective synchronization of memristive neural networks with mixed time-varying delays.

So, the conclusions of [24] and [45] are the special cases of this Theorem 2 in this paper.

26



−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x
1

 x 2

Figure 2: The chaotic attractor of system (74) with the initial values x1(s) = 0.1,

x2(s) = −0.1 for s ∈ [−1, 0].

Remark 9. Compared with the periodic intermittent control method in [25,28,30],

the aperiodic intermittent switching control method of Theorem 1 in this paper can set

the control time to some sub intervals instead of a fixed time sub intervals, according

to the control needs of practical problems. In addition, periodic intermittent control

can be regarded as a special form of aperiodic intermittent control. And the aperi-

odic intermittent switching control method proposed in this paper not only shortens

the control synchronization time, saves the control cost and reduces the amount of

information transmission, but also has better practical significance.
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Figure 3: The state curves of x1(t) and x2(t) with x1(s) = 0.1 and x2(s) = −0.1,

respectively, for s ∈ [−1, 0].

4 Numerical simulations

In this section, an example is given to illustrate the effectiveness of the results

obtained in this paper.
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Example 1. Consider the 2-dimensional memristive neural networks with mixed time-

varying delays given by

ẋi(t) = −ai(xi(t))xi(t) +
2∑

j=1

bij(xi(t))fj(xj(t)) +
2∑

j=1

cij(xi(t))

×gj(xj(t− τj(t))) +
2∑

j=1

dij(xi(t))

∫ t

t−δj(t)

fj(xj(s))ds+ Ii, i = 1, 2

(74)

where the values of the memristors are as follows

a1(x1(t)) =

{
0.2, | x1(t) |≤ 1.1

−0.42, | x1(t) |> 1.1
, a2(x2(t)) =

{
−0.3, | x2(t) |≤ 1.1

0.6, | x2(t) |> 1.1
,

b11(x1(t)) =

{
−2.1, | x1(t) |≤ 1.1

−0.2, | x1(t) |> 1.1
, b12(x1(t)) =

{
0.9, | x1(t) |≤ 1.1

−1.3, | x1(t) |> 1.1
,

b21(x2(t)) =

{
1.3, | x2(t) |≤ 1.1

−1.9, | x2(t) |> 1.1
, b22(x2(t)) =

{
−1.4, | x2(t) |≤ 1.1

0.7, | x2(t) |> 1.1
,

c11(x1(t)) =

{
−1.2, | x1(t) |≤ 1.1

0.1, | x1(t) |> 1.1
, c12(x1(t)) =

{
1.15, | x1(t) |≤ 1.1

−1.22, | x1(t) |> 1.1
,

c21(x2(t)) =

{
−1.35, | x1(t) |≤ 1.1

1.4, | x1(t) |> 1.1
, c22(x2(t)) =

{
0.7, | x2(t) |≤ 1.1

−0.5, | x2(t) |> 1.1
,

d11(x1(t)) =

{
−0.2, | x1(t) |≤ 1.1

−0.5, | x1(t) |> 1.1
, d12(x1(t)) =

{
1.7, | x1(t) |≤ 1.1

−0.3, | x1(t) |> 1.1
,

d21(x2(t)) =

{
1.12, | x2(t) |≤ 1.1

0.4, | x2(t) |> 1.1
, d22(x2(t)) =

{
−1.1, | x2(t) |≤ 1.1

−0.6, | x2(t) |> 1.1
.

We consider system (74) to be the drive system. And τi(t) =
et

1 + et
, δi(t) = 1, Ii =

0, and take activation function as fi(u) = gi(u) = 1.15 tanh(u), i = 1, 2. Obviously,|
fi(u) |=| gi(u) |≤ 1.15, | fj(v)− fi(u) |≤ 1.15 | v − u |, | gj(v)− gi(u) |≤ 1.15 | v − u |
, i, j = 1, 2. Therefore, (H1)− (H2) hold for drive system (74).

The model (74) has a chaotic attractor with the initial values x1(s) = 0.1, x2(s) =

−0.15 for s ∈ [−1, 0] can be seen in Fig. 2. And the state trajectories of system (74)

with initial conditions x1(s) = 0.1, x2 = −0.1 are described in Fig. 3.
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The response system is given by

ẏi(t) = −ai(yi(t))yi(t) +
n∑

j=1

bij(yi(t))fj(yj(t)) +
n∑

j=1

cij(yi(t))

×gj(yj(t− τj(t))) +
n∑

j=1

dij(yi(t))

∫ t

t−δj(t)

fj(yj(s))ds+ Ii +Ki(t),

(75)

where the values of the memristors, fj, gj, τj(t), δj(t) and Ii, i, j = 1, 2 are defined as

the same as in system (74), and the fixed-time aperiodically intermittent switching

controller Ki(t) is designed as follows

Ki(t) =


−α̃iei(t)− tanh(ei(t))(βi + λi | ei(t− τi(t)) |

+ωi | ei(t) |γ+sign(V (t)−1)), tm ≤ t < sm,m ∈ D,

−α̃iei(t)− tanh(ei(t))(βi + λi+ | ei(t− τi(t)) |),
sm ≤ t < tm+1,m ∈ D,

(76)

The aperiodically intermittent switching control exists on time span [0, 0.1)∪[0.1, 0.35)∪
[0.35, 0.55)∪[0.55, 1)∪[1, 1.3)∪[1.3, 1.95)∪[1.95, 2.35)∪[2.35, 3.2)∪[3.2, 3.7)∪[3.7, 4.75)∪
[4.75, 5.35)∪ [5.35, 6.6)∪ [6.6, 7.3)∪ [7.3, 8.78)∪ [8.78, 9.88)∪ [9.88, 11.2)∪ [11.2, 12.1]∪
[12.1, 13.95)∪ [13.95, 14.95)∪ [14.95, 17)∪ [17, 18.1)∪ · · · , by plain calculation, we can

get θ =
1

3
.

It is not difficult to check that a1 = −0.42, a2 = −0.3, b11 = 2.1, b12 = 1.9, b21 =

1.9, b22 = 1.4, c11 = 1.2, c12 = 1.22, c21 = 1.4, c22 = 0.7, d11 = 0.5, d12 = 1.7, d21 =

1.12, d22 = 1.1, T1 = T2 = 1.1, δ1 = δ2 = 1, ß = 0. And we take γ = 1.6.
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Figure 4: The state curves of xi(t) and yi(t) without control input.

We choose the control parameters α̃1 = 10, α̃2 = 7, λ1 = 6.5 and λ2 = 5. Through

simple calculation, we can obtain that α̃1 + a1 − 2
2∑

j=1

bj1L
f
1 = 0.38 ≥ 0, α̃2 + a2 −
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Figure 5: The evaluation of synchronization errors and curves under the controller (76)

for projective coefficient ζ = −1.1.

2
2∑

j=1

2∑
j=1

bj2L
f
2 = 0.49 ≥ 0, and λ1−2

2∑
j=1

cj1L
g
1 = 0.52 ≥ 0, λ2−2

2∑
j=1

cj2L
g
2 = 0.5840 ≥

0.

We choose the control parameters β1 = 3, β2 = 1, and projective coefficient ζ =

−1.1, by simple calculation, we derive that β1−ζ | a∗1−a∗∗1 | T1−
2∑

j=1

(d1jNjδj(1+ζ)+Nj |

b̂1j − ζb̌1j | +Mj | ĉ1j − ζč1j |) − ß(1 − ζ) = 0.4704 ≥ 0, and β2 − ζ | a∗2 − a∗∗2 |

T2 −
2∑

j=1

(d2jNjδj(1 + ζ) +Nj | b̂2j − ζb̌2j | +Mj | ĉ2j − ζč2j |)− ß(1− ζ) = 0.6653 ≥ 0.

When ζ = −1.1, according to the previous calculations, all the conditions of Corol-

lary 6 are satisfied, so the drive-response systems (74) and (75) realize the fixed-time

projective synchronization under the aperiodically intermittent switching controller

(76). And six classes of different initial values are chosen for systems (74) and (75)

by xk
1(s) = 0.1, xk

2(s) = −0.1, yk1(s) = 0.1 + 0.12k and yk2(s) = −0.1 − 0.13k, for

s ∈ [−1, 0] and k ∈ {−4,−3,−2,−1, 0, 1}. The Fig. 5 shows that, when the projection

coefficient ζ = −1.1, the driver-response systems (74) and (75) realize the fixed-time

projective synchronization under the controller (76), the settling time of fixed-time
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Figure 6: The evaluation of synchronization errors and curves under the controller (76)

for projective coefficient ζ = 1.

projective synchronization is estimated as T ≤ 3.6435, which verifies the correctness of

the Corollary 6 in this paper.

We take the control parameters β1 = 17.5, β2 = 17.3, and projective coefficient

ζ = 1, by simple calculation, we get that β1−ζ | a∗1−a∗∗1 | T1−
2∑

j=1

(d1jNjδj(1+ζ)+Nj |

b̂1j − ζb̌1j | +Mj | ĉ1j − ζč1j |) − ß(1 − ζ) = 0.6725 ≥ 0, and β2 − ζ | a∗2 − a∗∗2 |

T2 −
2∑

j=1

(d2jNjδj(1 + ζ) +Nj | b̂2j − ζb̌2j | +Mj | ĉ2j − ζč2j |)− ß(1− ζ) = 0.5665 ≥ 0.

When ζ = 1, according to the previous calculations, all the conditions of Corol-

lary 6 are satisfied, so the drive-response systems (74) and (75) realize the fixed-

time projective synchronization under the aperiodically intermittent switching con-

troller (76), that is to achieve fixed-time complete synchronization. And six class-

es of different initial values are chosen for systems (74) and (75) by xk
1(s) = 0.1,

xk
2(s) = −0.1, yk1(s) = 0.22 + 0.09k and yk2(s) = −0.19 − 0.06k, for s ∈ [−1, 0] and

k ∈ {−4,−3,−2,−1, 0, 1}. The Fig.6 shows that, when the projection coefficient ζ = 1,

the driver-response systems (74) and (75) realize the fixed-time projective synchroniza-

tion under the controller (76), that is to achieve fixed-time complete synchronization,
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Figure 7: The evaluation of synchronization errors and curves under the controller (76)

for projective coefficient ζ = 0.

the settling time is estimated as T ≤ 3.6435, which verifies the correctness of the

Corollary 2 and Corollary 6 in this paper.

We choose the control parameters β1 = 9, β2 = 9.0155, and projective coefficient

ζ = 0, by simple calculation, we derive that β1 −
2∑

j=1

(d1jNjδj + Nj | b̂1j | +Mj | ĉ1j |

)− ß = 0.3175 ≥ 0, and β2 −
2∑

j=1

(d2jNjδj +Nj | b̂2j | +Mj | ĉ2j |)− ß(1− ζ) = 1 ≥ 0.

When ζ = 0, according to the previous calculations, all the conditions of Corollary

6 are satisfied, so the drive-response systems (74) and (75) realize the fixed-time pro-

jective synchronization under the aperiodically intermittent switching controller (76),

that is to say, it achieves fixed-time stability. And six classes of different initial values

are chosen for systems (74) and (75) by xk
1(s) = 0.1, xk

2(s) = −0.1, yk1(s) = 0.1+ 0.06k

and yk2(s) = −0.15 − 0.09k, for s ∈ [−1, 0] and k ∈ {−4,−3,−2,−1, 0, 1}. The Fig.7

shows that, when the projection coefficient ζ = 0, the driver-response systems (74) and

(75) realize the fixed-time projective synchronization under the controller (76), that is

to say, it achieves fixed-time stability, the settling time of fixed-time stability is esti-

mated as T ≤ 3.6435, which verifies the correctness of the Corollary 3 and Corollary 6
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in this paper.

5 Conclusions

In this paper, the fixed-time projective synchronization problem for a class of mem-

ristive neural networks with mixed time-varying delays has been investigated. Based on

the existing aperiodically intermittent strategy, a novel Theorem for aperiodically in-

termittent switching fixed-time stability is proposed and proved through mathematical

induction. Some new sufficient conditions ensuring the fixed-time projective synchro-

nization for the considered systems are obtained via aperiodically intermittent control

and feedback control. In particular, the power exponent of the controller designed

in this paper is a function of the error system state rather than one or two fixed

constants, which makes the controller more general. Compared with the continuous

controller, the controller in this article can save energy and control cost, reduce infor-

mation transmission, and has better practical significance. In addition, the settling

time is estimated and closely related to neural network scale and the maximum ratio

of the rest width to the aperiodic time span, and independent of systems initial value

conditions. Especially, as special cases, some corollaries on the proposed fixed-time

projective synchronization theorem are obtained. Meanwhile, the conclusions of this

paper improve some previous research relevant results. Finally, a numerical example is

presented to verify the effectiveness and feasibility of the obtained results. In the fu-

ture, we will study the predefined-time aperiodic intermittent control synchronization

of neural networks.
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