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The aim of this paper is to study the ground state solution for a Kirchhoff type elliptic systems
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1 Introduction

In this paper, we consider the existence of ground state solution for the following Kirchhoff type elliptic
system

—m(||ul?)Au = Hy(z,u,v) in Q,
—m(|[v]*)Av = Hy(z,u,v) in €, (L1)

u=v=0 on 01,

\

where  is a bounded domain in R? with smooth boundary, m is a continuous Kirchhoff type function,
H, and H, have the maximal growth which allows treating (1.1) variationally in the Sobolev space
H}(Q,R?).

The system (1.1) is a Kirchhoff type problem with critical growth. We know that the Kirchhoff
problem is nonlocal because of the term m(||lu||?). In order to obtain the weak solution, we need the
strong convergence. So, the presence of m(||ul|?) cause some mathematical difficulties that makes the
study of such class of problem interesting. And this class of problem also has physical motivation. In
1883, Kirchhoff studied the hyperbolic equation

L
pus — (%) + % ; ]um\de>um =0
that extends the classical D’Alembert wave equation by considering the effects of the changes in the
strings during the vibrations. Where L is the length of the string, h is the area of cross-section, E is
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the Young modulus of the material, p is the mass density and py is the initial tension in [13]. Moreover,
there is a lot of literature concerning the existence of solution for Kirchhoff type problem with critical
growth. Figueiredo G.M. [10] get the existence of positive solution for a Kirchhoff problem with critical
growth via truncation argument. G.M. Figueiredo and U.B. Severo [11] used minimax techniques
combined with the Trudinger-Moser inequality to get the ground state solution for a Kirchhoff problem
with exponential critical growth.

When the Kirchhoff functions is constant m(t) = 1, system (1.1) becomes the following system

—Au = Hy(z,u,v) in €,
—Av = Hy(z,u,v) in €, (1.2)

u=v=>0 on 0f2,

It is a special case of [9]. By the Ekeland variational principle, the Mountain-Pass Theorem and a
suitable Trudinger-Moser inequality, Manasses de Souza [9] has obtained the existence of solution to
(1.2). (1.2) is a generalization of the well known Dirichlet boundary value problem for one single
semilinear elliptic equation

—Au= f(z,u) in §Q,

(1.3)
u=0 on 01,

We know critical point theory has become one of the main tools for us to find the solutions for elliptic
equation where Ambrosetti-Rabinowitz(AR) condition plays an important role. The reason is (AR)
condition ensure that the Palais-Smale sequence of the functional is bounded. The (AR) condition was
originally introduced in [2]: there exist x> 2 and r > 0 such that

0 < pF(x,s) <sf(x,s), V|s| >r uniformly a.e. z€Q,

where F(z,s) = [ f(x,t)dt. In fact, (AR) condition implies that F(z,s) > C|s|[*, V |s| > r. Thus,
(1.3) is called superlinear because of f is superlinear at infinity. However, there are many case that
the nonlinear term f does not satisfy (AR) condition. So, many authors focused on how to weaken the
(AR) condition. Jeanjean[12] replaced (AR) condition with the following conditions:

o 9)

§—00 S

— 0o uniformly for z € RY,

Ip € (2,2), lim 1@ s)

- =0 uniformly for = € RV,
—oo0 S§P~

DH(z,s) > H(x,t),0 <t <s, where D > 1 and H(z,s) = sf(x,s) — 2F(x, s).

They get that (PS) sequence was bounded by using a suitable Mountain Pass Theorem.
Li and Zhou [16] replaced (AR) condition with the following conditions:

lim 7f(a;, 5)

5—00 S

— 0o uniformly for z € RY,



f(z,s)

is nondecreasing for s > 0,2 € .

They proved the existence of solution to (1.3).
Schechter and Zou[19] replaced (AR) condition with the following conditions:

lim f(z,s)

5—00 S

— 0o uniformly for z € RY,

pF(x,s) — sf(z,s) < C(1+s?), |s| >r, for some p > 2,7 > 0.

Although it allows more freedom for the function f, we still eliminates many superlinear problems.
Hence, recently, N.Lam and G.Lu [14] proved that Cerimi sequence was bounded and established the
existence of nontrivial nonnegative solutions by using following conditions:

L fs)

s+—00 52

— 400 uniformly for z € Q,

0H(x,s) > H(xz,t),0 <t <s, where # > 1 and H(x,s) = sf(x,s) — 2F(x, s).

Motivated by [9] and the result has been studied about Kirchhoff type problem with critical growth, we
are interested in the ground state solution for a Kirchhoff type elliptic systems without the Ambrosetti-
Rabinowitz Condition. First, let us introduce some notations:

H} (9, R?) denotes the Sobolev modeled in L?(2, R?) with the scalar product

(W, ®) :/Vquodx—l—/VvVdex,
Q Q

where W = (u,v), ® = (p,), and |W| = vu? + v2, the corresponds norm ||W|| = (W, W>%

We denote by Hy (x,u,v) = (Hy(x,u,v), Hy(x,u,v)), where Hy (x,u,v) stands for the gradient of
H in the variables W = (u,v) € R2.

From the work of Adimurthi [1] and de Figueiredo et al. [8], we say that h : Q x R? has critical
growth at 4o0 if there exists g > 0 such that

. \h(z, W) _ 0, uniformly on = € Q, Va > ay,
|W|—+00 edWI 400, uniformly on x € 2, Va < ag.

Then, in order to solve our problem we give following necessary condition:
(My) there exists my > 0 such that m(t) > mg for all t > 0 and
M(t+s)>M(t)+ M(s), Vs, t>0.
where M (t) = fg m(s)ds.

(My3) there exists # > 1 such that ?Z(_tl) is nonincreasing for ¢ > 0.

Noting that the condition (M;) shows that M is nondecreasing and m(t) = mg + ct,c > 0 is a valid
example of a function m satisfying the conditions (M;) and (Ma).



Remark 1.1. We observe that (Ma) show that for 0 < t; < to

to t
0M(t1) — m(tl)tl :0M(t2) —0 m(t)dt — TZH(ll) t?
t1 1
m t2 m tQ
<oM() - 2 g - 1) -
2 2
ZZHJV[(tQ) —-TN(tQ)tQ.
Thus, fort >0
OM(t) — m(t)t is nondecreasing. (1.4)
In particular, we can deduce that
M) < M)t%, vt >1. (1.5)

Here, we also require that H : Q x R? — R is continuous and admits partial derivatives H, and H,
of class C(Q x R?), H(z,u,v) = Hy(x,u,v) = Hy(z,u,v) = 0 if u < 0 or v < 0. Moreover, we assume
H satisfy following condition:

(H1) IV‘}IIm % = 00 uniformly in Q.
—00

(H2) Gz, tW) < G(x,W) for all 0 < t < 1,z € Q. where

G(z,W) = Hy (z, W)W — 20H (x, ).

(Hs) limsup QH‘%‘;/V) < A1myg, uniformly in z € €, where
|W|—0
: w1 1 w2
A =inf§ ————: W € Hy(2,R*)\{0} ¢.
1 n {fQ lw‘de € 0( ? )\{ }}

Remark 1.2. According to the condition (Hz), we know that G(x,tu,tv) is increasing where u,v €
H}(Q) with s € {u,v}, it is easily to get that H.(z,tu,tv) > (20 — 1)% This implies that

/
[%} > 0. Thus, we get following important result,

Hy(z, tu, tv)

(ts)21 is nondecreasing. (1.6)

Finally, we state our main result as follow:

Theorem 1.1. Assume that (My) — (Ms), (H1) — (H3) hold and H,, H, satisfy critical exponential
growth. Furthermore, assume that

(Hy) there exists By > ) such that for some s € {u, v},

apd?e

lim inf —SHS(Q:’ u, )

> Bo, uniformly in x € €,
|W|—+oo exp(dag|W|?) — fo formly

where d is the inner radius of the largest open ball contain in Q2. Then, problem (1.1) has a positive
ground state solution.



This paper have some difficulties because of the presence of the Kirchhoff function and the nonlin-
earities do not satisfy Ambrosetti-Rabinowitz condition. Therefore, this paper is organized as follow:
In Section 2, we give some necessary definition and lemmas in order to overcome the dificulty of the
nonlinearities without Ambrosetti-Rabinowitz condition. In Section 3, we prove the energy functional
satisfies geometric construction. In Section 4, we first prove the boundedness of {(un,v,)}, then we
will complete the proof of our main results.

2 Preliminary Result
The Euler-Lagrange functional associated with problem (1.1) is
1 1
10V) = M () + 5M([olP) = [ Heeu. )

where W = (u,v). Under our assumptions about m, H,, H, are continuous and have critical growth at
+00, by (Hs3) and the Sobolev embedding it follows that H(z,u,v) € L*(Q2, R?), which implies that I
is well defined. Moreover, we can see that 1 € C'(Hj (9, R?),R) with

(W), @) = m(||ul*)(u, o) +m(||v][*) (v, %) — /Q‘P - Hyy (2, u,v)dz, V@ = (p,9) € Hy(2,R?).

where (u, @) = [, VuVpdz, (v,9) = [ VuVipdz. Consequently, the critical points of the functional I
are precisely the weak solutions of problem (1.1).

In this paper, we need deal with systems without the Ambrosetti-Rabinowitz condition. So, we will
use some classical facts introduced by Cerami (]2, 5, 3, 4]) to prove Theorem 1.1.

Definition 2.1. For ¢ € R, we say that I satisfies the (C). condition if for any sequence {u,} C H} ()
with
(1 + [Jun DI (up)|| = 0, and I(un) — c,
there is a subsequence {u,} such that {u,} converges strongly in HZ(Q).
Moreover, we give the following versions of Mountain Pass Theorem to prove our result.

Lemma 2.1. [6] Let E be a real Banach space, I € C1(E,R) satisfies I(0) =0 and
(i) There are constants p,a > 0 such that I|gp, > .
(it) There is an e € E\B, such that I(e) < 0.

Let ¢ be characterized by ¢ = inf I(y(t h
et ¢ be characterized by c ;Ielrorgtagxl (v(t)), where

I'={y € C([0,1], E) : 7(0) = 0,7(1) = e}.
Then I possesses a (C). sequence.

Lemma 2.2. [6] Let E be a real Banach space, I € CY(E,R) satisfies the (C). condition for any c € R,
and

(i) There are constants p,a > 0 such that I|pp, > .

(ii) There is an e € E\B, such that I(e) < 0.

Then,

= inf I(y(t)) >
c= i 0wz a

is a critical value of I, where



Next, we introduce some famous inequalities for the equation.

Lemma 2.3. [18] Let Q be a bounded domain in R?* and u € H}(Q). Then for every 3> 0,

/ Pl < 400
Q

Moreover, there exists a constant C' > 0 such that

sup / ePlul® < C1Q|, VB8 <d4m,
u€Hg (Q):|[ul|<1/Q

where 47 is the best constant, that is, the supreme in the left is +oo if B > 4.

More specifically, P.-L.Lions proved the following:
Lemma 2.4. [17] Let {u,} be a sequence of functions in HE(Q) with ||u,|| = 1 such that u, — u #0
weakly in H(Q). Then

sup/ Pl < oo, VO<p< 4 /(1 = |ul]?).
Q

n

Delighted by the above inequalities, we have the following result.

Lemma 2.5. Let {W,} be a sequence of functions in HE(Q,R?) with ||W,|| = 1 such that W,, = W #0
weakly in H(Q,R?). Then

n

sup/ AWal? < Lo V0 < B < 2m/(1— |[W]).
Q

Proof. Since W,, = W # 0 and ||W,]|| = 1, we have

2T
[Wh — Wol P = 1= 2(W,, Wo) + [[Wol* = 1 — [|[Wo* < R

then
Bl|W, — Wol|? < 2.

By Holder inequality and Lemma 2.3, we obtain that

/eﬁr1(1+82)|Wn—W02 < Cl[/ 62ﬁ71(1+52)”Wn*WOH (Hv?/nil‘;?ou) }é[/ 2Br1(1+€?)||Wo —Wo|[? (H T I[jgon) ]; < Cs.
Q Q Q

where r; > 1 close to 1 and € > 0 satisfying
Bri(1+&*)||[Wn — Wol? < 2.

Moreover, from Lemma 2.3, Holder inequality and |W| = vu? + v?

1 1
/65W2 :/eﬁ(u2+v2) :/emwemv? < </ e2au2>2 (/ 625|v2)2 < 4oo.
Q Q Q Q Q



Using Young inequality, we have
BIWa[? < B(1L+ &)Wy — Wol* + B(1 + 1/2%)[Wo .

Thus, it togethers with Holder inequality can deduce that

1 1
/ PIWal? < < / eﬁm<l+62>wn—wo|2>” ( / eﬂr2<1+1/62>|w[)|2)” <0 ( / 6'87"2(1+1/52)|W02>
Q Q Q Q

%. The second term in the last inequality is bounded and the result is

for large n, where ro =
proved. O
3 Mountain Pass Structure

Lemma 3.1. Suppose that (My) and (Hs) hold, H, and H, satisfy critical exponential growth. Then,
there exists n,p > 0 such that I(W) > n if ||[W]| = p.

Proof. We know that H,, H, satisfy critical exponential growth, there exist suitable constant C' >
0,7 > 0 and ¢ > 2, when |W| > 7 and o > «ap, we have that

|Ho(z,u,0)| < CIW[T eV and  |Hy(z,u,v)| < C|W|7 eV
Given € > 0, the above inequalities together with (H3) yield that

|H (2, W)| < =(A1mg — &)|[W|? + C1[W |2 (2, W) € Q x R2.

DN |

By Holder inequality, Young inequality, Lemma 2.3 and Sobolev embedding, we can obtain that

1
/|W’qea|W|2 §02||W||Zr3[/ em\W\zd:z] "4
Q Q

2
§C3HWng3[\/Qe2MaW|2.‘|W‘ dx+Ae2r4aW|2.

<CyfW ],

v
[l

2 1
dx} =

if 4 > 1 close to 1 with r4a|W||? = ryap? < 27 and % + % = 1. Using the definition of A;, Sobolev
embedding and (M), it follow that

1 1
I(W) =5 M(|[ull?) + 3M(Jv]*) - /Q H(x,u,v)dx
1 1
>omollull® + Smollvl* = 5 (\amo — &)W — Cs[W]|?
1 9 1 € 9
> — - _ q
> 5mol[ WP = 5(mo — )W = 5| W
€
=(=— — Cs||W|72 2,
(55~ G W) 1w

Since ¢ > 2, we can choose a suitable py > 0 such that ﬁ — C’pg_2 > (0. Consequently, I(W) > n when
W/ = p =min{p1, p2}, where n = (ﬁ_cpq—2)p2. B

7



Lemma 3.2. Suppose that (Mz) and (Hy) hold, then I(tW) — —oo as t — +oo for all nonnegative
W e Hj(Q,R?)\ {0}.

Proof. Fix W € H}(Q,R?)\ {0} and W > 0, by (Hj), there exists L > %‘ﬁgﬂ% > 0 and constant
20

C > 0 such that H(x, W) > L|VV|2‘9 — C when |[W| > L. Then, using (1.5) follow that
W) =g M (leul) + 5 (Jewl) ~ [ HGo.tW)da
< MOl + MO ol — LW +
<P M)W~ LW + O

Consequently, we can conclude that I(tW) — —oo as t — +oo. O

4 Proof of The Main Result

In order to get a more precise information about the minimax level ¢, let us consider the following
sequence which was introduced in [7]:

(1= 6a)Y2, if 0<t<n,

Dn(t) = 1/2
7z log Zﬁ;ﬁim + [n(1 = 6,)] / , if t>n,

[n(1-6,)]

where Z,, is defined as Z,, = en% + O(#) and 8, = 219%™ We have

n

{Dn} C C([0,+00)), piecewise differentiable, with D, (0) = 0 and D), (t) > 0;

0 DL = 1;

lim f0+oo ePR®)—tqr — 1 + e.

n—-+o0o

Now, let D, (t) = 2\/7?én(e_%) with |z] = e~ 2, define a function Gn(z) = Gp(|z|) on B1(0), which is

nonnegative and radially symmetric. Moreover, we can conclude that

- +oo
/ wame=/ DLP = 1.
B1(0) 0

Thus, we can get that ||Gn|| = 1. Let 2o € Q be such that the open ball By(z) is contained in Q,
where d was given in (Hy). Considering

Brle) = (Grale)0). where Ggla) = Gu(5™),

then E, 4(x) belongs to H}(Q,R?) with ||E, 4|| = 1, and the support of E,, 4 is contained in Bg(zo).

Iar(= =i
Lemma 4.1. If (M), (M2) and (Hy) hold, then ¢ < 5M (), where ¢ ;ren; Jfax I(~(t)).



Proof. As in the proof of Lemma 3.2, we have that I(tE, 4) — —oo as t — 400 because of ||E, 4|| = 1.
Consequently, ¢ < max I(tE,, q) for all n € N. Thus, it suffices to show that max I(tE,q) < %M(alo)
> >

for some n € N. Suppose by contradiction that

1
> . .
max I(LEy,q) 2M<a0>, VneN (4.1)

t>0

As I possess the Mountain-pass geometry, there exists ¢, > 0 such that

I<tnEn,d) = I?;ig( I(tEnyd).

Which means that M (t2) > M (X ) due to the fact that [, H(x,t,Gpq,0) = 0. From (M), we have

2> aio (4.2)
On the other hand, since %I (tEn.a) |t=t, =0, it follows that
m(ty)t, = / tnBnd - Hw (2, tn B g)dz > / tnBnd - Hyw (2, tn En,a)dz (4.3)
Q B 4 (wo)
By (H4), given 0 > 0 there exists ss > 0 such that
Hy(2, W) > (Bo — 8)e* WP vaoeq, [W|>ss. (4.4)
According to above equations and using polar transformation, we can deduce that
i) 26 = 8) [ ctenGnilys
B (z0)
=(Bo —0) <§>2 elooltnGnl? gy
n B1(0)
d 2 1 _
2B =0)(i,) | el pdp,
0
Setting p = 67%, then
agltn n( |2
m(t2)2 >m(Bo - / Rl gy
a 2(n ogmn)
(1) [ e
= (By — O)e o — (45)

_ﬂ.dQ(BO_(S) [(2 0% —1)n— (a(3:%+1)210gn}‘

According to (1.5), if ¢, — 400, we have that

2\42
m(82)s3 .
a0(172logn) 0.
2 [ t2n ' 2logntn log (m(t%)t%)]
nT ™ t2n th
€ " n



Which is a contradiction with (4.5). Thus {¢,} is bounded. Moreover, using (4.5) again, we have
2
20% _ 1 <0, this together with (4.2) deduce that

™

T
2 46

Next, in view of (4.4), for 0 < § < By and n € N we set
Uns = {x € By(xo) : tnGpna > ss} and V;, 5 := Bg(xo)\Up,s-

Thus, by splitting the integral (4.3) on Uy, s and V}, 5, and using (4.4), it follows that

m(2)2 > (fo - 6) /

e4a0t%Gi,dd$ — (Bo — 5)/ e4aot%Gi,dd$ _|_/ tnGnHy (2, ty Ep g)d.
Ba(xo) Ens

E’n,6
(4.7)

Since G 4(z) — 0 for almost everywhere x € By(wo), we have that the characteristic functions xg, ;
satisfy
XV, — 1 ae. in By(zg) as n — +oo.

Moreover, t,Gp 4 < s5 in V;, s. By the Lebesgue dominated convergence theorem, we have

2 2
/ etootnGhady 5 rd® and / tnGnaHu(z, th By g)de — 0, as n — +oo.
Vn,é En,6

Note that the definition of én, then using polar transformation can obtain that

- 1 -
/ €4a0t%Gi’dd[E — d2/ €4a0t%G%‘dl' — 27Td2/ e4a0t%G%(p)pdp'
Ba(xo) B1(0) 0

Setting p = e_%, as n — 400, we obtain

“+o00 2
2 2 agltnDn(H)[*
/ e4a°t"Gn»dda:—7rd2/ e w e tdt
Ba(zo) 0

+oo
> md? / PRt g
0
— wd*(1+e), as n — +oo.

Passing to limit in (4.7) can obtain that

T\ T 2 2 2
m(a0> — (Bo — ) [Wd (1+e)—md } (Bo — 0)md?e, (4.8)
and let § — 07, we get By < 72(();’5’2, which contradicts (Hy4). Thus, this lemma is proved. O]

At this stage, we define the Nehari manifold associated to the functional I as
N = {W € HYQ,R?) : (I'(W),W) =0, W # 0}

and the number b := infycar I(W). The ground state refers to minimizers of the corresponding energy
within the set of nontrivial solutions. It is crucial to compare the minimax level ¢ with b for our result.
Let us describe this comparison in following Lemma:

10



Lemma 4.2. If (M) and (Hsz) hold, then ¢ < b, where ¢ = inf max I(vy(t))
veT 0<t<1

Proof. Let W € N and define ¢ : (0,+00) — R as g(t) = I(tW). We have that g is differentiable and
by (I'(W),W) = 0 can deduce that
g'(t) =" (W), W) = m(#||ul *)t][ul|* + m(e[[o][*)t]]v]|* — /Q W Hyy (z, tW)dx

_ @ el?) P oy o @l ml?) ey o
@~ qupet M gt~ e 1

+/ (120 H (2, u,v) — wHy (x, tu, tv)]dz + / [t Y H, (z,u,v) — vH,(z, tu, tv)]dz.
Q Q

We know that Hy(x,u,v) = Hy(x,u,v) =0if u =0 or v =0 and (H2) can deduce that (1.4), then

m 2 u 2 mi||u 2 m 2 v 2 mi||v 2 1
70 =Lt ~ (e W+ s — el

—|—t29_1/9[u29[(H“(x’u’v) Hu(ﬂ%t%t"))) v29<Hv(w,u,v) Hv(w,tu,tv))d}dx'

u20-1 (tu)QG—l

v20-1 (tU)QG_l

Thus, from (Ms),(1.4) can deduce that ¢'(1) = 0,¢'(¢) > 0 for 0 < t < 1 and ¢'(¢t) < 0 for ¢t > 1.
Consequently,

1(W) = max I(17V).

Defining h : [0,1] — H} (2, R?) by (t) = ttoW, where tg is such that I(toW) < 0. Then,

heTl and ¢ < trerlﬁ)l(} I(h(t)) < I?Zagcl(tW) =I(W).

Therefore, we can deduce that ¢ < b because of W € N is arbitrary. O
Lemma 4.3. Any Cerami sequence associated with the functional I is bounded in H}(Q,R?).

Proof. Let {(un,v,)} be a Cerami sequence, the definition of Cerami sequence shows that
(1 |y o) DI (v | = 0, (4.9)

I(up,v,) — c. (4.10)

Thus, there exists €, > 0 and ¢, — 0 as n — oo such that

‘<I/(Un7’l)n), (gp?q/})” < . 6””(90’1/})“

1+ [[ (s 0) || (4.11)

Let (¢,%) = (up,vy) in (4.11), we have

1" (tm, vn), (v )| = ([ ) 2 + m(]lon %) on* — /Qu”Hu(ﬂ%un,vn) - /Qv"Hv(maunavn)

Enl|(tn, vn) ||
1A [ (un, vn) ||

11



<C.

Now, we will prove that {(u,,vy)} is bounded. Suppose that {(uy, v,)} is unbounded, then ||(uy,, vy)|| —
oo as n — oo. We let (up,v,) = ”82’523”7 then ||&,,v,| = 1. Thus, there exists (4,0) € H(Q,R?)
such that

2

(Un,vy) — (4,0)  in HQ,R?),
(Un,vp) — (w,0)  in LP(Q,R?),

(Un, Un) — (u,0) a.e in (Q,R?).

Let 4, = min{0,up}, v, = min{0,v,}. Obviously, {(un ,7n )} is also bounded in H}(,R?).
Choosing (1) = (T, 7~) in (4.11) and [, vn)]| — 00, we get

(" (wn; vn), (Un, 00" ))

o(1) =

[, o)
:m(]|un||2)<un,ﬂ;_>—|—m(||vn|| (Vn; Un /H T, U, Un) Uy, "‘Hv(xaumvn){};_dx
(o)l (o]

m(lunl?) {tns ) + M) (n, v7) /ffxwww¢+ﬂ@umwwdx
T, o) P (s )P
1 _ _
=z [l ) s ) + (o) om0
(s )]
1
>7[ wn 1) | 1%+ m(|Jonl*) vy, 2}
T oy [ e ) 12 ) e

=mn([[un | )i~ 12 + m(|lva ) [on1*

>mo([[an 1 + o [1).

We can find that ||u, || = 0 and ||v, || = 0 as n — oco. Thus, (u, ,v, ) — (0,0) a.e. in Q, that
is, 7 > 0 and 0 > 0 a.e. in Q. Since |[(un,v,)| — 00, we have |(un,vn)| = ||(tun,vn)| - |(Wn,on)| —
o a.e. in QF, where QT = {z € Q:4(x) > 0 or v(z) > 0}. This together with (H;) can get

260

fo H@ o) H (@ v0) (@, 50)

dx = a.e. in QF
w8 o) e v 00 e

Applying Fatou’s lemma,

lim H(Jf Un7vn — lim H :E Unavn (un757:)’26

w33 Jo Ttms o) 27 ¥ | (tn, vn) 2

dx = oo. (4.12)

From (4.9) it follow that there exists a suitable constant C' > 0 such that |I(uy,v,)| < C, then using
(1.3), we have

1 1
[ H Gt vz <M (JunlP) + M (fenl?) +
Q

1
SM)|loa]* +C

1
< M) Junl? +

2

12



1
<M )| (un, va) I + C.

It is easy to obtain that limsup |, H@unvn) g0 < IM(1)+ ¢ EZ which contradicts (4.12). Hence,

n—o00 H(Un7'Un)H29 ||(uTL7vTL)
Q" has zero measure, that is, (u,0) = (0,0) a.e. in Q. Let t, € [0,1] such that I(t,un,t,v,) =
2T
[fnax I(tun, tvy), let p € (0,,/57), we see that

e P
Hns v)ll ™ (s vn

1 _ 1 _— P
=5 MU )+ M (Il — | H e, o g)da

I(tpup, thvy) >1(

Since H,, H, satisfy critical exponential growth, and according to the assumption (H3), there exists
constant C' > 0,e > 0 such that

[H (z,W)| < CIW [ + e|W]tecVT* (4.13)
By Holder inequality, Young inequality, Lemma 2.2, we let W = (pu,, pv,,)
/ Wttt = / (@, T |2e29° | @ o)1
@ Q
—~ 1

o 2rga0? || (@n, o) 12| ol |2 2rea@?||(@n,on) |12+ 2ne—|2] 76
<Co @ Tl | [ oo I i 4. [ o @I i ]
Q Q

<Co!||(tn, vn) 1G5, (4.14)
where % + % and 76 > 1 close to 1, a > g close to ag and rgap? < 2. And since ||(w,,v,)| = 1, we

have

—_~ T 2 I 2 . —_~ —~
T2 > LEnlZHEIE i 7)) < o))

—_~ T 2 TN 2 . —~ —_~
[ e e O o [R [

This together with (4.13), (4.14), we let n — oo and p — /2%

o’
1 - 1 - P -
I(tnun, thvn) ZiM(@2”unH2) + iM(@2”UnH2) - 0@2 /Q \(un.vn)|2dx - 5@q‘|(umvn)ng5

1 _ 1 _ . —
> maX{§M(@2HunHQ), §M(92anH2)} - sz/ﬂ |t Tn) [Pdze — || (i, ) 12,

1 [ e — -
2§M(@2 ) - Cﬁ/ﬂ | (i 0n) [Pdze — €| (T, ) 121
11
=-M(=¢* 1
5 M(59%) +o(1)
>c. (4.15)

We know the fact that I(0,0) = 0 and I(uy,v,) — ¢, by (4.15) we can assume that t,, € (0,1), we see
that (I'(t,W,), t,W,) = 0 implies that

1
I(tnun) tnvn) :I(tnurm tnvn) - %<I/(tnun’ tnvn)a (tnunu tnvn»

13



1 1 1 1
=5 M(Itnunl®) = ggmlitnunl ) tnunl® + 5 M[ltnval?) = Sgmltavall*)[tnvall*

20/ (@, tpln, tnon )ty + Hy(z, by, thvn ) tyv,|de — / H(x, tpun, tho,)dz

00 2) = () leall2)+ 5 02 (al2) = m(oal?) o)

29 26
1
+— | [Hu(z,un, vp)un + Hy(x, up, vy)vp]da — / H(z,up,v,)dx
Lo
—I(un) Un) - %(I (una U’I’L)a (urn Un))
<c,
which contradicts (4.15). Consequently, {(uy,,v,)} is bounded in H{ (9, R?). O

5 Proof of Theorem 1.1

Lemma 5.1. [8] Suppose § is a bounded domain in R%. Let {uy} be in LY(Q) such that u, — u in L' ()
and f(z,s) be a continuous function. Then f(x,u,) — f(z,u) in L'(Q) provided that f(x,u,) € L'(Q)
for all n and [, |f(z,un)u,ldz < C.

Proof of Theorem 1.1: Without loss of generality, for some (ug, vo) € Hg (2, R?), we have

(

(Up, vp) — (up, vo) in H&(Q,Rz),
(Un,vn) — (uo,vo) in  LP(Q,RR?), (5.1)

(tn, vp) = (uo, o) a.e in (Q,R?).

From (4.9) and (4.10), it follows that
/ WnHw (z,Wy)dx < C  and / H(x,Wy,)dx < C. (5.2)
Q Q
Moreover, W,, — W for almost every = € Q and ||W,| < C, we have [, |H(x, W,)W,|dx < C. By
Lemma5 1 and generalized Lebesgue dominated convergence theorem, we can get fﬂ H(z,up,v,) —

Jo H(z,u,v). We can suppose that [|u,| — p1 > 0 and [jv,|| — p2 > 0 because of the boundness of
{(un,vn)}- Thus7 I'(up,vy) — 0 implies that

mio) [ VuaVode +m(e3) [ VooV = [ (.0} Hi(e, Wids, ¥(o0) € CROED. (53
Q Q Q
We want to prove (ug, vg) is a solution of this problem, it suffices to show that p; = |Jugl|| and p2 = ||vo||.

This together with semicontinuity of norm show that I(WWy) < c¢. Next, we prove the case of I(Wp) < ¢
cannot occur. If I(Wp) < ¢, we have |Jugl||? < p?, |vol|? < p3 and

S+ M) = Tim M (fuall) + 5M (o) = e+ [ Ao Wopde. (54

14



Then
2¢ — 21(Wo) = M(p}) — M(||uo[|*) + M (p3) — M([[vo|*) (5.5)

Otherwise, we claim that m(||uo||?)||uol|*4+m(||vol|?)|lvol|* > [o, WoHw (x, Wo)dz. Suppose by contradic-
tion that m(||uo||?)|luol|* + m(||vo||?)||lvel|* < [ WoHw (x, Wo)da, that is, (I'(Wp), W) < 0. According
to (1.4) and the assumption of (M), we obtain that

(I'(tWa), Wo) > mol|ug||*#* + mol|vo||*£2 — t*||Wo|[%E1 > 0,

for p > 2 and t sufficiently small. The information above tell us that there exists o € (0,1) such that
(I'(eWp), W) = 0. This implies that oWy € M. According to (1.4), (Hz2), semicontinuity of norm and
using Fatou Lemma, we can get

1
c<b< I(UW()) = I(O’WQ) — %< ,(UWO),UWO>
1

= o 10M (lowol?) — m(lou|) louoll?] + 551

+20/[HW(90,0W0)0W0 — 20H (z,0Wy)]dz

OM (lowo|*) — m([[owol|*) ool |?)

29[0M(HUOH) m(||uo]|*)l|uol|*] + 29[0M(\|v0|1) m(|lvol|*) o]

Jr20/ULIW(@“,Wo)Wo — 20H (x, Wp)]dz
Q

o1 1 9 9 ..ol 1 2 2
< il _ - _
<im0 (g 12) — () 2] + Y i [ ) = (2]

1
+lim inf / L Hy (2, W)W, — H (2, W) ]da

< lim [I(W,) — —<I’(W ), W)l

n—o0 20

:C’

this case is impossible. This together with (1.4) and (H2), we can get following estimate

1(Wo) 2 55 [0M (Juol®) — ol i) + 551

1
+29/[HW($7W0)W0 — 20H (z,Wp)]dx
Q

0M (J|vo||*) — m(lvol*)[lvol|)

>0. (5.6)
Therefore, above inequality and the fact of ¢ < M (25) and (5.5) yield that
M(p?) + M (p3) <M( =) + MJluo %) + M ([[vo]l?)-

By semicontinuity of norm, we have |lug||?> < p?, ||vo[|* < p3. And applying the condition (Ms), we can

get
M(p )<M( )+M(HuOII) and M(p2)<M( )+M(Hvoll)

15



this implies that p? < Mfl[M(alo) + M (||lug||?)] and p3 < Mfl[M(aLO) + M (||vo][?)]. We can conclude
that 5
T
i+ 3 < P oI + [[voI*.

Defining A,, = HVWV7H|| and Ay = \/%, it easily follows A, — Ag in H(Q,R?) and ||Ag| < 1, by
Lemma 2.4 we have 5
BlAnl 4 T
sup | e x < 400, VB < . 5.7
e, T4 >0
2, 2 2 2m
Above inequality together with p? + p3 = % shows that p? + p3 < T—[Agz- Therefore, there

exists B > 0 such that ap||W,|? < 8 < 1_“27;{0”2 for n sufficiently large. For ¢ > 1 close to 1, a > «p

close to ag, we also have ga||W,||?> < 8 < 17”2720”2, thus consider (5.7), we can get

/eqalW"2dx < / eBlAnL? g <C.
Q Q

Hence, using Holder inequality, Trudinger-Moser inequality, (H3), (5.1) and Sobolev embedding,
| / Hyp (2, W, ) (W, — W) gc/ Wl Wi — Wolda + 0/ W,y — Wy - @Wol* g
Q Q Q
rioal Wall2 82|, 1710
<CIWalley [Wha = Woll + ClIWe = Wallry | | Tl da |
Q

—0,

where % + i =1+ + % According to the fact that (I'(W,), W,, — Wy) — 0, we get

ro
m(|[un?) / Vi -Vt — ug)da + m(anHQ)/ Von - V(vm — vo)dz — 0. (5.8)
Q )
However, the boundness of {(un,v,)} shows that

m([[unll?) /Q Vit - ¥ (ttn — o) =mun]®) un2 — m(un ]2 /Q Vi, Vuodz

—m(p)pi —m(p?)uol, (5.9)

m(l[on?) /Q Vo - V(tn — v0)dz =m([val|?)[vn 2 — m(loa]® /Q VonVopds
—m(p3)p5 — m(p3)|lvoll*. (5.10)

Thus, from (5.8), (5.9), (5.10), we can get p1 = ||ugl|, p2 = ||vo||. This shows that we have I(Wy) = cpr,
which contradicts with our assumption. Therefore, we have

M(p?) + M(p3) = M(|luol*) + M (||vo]|?),
that is,

p1 = luoll and pa = [jvo].
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Thus, we have u, — ug and v, — vo in H}(Q). From (5.3) and above information we can conclude
that

m(Jluoll?) /Q VauoVidz + m([voll?) /Q VooVibde = /Q (0, ) Ho, g, v0) e, W(ip ) € C°(, R2).

(5.11)
Finally, we need to prove ug # 0 and vy # 0. If ug = 0 and vy # 0, then fQ H(z,up,v9) = 0. By (4.19)
we can get that
2

1 1 1
M (||un||?) + =M (||v,||? M
5 (][ H)+2 (J[v H)—>C<2 (a0

)

This means that |[W,,||? = [[unl]® + |Joa]|* < 3—75 because of M is increasing. So, there exists ng € N and

B > 0 such that ag||W,||? < B < 2 for all n > ng. We can choose 7’ > 1 close to 1 and a > ag close to
g such that we still have /a||[W,||? < 8 < 2. Applying Lemma2.2, Sobolev embedding and Holder
inequality, we have

‘ /Wn : HW(:I"»Una'Un)d:E{
Q

< ()\mo—a)/ \Wnde—kCl/ W@l g
Q Q

2 2.1
s(xmo—gnvvnu%wgrwnrw[/e2"a"W"“2(|WZI) +/€M”W"'2('WT’L") I
r/—1 (9] Q
< (Amo — &) [[Whl[3 + Cs[[Wal|
rl—1
—0 as n — +oo.

We know that (I'"(Wy), Wy) = M(||un|/*)|Jun||* + M(|[va]]*)||vnl|* = Jo Wa - H(z, Wn)dz — 0. This
information together with (M) shows that ||u,||> — 0 and ||v,||?> — 0. Obviously, this contradict
with our assumption. And we can prove the case ug # 0,v9 = 0 and the case ug = 0,v9 = 0 can not
occur by same way. Thus, we say that Wy = (ugp, vp) is a nontrival nonnegative ground state solution
of problem (1.1).
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