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1 Introduction

In this paper, we consider the existence of ground state solution for the following Kirchhoff type elliptic
system 

−m(∥u∥2)∆u = Hu(x, u, v) in Ω,

−m(∥v∥2)∆v = Hv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in R2 with smooth boundary, m is a continuous Kirchhoff type function,
Hu and Hv have the maximal growth which allows treating (1.1) variationally in the Sobolev space
H1

0 (Ω,R2).
The system (1.1) is a Kirchhoff type problem with critical growth. We know that the Kirchhoff

problem is nonlocal because of the term m(∥u∥2). In order to obtain the weak solution, we need the
strong convergence. So, the presence of m(∥u∥2) cause some mathematical difficulties that makes the
study of such class of problem interesting. And this class of problem also has physical motivation. In
1883, Kirchhoff studied the hyperbolic equation

ρutt −
(ρ0
h

+
E

2L

∫ L

0
|ux|2dx

)
uxx = 0

that extends the classical D’Alembert wave equation by considering the effects of the changes in the
strings during the vibrations. Where L is the length of the string, h is the area of cross-section, E is
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the Young modulus of the material, ρ is the mass density and ρ0 is the initial tension in [13]. Moreover,
there is a lot of literature concerning the existence of solution for Kirchhoff type problem with critical
growth. Figueiredo G.M. [10] get the existence of positive solution for a Kirchhoff problem with critical
growth via truncation argument. G.M. Figueiredo and U.B. Severo [11] used minimax techniques
combined with the Trudinger-Moser inequality to get the ground state solution for a Kirchhoff problem
with exponential critical growth.

When the Kirchhoff functions is constant m(t) = 1, system (1.1) becomes the following system

−∆u = Hu(x, u, v) in Ω,

−∆v = Hv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

(1.2)

It is a special case of [9]. By the Ekeland variational principle, the Mountain-Pass Theorem and a
suitable Trudinger-Moser inequality, Manasses de Souza [9] has obtained the existence of solution to
(1.2). (1.2) is a generalization of the well known Dirichlet boundary value problem for one single
semilinear elliptic equation 

−∆u = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.3)

We know critical point theory has become one of the main tools for us to find the solutions for elliptic
equation where Ambrosetti-Rabinowitz(AR) condition plays an important role. The reason is (AR)
condition ensure that the Palais-Smale sequence of the functional is bounded. The (AR) condition was
originally introduced in [2]: there exist µ > 2 and r > 0 such that

0 < µF (x, s) ≤ sf(x, s), ∀ |s| ≥ r uniformly a.e. x ∈ Ω,

where F (x, s) =
∫ s
0 f(x, t)dt. In fact, (AR) condition implies that F (x, s) ≥ C|s|µ, ∀ |s| ≥ r. Thus,

(1.3) is called superlinear because of f is superlinear at infinity. However, there are many case that
the nonlinear term f does not satisfy (AR) condition. So, many authors focused on how to weaken the
(AR) condition. Jeanjean[12] replaced (AR) condition with the following conditions:

lim
s→∞

f(x, s)

s
→ ∞ uniformly for x ∈ RN ,

∃p ∈ (2, 2∗), lim
s→∞

f(x, s)

sp−1
= 0 uniformly for x ∈ RN ,

DH(x, s) ≥ H(x, t), 0 ≤ t ≤ s, where D ≥ 1 and H(x, s) = sf(x, s)− 2F (x, s).

They get that (PS) sequence was bounded by using a suitable Mountain Pass Theorem.
Li and Zhou [16] replaced (AR) condition with the following conditions:

lim
s→∞

f(x, s)

s
→ ∞ uniformly for x ∈ RN ,
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f(x, s)

s
is nondecreasing for s > 0, x ∈ Ω.

They proved the existence of solution to (1.3).
Schechter and Zou[19] replaced (AR) condition with the following conditions:

lim
s→∞

f(x, s)

s
→ ∞ uniformly for x ∈ RN ,

µF (x, s)− sf(x, s) ≤ C(1 + s2), |s| ≥ r, for some µ > 2, r ≥ 0.

Although it allows more freedom for the function f , we still eliminates many superlinear problems.
Hence, recently, N.Lam and G.Lu [14] proved that Cerimi sequence was bounded and established the
existence of nontrivial nonnegative solutions by using following conditions:

lim
s+→∞

f(x, s)

s2
→ +∞ uniformly for x ∈ Ω,

θH(x, s) ≥ H(x, t), 0 ≤ t ≤ s, where θ ≥ 1 and H(x, s) = sf(x, s)− 2F (x, s).

Motivated by [9] and the result has been studied about Kirchhoff type problem with critical growth, we
are interested in the ground state solution for a Kirchhoff type elliptic systems without the Ambrosetti-
Rabinowitz Condition. First, let us introduce some notations:
H1

0 (Ω,R2) denotes the Sobolev modeled in L2(Ω,R2) with the scalar product

⟨W,Φ⟩ =
∫
Ω
∇u∇φdx+

∫
Ω
∇v∇ψdx,

where W = (u, v), Φ = (φ,ψ), and |W | =
√
u2 + v2, the corresponds norm ∥W∥ = ⟨W,W ⟩

1
2 .

We denote by HW (x, u, v) = (Hu(x, u, v),Hv(x, u, v)), where HW (x, u, v) stands for the gradient of
H in the variables W = (u, v) ∈ R2.

From the work of Adimurthi [1] and de Figueiredo et al. [8], we say that h : Ω × R2 has critical
growth at +∞ if there exists α0 > 0 such that

lim
|W |→+∞

|h(x,W )|
eα|W |2 =

0, uniformly on x ∈ Ω, ∀α > α0,

+∞, uniformly on x ∈ Ω, ∀α < α0.

Then, in order to solve our problem we give following necessary condition:

(M1) there exists m0 > 0 such that m(t) ≥ m0 for all t ≥ 0 and

M(t+ s) ≥M(t) +M(s), ∀ s, t ≥ 0.

where M(t) =
∫ t
0 m(s)ds.

(M2) there exists θ > 1 such that m(t)
tθ−1 is nonincreasing for t > 0.

Noting that the condition (M1) shows that M is nondecreasing and m(t) = m0 + ct, c > 0 is a valid
example of a function m satisfying the conditions (M1) and (M2).
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Remark 1.1. We observe that (M2) show that for 0 < t1 < t2

θM(t1)−m(t1)t1 =θM(t2)− θ

∫ t2

t1

m(t)dt− m(t1)

tθ−1
1

tθ1

≤θM(t2)−
m(t2)

tθ−1
2

(tθ2 − tθ1)−
m(t2)

tθ−1
2

tθ1

=θM(t2)−m(t2)t2.

Thus, for t > 0
θM(t)−m(t)t is nondecreasing. (1.4)

In particular, we can deduce that
M(t) ≤M(1)tθ, ∀t > 1. (1.5)

Here, we also require that H : Ω× R2 → R is continuous and admits partial derivatives Hu and Hv

of class C(Ω× R2), H(x, u, v) = Hu(x, u, v) = Hv(x, u, v) = 0 if u ≤ 0 or v ≤ 0. Moreover, we assume
H satisfy following condition:

(H1) lim
|W |→∞

H(x,W )
|W |2θ = +∞ uniformly in Ω.

(H2) G(x, tW ) ≤ G(x,W ) for all 0 < t < 1, x ∈ Ω. where

G(x,W ) = HW (x,W )W − 2θH(x,W ).

(H3) lim sup
|W |→0

2H(x,W )
|W |2 < λ1m0, uniformly in x ∈ Ω, where

λ1 = inf
{ ∥W∥2∫

Ω |W |2dx
:W ∈ H1

0 (Ω,R2)\{0}
}
.

Remark 1.2. According to the condition (H2), we know that G(x, tu, tv) is increasing where u, v ∈
H1

0 (Ω) with s ∈ {u, v}, it is easily to get that H ′
s(x, tu, tv) ≥ (2θ − 1)Hs(x,tu,tv)

ts . This implies that[
Hs(x,tu,tv)
(ts)2θ−1

]′
≥ 0. Thus, we get following important result,

Hs(x, tu, tv)

(ts)2θ−1
is nondecreasing. (1.6)

Finally, we state our main result as follow:

Theorem 1.1. Assume that (M1) − (M2), (H1) − (H3) hold and Hu, Hv satisfy critical exponential
growth. Furthermore, assume that

(H4) there exists β0 >
m( π

α0
)

α0d2e
such that for some s ∈ {u, v},

lim inf
|W |→+∞

sHs(x, u, v)

exp(4α0|W |2)
≥ β0, uniformly in x ∈ Ω,

where d is the inner radius of the largest open ball contain in Ω. Then, problem (1.1) has a positive
ground state solution.
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This paper have some difficulties because of the presence of the Kirchhoff function and the nonlin-
earities do not satisfy Ambrosetti-Rabinowitz condition. Therefore, this paper is organized as follow:
In Section 2, we give some necessary definition and lemmas in order to overcome the dificulty of the
nonlinearities without Ambrosetti-Rabinowitz condition. In Section 3, we prove the energy functional
satisfies geometric construction. In Section 4, we first prove the boundedness of {(un, vn)}, then we
will complete the proof of our main results.

2 Preliminary Result

The Euler-Lagrange functional associated with problem (1.1) is

I(W ) =
1

2
M(∥u∥2) + 1

2
M(∥v∥2)−

∫
Ω
H(x, u, v)dx,

where W = (u, v). Under our assumptions about m,Hu,Hv are continuous and have critical growth at
+∞, by (H3) and the Sobolev embedding it follows that H(x, u, v) ∈ L1(Ω,R2), which implies that I
is well defined. Moreover, we can see that I ∈ C1

(
H1

0 (Ω,R2),R
)
with

⟨I ′(W ),Φ⟩ = m(||u||2)⟨u, φ⟩+m(||v||2)⟨v, ψ⟩ −
∫
Ω
Φ ·HW (x, u, v)dx, ∀Φ = (φ,ψ) ∈ H1

0 (Ω,R2).

where ⟨u, φ⟩ =
∫
Ω∇u∇φdx, ⟨v, ψ⟩ =

∫
Ω∇v∇ψdx. Consequently, the critical points of the functional I

are precisely the weak solutions of problem (1.1).
In this paper, we need deal with systems without the Ambrosetti-Rabinowitz condition. So, we will

use some classical facts introduced by Cerami ([2, 5, 3, 4]) to prove Theorem 1.1.

Definition 2.1. For c ∈ R, we say that I satisfies the (C)c condition if for any sequence {un} ⊂ H1
0 (Ω)

with
(1 + ∥un∥)∥I ′(un)∥ → 0, and I(un) → c,

there is a subsequence {un} such that {un} converges strongly in H1
0 (Ω).

Moreover, we give the following versions of Mountain Pass Theorem to prove our result.

Lemma 2.1. [6] Let E be a real Banach space, I ∈ C1(E,R) satisfies I(0) = 0 and
(i) There are constants ρ, α > 0 such that I|∂Bρ ≥ α.
(ii) There is an e ∈ E\Bρ such that I(e) ≤ 0.
Let c be characterized by c = inf

γ∈Γ
max
0≤t≤1

I(γ(t)), where

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e}.

Then I possesses a (C)c sequence.

Lemma 2.2. [6] Let E be a real Banach space, I ∈ C1(E,R) satisfies the (C)c condition for any c ∈ R,
and
(i) There are constants ρ, α > 0 such that I|∂Bρ ≥ α.
(ii) There is an e ∈ E\Bρ such that I(e) ≤ 0.
Then,

c = inf
γ∈Γ

max
0≤t≤1

I(γ(t)) ≥ α

is a critical value of I, where

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e}.
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Next, we introduce some famous inequalities for the equation.

Lemma 2.3. [18] Let Ω be a bounded domain in R2 and u ∈ H1
0 (Ω). Then for every β > 0,∫

Ω
eβ|u|

2
< +∞.

Moreover, there exists a constant C > 0 such that

sup
u∈H1

0 (Ω):||u||≤1

∫
Ω
eβ|u|

2 ≤ C|Ω|, ∀β ≤ 4π,

where 4π is the best constant, that is, the supreme in the left is +∞ if β > 4π.

More specifically, P.-L.Lions proved the following:

Lemma 2.4. [17] Let {un} be a sequence of functions in H1
0 (Ω) with ||un|| = 1 such that un ⇀ u ̸= 0

weakly in H1
0 (Ω). Then

sup
n

∫
Ω
ep|un|2 < +∞, ∀ 0 < p < 4π/(1− ||u||2).

Delighted by the above inequalities, we have the following result.

Lemma 2.5. Let {Wn} be a sequence of functions in H1
0 (Ω,R2) with ||Wn|| = 1 such that Wn ⇀W ̸= 0

weakly in H1
0 (Ω,R2). Then

sup
n

∫
Ω
eβ|Wn|2 < +∞, ∀ 0 < β < 2π/(1− ||W ||2).

Proof. Since Wn ⇀W ̸= 0 and ||Wn|| = 1, we have

||Wn −W0||2 = 1− 2⟨Wn,W0⟩+ ||W0||2 → 1− ||W0||2 <
2π

β
,

then

β||Wn −W0||2 < 2π.

By Hölder inequality and Lemma 2.3, we obtain that∫
Ω
eβr1(1+ε2)|Wn−W0|2 ≤ C1

[ ∫
Ω
e
2βr1(1+ε2)||Wn−W0||2( un−u0

||Wn−W0||
)2
] 1

2
[ ∫

Ω
e
2βr1(1+ε2)||Wn−W0||2( vn−v0

||Wn−W0||
)2
] 1

2 ≤ C2.

where r1 > 1 close to 1 and ε > 0 satisfying

βr1(1 + ε2)||Wn −W0||2 ≤ 2π.

Moreover, from Lemma 2.3, Hölder inequality and |W | =
√
u2 + v2∫

Ω
eβ|W |2 =

∫
Ω
eβ(u

2+v2) =

∫
Ω
eβ|u|

2
eβ|v|

2 ≤
(∫

Ω
e2β|u|

2

) 1
2
(∫

Ω
e2β|v|

2

) 1
2

< +∞.
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Using Young inequality, we have

β|Wn|2 ≤ β(1 + ε2)|Wn −W0|2 + β(1 + 1/ε2)|W0|2.

Thus, it togethers with Hölder inequality can deduce that∫
Ω
eβ|Wn|2 ≤

(∫
Ω
eβr1(1+ε2)|Wn−W0|2

) 1
r1

(∫
Ω
eβr2(1+1/ε2)|W0|2

) 1
r2

≤ C1

(∫
Ω
eβr2(1+1/ε2)|W0|2

)
for large n, where r2 = r1

r1−1 . The second term in the last inequality is bounded and the result is
proved.

3 Mountain Pass Structure

Lemma 3.1. Suppose that (M1) and (H3) hold, Hu and Hv satisfy critical exponential growth. Then,
there exists η, ρ > 0 such that I(W ) ≥ η if ∥W∥ = ρ.

Proof. We know that Hu,Hv satisfy critical exponential growth, there exist suitable constant C >
0, τ > 0 and q > 2, when |W | ≥ τ and α > α0, we have that

|Hu(x, u, v)| ≤ C|W |q−1eα|W |2 and |Hv(x, u, v)| ≤ C|W |q−1eα|W |2

Given ε > 0, the above inequalities together with (H3) yield that

|H(x,W )| ≤ 1

2
(λ1m0 − ε)|W |2 + C1|W |qeα|w|2 , ∀(x,W ) ∈ Ω× R2.

By Hölder inequality, Young inequality, Lemma 2.3 and Sobolev embedding, we can obtain that∫
Ω
|W |qeα|W |2 ≤C2∥W∥qqr3

[ ∫
Ω
er4α|W |2dx

] 1
r4

≤C3∥W∥qqr3
[ ∫

Ω
e
2r4α∥W∥2·

∣∣ u
∥W∥

∣∣2
dx+

∫
Ω
e
2r4α∥W∥2·

∣∣ v
∥W∥

∣∣2
dx

] 1
r4

≤C4∥W∥q,

if r4 > 1 close to 1 with r4α∥W∥2 = r4αρ
2
1 < 2π and 1

r3
+ 1

r4
= 1. Using the definition of λ1, Sobolev

embedding and (M1), it follow that

I(W ) =
1

2
M(∥u∥2) + 1

2
M(∥v∥2)−

∫
Ω
H(x, u, v)dx

≥1

2
m0∥u∥2 +

1

2
m0∥v∥2 −

1

2
(λ1m0 − ε)∥W∥22 − C5∥W∥q

≥1

2
m0∥W∥2 − 1

2
(m0 −

ε

λ1
)∥W∥2 − C5∥W∥q

=(
ε

2λ1
− C5∥W∥q−2)∥W∥2.

Since q > 2, we can choose a suitable ρ2 > 0 such that ε
2λ1

−Cρq−2
2 > 0. Consequently, I(W ) ≥ η when

∥W∥ = ρ = min{ρ1, ρ2}, where η = ( ε
2λ1

− Cρq−2)ρ2.
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Lemma 3.2. Suppose that (M2) and (H1) hold, then I(tW ) → −∞ as t → +∞ for all nonnegative
W ∈ H1

0 (Ω,R2) \ {0}.

Proof. Fix W ∈ H1
0 (Ω,R2) \ {0} and W ≥ 0, by (H1), there exists L > M(1)∥W∥2θ

2∥W∥2θ2θ
> 0 and constant

C > 0 such that H(x,W ) ≥ L|W |2θ − C when |W | > L. Then, using (1.5) follow that

I(tW ) =
1

2
M(∥tu∥2) + 1

2
M(∥tv∥2)−

∫
Ω
H(x, tW )dx

≤1

2
M(1)t2θ∥u∥2θ + 1

2
M(1)t2θ∥v∥2θ − Lt2θ∥W∥2θ2θ + C

≤t2θ[1
2
M(1)∥W∥2θ − L∥W∥2θ2θ] + C.

Consequently, we can conclude that I(tW ) → −∞ as t→ +∞.

4 Proof of The Main Result

In order to get a more precise information about the minimax level c, let us consider the following
sequence which was introduced in [7]:

Dn(t) =


t

n1/2 (1− δn)
1/2, if 0 ≤ t ≤ n,

1[
n(1−δn)

]1/2 log Zn+1
Zn+e−(t−n) +

[
n(1− δn)

]1/2
, if t ≥ n,

where Zn is defined as Zn = 1
en2 +O( 1

n4 ) and δn = 2 logn
n . We have

{Dn} ⊂ C
(
[0,+∞)

)
, piecewise differentiable, with Dn(0) = 0 and D′

n(t) ≥ 0;∫ +∞
0 |D′

n(t)|2 = 1;

lim
n→+∞

∫ +∞
0 eD

2
n(t)−tdt = 1 + e.

Now, let Dn(t) = 2
√
πG̃n(e

− t
2 ) with |x| = e−

t
2 , define a function G̃n(x) = G̃n(|x|) on B1(0), which is

nonnegative and radially symmetric. Moreover, we can conclude that∫
B1(0)

|∇G̃n(x)|2dx =

∫ +∞

0
|D′

n(t)|2 = 1.

Thus, we can get that ||G̃n|| = 1. Let x0 ∈ Ω be such that the open ball Bd(x0) is contained in Ω,
where d was given in (H4). Considering

En,d(x) :=
(
Gn,d(x), 0

)
, where Gn,d(x) := G̃n

(x− x0
d

)
,

then En,d(x) belongs to H
1
0 (Ω,R2) with ||En,d|| = 1, and the support of En,d is contained in Bd(x0).

Lemma 4.1. If (M1), (M2) and (H4) hold, then c <
1
2M( π

α0
), where c = inf

γ∈Γ
max
0≤t≤1

I(γ(t)).
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Proof. As in the proof of Lemma 3.2, we have that I(tEn,d) → −∞ as t→ +∞ because of ||En,d|| = 1.
Consequently, c ≤ max

t>0
I(tEn,d) for all n ∈ N. Thus, it suffices to show that max

t>0
I(tEn,d) <

1
2M( π

α0
)

for some n ∈ N. Suppose by contradiction that

max
t>0

I(tEn,d) ≥
1

2
M

( π

α0

)
, ∀ n ∈ N. (4.1)

As I possess the Mountain-pass geometry, there exists tn > 0 such that

I(tnEn,d) = max
t>0

I(tEn,d).

Which means that M(t2n) ≥M
(

π
α0

)
due to the fact that

∫
ΩH(x, tnGn,d, 0) = 0. From (M1), we have

t2n ≥ π

α0
. (4.2)

On the other hand, since d
dtI(tEn,d) |t=tn = 0, it follows that

m(t2n)t
2
n =

∫
Ω
tnEn,d ·HW (x, tnEn,d)dx ≥

∫
B d

n
(x0)

tnEn,d ·HW (x, tnEn,d)dx (4.3)

By (H4), given δ > 0 there exists sδ > 0 such that

uHu(x,W ) ≥ (β0 − δ)e4α0|W |2 , ∀ x ∈ Ω, |W | ≥ sδ. (4.4)

According to above equations and using polar transformation, we can deduce that

m(t2n)t
2
n ≥(β0 − δ)

∫
B d

n
(x0)

e4α0|tnGn,d|2dx

=(β0 − δ)
(d
n

)2
∫
B1(0)

e4α0|tnG̃n|2dx

=2π(β0 − δ)
(d
n

)2
∫ 1

0
e4α0|tnG̃n(ρ)|2ρdρ.

Setting ρ = e−
t
2 , then

m(t2n)t
2
n ≥π(β0 − δ)

(d
n

)2
∫ +∞

0
e

α0|tnDn(t)|2
π e−tdt

≥π(β0 − δ)
(d
n

)2
∫ +∞

n
e

α0t
2
n(n−2 logn)

π e−tdt

=πd2(β0 − δ)e[
α0t

2
n(n−2 logn)

π
−2 logn−n] (4.5)

=πd2(β0 − δ)e[(
α0t

2
n

π
−1)n−(

α0t
2
n

π
+1)2 logn].

According to (1.5), if tn → +∞, we have that

m(t2n)t
2
n

e
t2nn

[α0(1−
2 logn

t2nn
)

π
− 2 logn+n

t2nn
− log (m(t2n)t2n)

t2nn

] → +∞.
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Which is a contradiction with (4.5). Thus {tn} is bounded. Moreover, using (4.5) again, we have
α0t20
π − 1 ≤ 0, this together with (4.2) deduce that

t2n → π

α0
. (4.6)

Next, in view of (4.4), for 0 < δ < β0 and n ∈ N we set

Un,δ := {x ∈ Bd(x0) : tnGn,d ≥ sδ} and Vn,δ := Bd(x0)\Un,δ.

Thus, by splitting the integral (4.3) on Un,δ and Vn,δ, and using (4.4), it follows that

m(t2n)t
2
n ≥ (β0 − δ)

∫
Bd(x0)

e4α0t2nG
2
n,ddx− (β0 − δ)

∫
En,δ

e4α0t2nG
2
n,ddx+

∫
En,δ

tnGnHu(x, tnEn,d)dx.

(4.7)

Since Gn,d(x) → 0 for almost everywhere x ∈ Bd(x0), we have that the characteristic functions χEn,δ

satisfy
χVn,δ

→ 1 a.e. in Bd(x0) as n→ +∞.

Moreover, tnGn,d < sδ in Vn,δ. By the Lebesgue dominated convergence theorem, we have∫
Vn,δ

e4α0t2nG
2
n,ddx→ πd2 and

∫
En,δ

tnGn,dHu(x, tnEn,d)dx→ 0, as n→ +∞.

Note that the definition of G̃n, then using polar transformation can obtain that∫
Bd(x0)

e4α0t2nG
2
n,ddx = d2

∫
B1(0)

e4α0t2nG̃
2
ndx = 2πd2

∫ 1

0
e4α0t2nG̃

2
n(ρ)ρdρ.

Setting ρ = e−
t
2 , as n→ +∞, we obtain∫

Bd(x0)
e4α0t2nG

2
n,ddx = πd2

∫ +∞

0
e

α0|tnDn(t)|2
π e−tdt

≥ πd2
∫ +∞

0
eD

2
n(t)−tdt

→ πd2(1 + e), as n→ +∞.

Passing to limit in (4.7) can obtain that

m
( π

α0

) π

α0
≥ (β0 − δ)

[
πd2(1 + e)− πd2

]
= (β0 − δ)πd2e, (4.8)

and let δ → 0+, we get β0 ≤
m( π

α0
)

α0d2e
, which contradicts (H4). Thus, this lemma is proved.

At this stage, we define the Nehari manifold associated to the functional I as

N := {W ∈ H1
0 (Ω,R2) : ⟨I ′(W ),W ⟩ = 0, W ̸= 0}

and the number b := infW∈N I(W ). The ground state refers to minimizers of the corresponding energy
within the set of nontrivial solutions. It is crucial to compare the minimax level c with b for our result.
Let us describe this comparison in following Lemma:
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Lemma 4.2. If (M2) and (H2) hold, then c ≤ b, where c = inf
γ∈Γ

max
0≤t≤1

I(γ(t))

Proof. Let W ∈ N and define g : (0,+∞) → R as g(t) = I(tW ). We have that g is differentiable and
by ⟨I ′(W ),W ⟩ = 0 can deduce that

g′(t) =⟨I ′(tW ),W ⟩ = m(t2||u||2)t||u||2 +m(t2||v||2)t||v||2 −
∫
Ω
WHW (x, tW )dx

=[
m(t2||u||2)
(t2||u||2)θ−1

− m(||u||2)
(||u||2)θ−1

]t2θ−1||u||2θ + [
m(t2||v||2)
(t2||v||2)θ−1

− m(||v||2)
(||v||2)θ−1

]t2θ−1||v||2θ

+

∫
Ω
[t2θ−1uHu(x, u, v)− uHu(x, tu, tv)]dx+

∫
Ω
[t2θ−1vHv(x, u, v)− vHv(x, tu, tv)]dx.

We know that Hu(x, u, v) = Hv(x, u, v) = 0 if u = 0 or v = 0 and (H2) can deduce that (1.4), then

g′(t) =[
m(t2||u||2)
(t2||u||2)θ−1

− m(||u||2)
(||u||2)θ−1

]t2θ−1||u||2θ + [
m(t2||v||2)
(t2||v||2)θ−1

− m(||v||2)
(||v||2)θ−1

]t2θ−1||v||2θ

+t2θ−1

∫
Ω

[
u2θ

[(Hu(x, u, v)

u2θ−1
− Hu(x, tu, tv)

(tu)2θ−1

)
+ v2θ

(Hv(x, u, v)

v2θ−1
− Hv(x, tu, tv)

(tv)2θ−1

)
dx

]
dx.

Thus, from (M2), (1.4) can deduce that g′(1) = 0, g′(t) ≥ 0 for 0 < t < 1 and g′(t) ≤ 0 for t > 1.
Consequently,

I(W ) = max
t≥0

I(tW ).

Defining h : [0, 1] → H1
0 (Ω,R2) by (t) = tt0W , where t0 is such that I(t0W ) < 0. Then,

h ∈ Γ and c ≤ max
t∈[0,1]

I(h(t)) ≤ max
t≥0

I(tW ) = I(W ).

Therefore, we can deduce that c ≤ b because of W ∈ N is arbitrary.

Lemma 4.3. Any Cerami sequence associated with the functional I is bounded in H1
0 (Ω,R2).

Proof. Let {(un, vn)} be a Cerami sequence, the definition of Cerami sequence shows that

(1 + ∥(un, vn)∥)∥I ′(un, vn)∥ → 0, (4.9)

I(un, vn) → c. (4.10)

Thus, there exists εn > 0 and εn → 0 as n→ ∞ such that

|⟨I ′(un, vn), (φ,ψ)⟩| ≤
εn∥(φ,ψ)∥

1 + ∥(un, vn)∥
. (4.11)

Let (φ,ψ) = (un, vn) in (4.11), we have

|⟨I ′(un, vn), (un, vn)⟩| =
∣∣∣m(∥un∥2)∥un∥2 +m(∥vn∥2)∥vn∥2 −

∫
Ω
unHu(x, un, vn)−

∫
Ω
vnHv(x, un, vn)

≤ εn∥(un, vn)∥
1 + ∥(un, vn)∥

11



≤C.

Now, we will prove that {(un, vn)} is bounded. Suppose that {(un, vn)} is unbounded, then ∥(un, vn)∥ →
∞ as n → ∞. We let (ûn, v̂n) = (un,vn)

∥(un,vn)∥ , then ∥ûn, v̂n∥ = 1. Thus, there exists (û, v̂) ∈ H1
0 (Ω,R2)

such that 

(ûn, v̂n)⇀ (û, v̂) in H1
0 (Ω,R2),

(ûn, v̂n) → (û, v̂) in Lp(Ω,R2),

(ûn, v̂n) → (û, v̂) a.e in (Ω,R2).

Let ûn
− = min{0, ûn}, v̂n− = min{0, v̂n}. Obviously, {(ûn−, v̂n−)} is also bounded in H1

0 (Ω,R2).
Choosing (φ,ψ) = (ûn

−, v̂n
−) in (4.11) and ∥(un, vn)∥ → ∞, we get

o(1) =
⟨I ′(un, vn), (ûn−, v̂n−)⟩

∥(un, vn)∥

=
m(∥un∥2)⟨un, ûn−⟩+m(∥vn∥2)⟨vn, v̂n−⟩

∥(un, vn)∥
−
∫
Ω

Hu(x, un, vn)ûn
− +Hv(x, un, vn)v̂n

−

∥(un, vn)∥
dx

=
m(∥un∥2)⟨un, u−n ⟩+m(∥vn∥2)⟨vn, v−n ⟩

∥(un, vn)∥2
−
∫
Ω

Hu(x, un, vn)u
−
n +Hv(x, un, vn)v

−
n

∥(un, vn)∥2
dx

=
1

∥(un, vn)∥2
[
m(∥un∥2)⟨un, u−n ⟩+m(∥vn∥2)⟨vn, v−n ⟩

]
≥ 1

∥(un, vn)∥2
[
m(∥un∥2)∥u−n ∥2 +m(∥vn∥2)∥v−n ∥2

]
=m(∥un∥2)∥ûn−∥2 +m(∥vn∥2)∥v̂n−∥2

≥m0(∥ûn−∥2 + ∥v̂n−∥2).

We can find that ∥ûn−∥ → 0 and ∥v̂n−∥ → 0 as n → ∞. Thus, (ûn
−, v̂n

−) → (0, 0) a.e. in Ω, that
is, û ≥ 0 and v̂ ≥ 0 a.e. in Ω. Since ∥(un, vn)∥ → ∞, we have |(un, vn)| = ∥(un, vn)∥ · |(ûn, v̂n)| →
∞ a.e. in Ω+, where Ω+ = {x ∈ Ω : û(x) > 0 or v̂(x) > 0}. This together with (H1) can get

lim
n→∞

H(x, un, vn)

∥(un, vn)∥2θ
= lim

n→∞

H(x, un, vn)|(ûn, v̂n)|2θ

|(un, vn)|2θ
dx = ∞ a.e. in Ω+

Applying Fatou’s lemma,

lim
n→∞

∫
Ω

H(x, un, vn)

∥(un, vn)∥2θ
dx = lim

n→∞

∫
Ω

H(x, un, vn)|(ûn, v̂n)|2θ

|(un, vn)|2θ
dx = ∞. (4.12)

From (4.9) it follow that there exists a suitable constant C > 0 such that |I(un, vn)| ≤ C, then using
(1.3), we have ∫

Ω
H(x, un, vn)dx ≤1

2
M(∥un∥2) +

1

2
M(∥vn∥2) + C

≤1

2
M(1)∥un∥2θ +

1

2
M(1)∥vn∥2θ + C
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≤1

2
M(1)∥(un, vn)∥2θ + C.

It is easy to obtain that lim sup
n→∞

∫
Ω

H(x,un,vn)
∥(un,vn)∥2θ dx ≤ 1

2M(1)+ C
∥(un,vn)∥2θ , which contradicts (4.12). Hence,

Ω+ has zero measure, that is, (û, v̂) = (0, 0) a.e. in Ω. Let tn ∈ [0, 1] such that I(tnun, tnvn) =

max
0≤t≤1

I(tun, tvn), let ℘ ∈ (0,
√

2π
α0
), we see that

I(tnun, tnvn) ≥I(
℘

∥(un, vn)∥
· un,

℘

∥(un, vn)∥
· vn) = I(℘ûn, ℘v̂n)

=
1

2
M(∥℘ûn∥2) +

1

2
M(∥℘v̂n∥2)−

∫
Ω
H(x, ℘ûn, ℘v̂n)dx

Since Hu,Hv satisfy critical exponential growth, and according to the assumption (H3), there exists
constant C > 0, ε > 0 such that

|H(x,W )| ≤ C|W |2 + ε|W |qeα|W |2 (4.13)

By Hölder inequality, Young inequality, Lemma 2.2, we let W = (℘ûn, ℘v̂n)∫
Ω
|W |qeα|W |2 =℘q

∫
Ω
|(ûn, v̂n)|qeα℘

2|(ûn,v̂n)|2

≤C℘q∥(ûn, v̂n)∥qqr5
[ ∫

Ω
e
2r6α℘2∥(ûn,v̂n)∥2·| ûn

∥(ûn,v̂n)∥ |
2

+

∫
Ω
e
2r6α℘2∥(ûn,v̂n)∥2·| ûn

∥(ûn,v̂n)∥ |
2
] 1

r6

≤C℘q∥(ûn, v̂n)∥qqr5 , (4.14)

where 1
r5

+ 1
r6

and r6 > 1 close to 1, α > α0 close to α0 and r6α℘
2 < 2π. And since ∥(ûn, v̂n)∥ = 1, we

have 
∥v̂n∥2 ≥ ∥ûn∥2+∥v̂n∥2

2 , if ∥ûn∥ ≤ ∥v̂n∥.

∥ûn∥2 ≥ ∥ûn∥2+∥v̂n∥2
2 , if ∥ûn∥ > ∥v̂n∥.

This together with (4.13), (4.14), we let n→ ∞ and ℘→
√

2π
α0
,

I(tnun, tnvn) ≥
1

2
M(℘2∥ûn∥2) +

1

2
M(℘2∥v̂n∥2)− C℘2

∫
Ω
|(ûn.v̂n)|2dx− ε℘q∥(ûn, v̂n)∥qqr5

≥max{1
2
M(℘2∥ûn∥2),

1

2
M(℘2∥v̂n∥2)} − C℘2

∫
Ω
|(ûn.v̂n)|2dx− ε℘q∥(ûn, v̂n)∥qqr5

≥1

2
M(℘2 · ∥ûn∥

2 + ∥v̂n∥2

2
)− C℘2

∫
Ω
|(ûn.v̂n)|2dx− ε℘q∥(ûn, v̂n)∥qqr5

=
1

2
M(

1

2
℘2) + o(1)

>c. (4.15)

We know the fact that I(0, 0) = 0 and I(un, vn) → c, by (4.15) we can assume that tn ∈ (0, 1), we see
that ⟨I ′(tnWn), tnWn⟩ = 0 implies that

I(tnun, tnvn) =I(tnun, tnvn)−
1

2θ
⟨I ′(tnun, tnvn), (tnun, tnvn)⟩
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=
1

2
M(∥tnun∥2)−

1

2θ
m(∥tnun∥2)∥tnun∥2 +

1

2
M(∥tnvn∥2)−

1

2θ
m(∥tnvn∥2)∥tnvn∥2

+
1

2θ

∫
Ω
[Hu(x, tnun, tnvn)tnun +Hv(x, tnun, tnvn)tnvn]dx−

∫
Ω
H(x, tnun, tnvn)dx

≤ 1

2θ
[θM(∥un∥2)−m(∥un∥2)∥un∥2] +

1

2θ
[θM(∥vn∥2)−m(∥vn∥2)∥vn∥2]

+
1

2θ

∫
Ω
[Hu(x, un, vn)un +Hv(x, un, vn)vn]dx−

∫
Ω
H(x, un, vn)dx

=I(un, vn)−
1

2θ
⟨I ′(un, vn), (un, vn)⟩

≤c,

which contradicts (4.15). Consequently, {(un, vn)} is bounded in H1
0 (Ω,R2).

5 Proof of Theorem 1.1

Lemma 5.1. [8] Suppose Ω is a bounded domain in R2. Let {un} be in L1(Ω) such that un → u in L1(Ω)
and f(x, s) be a continuous function. Then f(x, un) → f(x, u) in L1(Ω) provided that f(x, un) ∈ L1(Ω)
for all n and

∫
Ω |f(x, un)un|dx ≤ C.

Proof of Theorem 1.1: Without loss of generality, for some (u0, v0) ∈ H1
0 (Ω,R2), we have

(un, vn)⇀ (u0, v0) in H1
0 (Ω,R2),

(un, vn) → (u0, v0) in Lp(Ω,R2),

(un, vn) → (u0, v0) a.e in (Ω,R2).

(5.1)

From (4.9) and (4.10), it follows that∫
Ω
WnHW (x,Wn)dx ≤ C and

∫
Ω
H(x,Wn)dx ≤ C. (5.2)

Moreover, Wn → W0 for almost every x ∈ Ω and ∥Wn∥ ≤ C, we have
∫
Ω |H(x,Wn)Wn|dx ≤ C. By

Lemma5.1 and generalized Lebesgue dominated convergence theorem, we can get
∫
ΩH(x, un, vn) →∫

ΩH(x, u, v). We can suppose that ∥un∥ → ρ1 > 0 and ∥vn∥ → ρ2 > 0 because of the boundness of
{(un, vn)}. Thus, I ′(un, vn) → 0 implies that

m(ρ21)

∫
Ω
∇u0∇φdx+m(ρ22)

∫
Ω
∇v0∇ψdx =

∫
Ω
(φ,ψ)HW (x,W )dx, ∀(φ,ψ) ∈ C∞

0 (Ω,R2). (5.3)

We want to prove (u0, v0) is a solution of this problem, it suffices to show that ρ1 = ∥u0∥ and ρ2 = ∥v0∥.
This together with semicontinuity of norm show that I(W0) ≤ c. Next, we prove the case of I(W0) < c
cannot occur. If I(W0) < c, we have ∥u0∥2 < ρ21, ∥v0∥2 < ρ22 and

1

2
M(ρ21) +

1

2
M(ρ22) = lim

n→∞
[
1

2
M(∥un∥2) +

1

2
M(∥vn∥2)] = c+

∫
Ω
H(x,W0)dx. (5.4)
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Then
2c− 2I(W0) =M(ρ21)−M(∥u0∥2) +M(ρ22)−M(∥v0∥2) (5.5)

Otherwise, we claim thatm(∥u0∥2)∥u0∥2+m(∥v0∥2)∥v0∥2 ≥
∫
ΩW0HW (x,W0)dx. Suppose by contradic-

tion that m(∥u0∥2)∥u0∥2 +m(∥v0∥2)∥v0∥2 <
∫
ΩW0HW (x,W0)dx, that is, ⟨I ′(W0),W0⟩ < 0. According

to (1.4) and the assumption of (M1), we obtain that

⟨I ′(tW0),W0⟩ ≥ m0∥u0∥2t2 +m0∥v0∥2t2 − tµ∥W0∥µ+1
µ+1 > 0,

for µ > 2 and t sufficiently small. The information above tell us that there exists σ ∈ (0, 1) such that
⟨I ′(σW0),W0⟩ = 0. This implies that σW0 ∈ N . According to (1.4), (H2), semicontinuity of norm and
using Fatou Lemma, we can get

c ≤b ≤ I(σW0) = I(σW0)−
1

2θ
⟨I ′(σW0), σW0⟩

=
1

2θ
[θM(∥σu0∥2)−m(∥σu0∥2)∥σu0∥2] +

1

2θ
[θM(∥σv0∥2)−m(∥σv0∥2)∥σv0∥2]

+
1

2θ

∫
Ω
[HW (x, σW0)σW0 − 2θH(x, σW0)]dx

<
1

2θ
[θM(∥u0∥2)−m(∥u0∥2)∥u0∥2] +

1

2θ
[θM(∥v0∥2)−m(∥v0∥2)∥v0∥2]

+
1

2θ

∫
Ω
[HW (x,W0)W0 − 2θH(x,W0)]dx

≤ lim inf
n→∞

[
1

2
M(∥un∥2)−

1

2θ
m(∥un∥2)∥un∥2] + lim inf

n→∞
[
1

2
M(∥vn∥2)−

1

2θ
m(∥vn∥2)∥vn∥2]

+ lim inf
n→∞

∫
Ω
[
1

2θ
HW (x,Wn)Wn −H(x,Wn)]dx

≤ lim
n→∞

[I(Wn)−
1

2θ
⟨I ′(Wn),Wn⟩]

=c,

this case is impossible. This together with (1.4) and (H2), we can get following estimate

I(W0) ≥
1

2θ
[θM(∥u0∥2)−m(∥u0∥2)∥u0∥2] +

1

2θ
[θM(∥v0∥2)−m(∥v0∥2)∥v0∥2]

+
1

2θ

∫
Ω
[HW (x,W0)W0 − 2θH(x,W0)]dx

≥0. (5.6)

Therefore, above inequality and the fact of c < 1
2M( π

α0
) and (5.5) yield that

M(ρ21) +M(ρ22) < M(
π

α0
) +M(∥u0∥2) +M(∥v0∥2).

By semicontinuity of norm, we have ∥u0∥2 ≤ ρ21, ∥v0∥2 ≤ ρ22. And applying the condition (M2), we can
get

M(ρ21) < M(
π

α0
) +M(∥u0∥2) and M(ρ22) < M(

π

α0
) +M(∥v0∥2),
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this implies that ρ21 < M−1[M( π
α0
)+M(∥u0∥2)] and ρ22 < M−1[M( π

α0
)+M(∥v0∥2)]. We can conclude

that

ρ21 + ρ22 <
2π

α0
+ ∥u0∥2 + ∥v0∥2.

Defining An = Wn
∥Wn∥ and A0 = W0√

ρ2+σ2
, it easily follows An ⇀ A0 in H1

0 (Ω,R2) and ∥A0∥ ≤ 1, by

Lemma 2.4 we have

sup
n∈N

∫
Ω
eβ|An|2dx < +∞, ∀β < 2π

1− ∥An∥2
. (5.7)

Above inequality together with ρ21 + ρ22 =
ρ21+ρ22−∥W0∥2

1−∥A0∥2 shows that ρ21 + ρ22 <
2π
α0

1−∥A0∥2 . Therefore, there

exists β > 0 such that α0∥Wn∥2 < β < 2π
1−∥A0∥2 for n sufficiently large. For q > 1 close to 1, α > α0

close to α0, we also have qα∥Wn∥2 ≤ β < 2π
1−∥A0∥2 , thus consider (5.7), we can get∫

Ω
eqα|Wn|2dx ≤

∫
Ω
eβ|An|2dx ≤ C.

Hence, using Hölder inequality, Trudinger-Moser inequality, (H3), (5.1) and Sobolev embedding,∣∣∣ ∫
Ω
HW (x,Wn)(Wn −W0)dx

∣∣∣ ≤C ∫
Ω
|Wn| · |Wn −W0|dx+ C

∫
Ω
|Wn −W0| · eα|Wn|2dx

≤C∥Wn∥r7∥Wn −W0∥r8 + C∥Wn −W0∥r9
[ ∫

Ω
e
r10α∥Wn∥2·| Wn

∥Wn∥ |dx
] 1

r10

→0,

where 1
r7

+ 1
r8

= 1, 1
r9

+ 1
r10

. According to the fact that ⟨I ′(Wn),Wn −W0⟩ → 0, we get

m(∥un∥2)
∫
Ω
∇un · ∇(un − u0)dx+m(∥vn∥2)

∫
Ω
∇vn · ∇(vn − v0)dx→ 0. (5.8)

However, the boundness of {(un, vn)} shows that

m(∥un∥2)
∫
Ω
∇un · ∇(un − u0)dx =m(∥un∥2)∥un∥2 −m(∥un∥2)

∫
Ω
∇un∇u0dx

→m(ρ21)ρ
2
1 −m(ρ21)∥u0∥2, (5.9)

m(∥vn∥2)
∫
Ω
∇vn · ∇(vn − v0)dx =m(∥vn∥2)∥vn∥2 −m(∥vn∥2)

∫
Ω
∇vn∇v0dx

→m(ρ22)ρ
2
2 −m(ρ22)∥v0∥2. (5.10)

Thus, from (5.8), (5.9), (5.10), we can get ρ1 = ∥u0∥, ρ2 = ∥v0∥. This shows that we have I(W0) = cM ,
which contradicts with our assumption. Therefore, we have

M(ρ21) +M(ρ22) =M(∥u0∥2) +M(∥v0∥2),

that is,
ρ1 = ∥u0∥ and ρ2 = ∥v0∥.
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Thus, we have un → u0 and vn → v0 in H1
0 (Ω). From (5.3) and above information we can conclude

that

m(∥u0∥2)
∫
Ω
∇u0∇φdx+m(∥v0∥2)

∫
Ω
∇v0∇ψdx =

∫
Ω
(φ,ψ)Hw(x, u0, v0)dx, ∀(φ,ψ) ∈ C∞

0 (Ω,R2).

(5.11)
Finally, we need to prove u0 ̸= 0 and v0 ̸= 0. If u0 = 0 and v0 ̸= 0, then

∫
ΩH(x, u0, v0) = 0. By (4.19)

we can get that
1

2
M(∥un∥2) +

1

2
M(∥vn∥2) → c <

1

2
M(

2π

α0
)

This means that ∥Wn∥2 = ∥un∥2 + ∥vn∥2 < 2π
α0

because of M is increasing. So, there exists n0 ∈ N and

β > 0 such that α0||Wn||2 < β < 2π for all n > n0. We can choose r′ > 1 close to 1 and α > α0 close to
α0 such that we still have r′α||Wn||2 ≤ β < 2π. Applying Lemma2.2, Sobolev embedding and Hölder
inequality, we have∣∣ ∫

Ω
Wn ·HW (x, un, vn)dx

∣∣
≤ (λm0 − ε)

∫
Ω
|Wn|2dx+ C1

∫
Ω
|Wn|eα|Wn|2dx

≤ (λm0 − ε)||Wn||22 + C2||Wn|| r′
r′−1

[ ∫
Ω
e
2r′α||Wn||2

(
un

||Wn||

)2
+

∫
Ω
e
2r′α||Wn||2

(
vn

||Wn||

)2] 1
r′

≤ (λm0 − ε)||Wn||22 + C3||Wn|| r′
r′−1

→ 0 as n→ +∞.

We know that ⟨I ′(Wn),Wn⟩ = M(||un||2)||un||2 +M(||vn||2)||vn||2 −
∫
ΩWn · H(x,Wn)dx → 0. This

information together with (M1) shows that ||un||2 → 0 and ||vn||2 → 0. Obviously, this contradict
with our assumption. And we can prove the case u0 ̸= 0, v0 = 0 and the case u0 = 0, v0 = 0 can not
occur by same way. Thus, we say that W0 = (u0, v0) is a nontrival nonnegative ground state solution
of problem (1.1).
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[7] D.G de Figueiredo, J.M. do Ó, B. Ruf, On an inequality by Trudinger and J. Moser and related
elliptic equations, Comm. Pure Appl. Math. 55 (2002), 135-152.

[8] D.G. de Figueiredo, O.H. Miyagaki and B. Ruf, Elliptic equations in R2 with nonlinearities in the
critical growth range, Calc. Var. 3 (1995), 139-153.

[9] M. de Souza, On a singular class of elliptic systems involving critical growth in R2, Nonlinear
Analysis: Real World Applications 12(2) (2011): 1072-1088.

[10] G.M. Figueiredo, Existence of positive solution for a Kirchhoff problem type with critical growth
via truncation argument, J. Math. Anal. Appl. 401(2013), 706-713.

[11] G.M. Figueiredo, U.B. Severo, Ground state solution for a Kirchhoff problem with exponential
critical growth, Milan J. Math. Vol. 84 (2016), 23-39.

[12] L. Jeanjean, On the existence of bounded Palais-Smale sequence and applications to a Landesman-
Lazer problem set on RN . Proc Roy Soc Edinburgh, 129A(1999), 787-809.

[13] Kirchhoff, G. Mechanik, Teuner, Leipzig, 1883.

[14] N. Lam, G. Lu, Elliptic equations and systems with subcritical and critical exponential growth
without the Ambrosetti-Rabinowitz condition. J. Geom Anal, 24(2014), 118-143.

[15] N. Lam, G. Lu, N-Laplacian Equations in RN with Subcritical and Critical Growth Without the
Ambrosetti-Rabinowitz Condition. Adv. Nonlinear Stud. 13(2)(2013), 289-308.

[16] G.B. Li, H.S. Zhou, Asymptotically linear Dirichlet problem for the p-Laplacian. Nonlinear Anal,
43(2001), 1043-1055.

[17] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case.
I, Rev. Mat. Iberoamericana 1 (1985), 145-201.

[18] J. Moser, A sharp form of an inequality by N. Trudinger, Ind. Univ. Math. J. 20 (1971),1077-1092.

[19] M. Schechter, W.M. Zou, Superlinear problems, Pacific J Math, 214(2004), 145-160.

18


