
Sustainable Packaging of Quantum Chemistry
Software with the Nix Package Manager

Markus Kowalewski∗, Phillip Seeber†

October 13, 2021

Abstract

The installation of quantum chemistry software packages is com-
monly done manually and can be a time-consuming and complicated
process. An update of the underlying Linux system requires a rein-
stallation in many cases and can quietly break software installed on
the system. In this paper, we present an approach that allows for
an easy installation of quantum chemistry software packages, which
is also independent of operating system updates. The use of the Nix
package manager allows building software in a reproducible manner,
which allows for a reconstruction of the software for later reproduction
of scientific results. The build recipes that are provided can be readily
used by anyone to avoid complex installation procedures.

∗markus.kowalewski@fysik.su.se, Department of Physics, Stockholm University, Swe-
den

†phillip.seeber@uni-jena.de, Institute of Physical Chemistry, Friedrich Schiller Univer-
sity Jena, Germany

1

1 Introduction

Open-source quantum chemistry program packages are usually compiled man-

ually on a work station, single compute node, or a high-performance com-

puting system. This process can be time-consuming and complex, especially

when it has to be carried out for multiple programs. Such a manual in-

stallation is in general hard to replicate, unless its preparation and the use

of configuration flags has been meticulously documented. A major problem

with such an approach is that the program package will depend on operating

system libraries, unless it has been linked completely statically. As a con-

sequence, an update of the operating system or any other dependency may

quietly break the software package and eventually make a rebuild necessary.

Another issue that arises from such a manual build strategy is the fact

that scientific results can not be exactly reproduced. To rebuild an old version

in exactly the same way, one needs also the exact states of all dependencies.

This problem can in principle be solved by containerized solutions1, such

as docker2 or singularity3, but only works as long as the container image is

preserved. Another downside of containerized solutions is that they usually

ship with numerous system libraries which need to be updated or reproduced

in case of an image rebuild.

The later reproduction of scientific results that were obtained via a com-

puter program requires not only to follow the computational procedure, but

also the exact same version of the program. This can only be guaranteed

if one is able to reproduce the executable of the program. Package man-

agers, which aim at creating reproducible build environments, are Nix4 and

Guix5,6. These package managers are built around functional languages,

2

which are used to create build recipes (derivations). A derivation becomes

a functional expression with inputs (e.g., other derivations) and outputs (a

path with the build product), which are tracked with cryptographic hashes.

This approach to package management allows to uniquely identify a particu-

lar build of a program and provides all prerequisites to accurately reproduce

the build at a later point in time. Exact binary reproducibility is difficult

to achieve with traditional package managers, but can be achieved with the

mechanisms provided by Nix.

In this paper, we show how the Nix package manager can be used to

manage software in a sustainable and reproducible way. Our approach focuses

mainly on quantum chemistry software packages, but can be applied to any

software. We will introduce the NixOS-QChem overlay, which is an add-on

to the nixpkgs collection for integrating quantum chemistry software into

nixpkgs environment and providing optimized versions of the packages. The

repository provides build recipes for open source and proprietary software

packages.

The paper is organized as follows. In sec. 2 we give a general overview

of the Nix package manager and its features. In sec. 3 we describe the

approach to integrate quantum chemistry software packages along with a list

of packaged software (sec. 3.1), followed by a set of examples in sec. 3.2.

2 Overview over the Nix package manager

The Nix package manager4 is built around the Nix functional language7 and

a set of packages can be represented by a set of functions, which eventually

3

evaluate to a file system path. A build recipe is called a derivation in the Nix

terminology. A derivation is a function, that can have one or more inputs

and one or more outputs. The inputs are commonly other derivations, that

provide dependencies, such as libraries. The output is a path to a final build

product, such as the binaries of a package. The name of the output path

is derived from a hash function over the derivation itself and all its inputs,

which creates a unique path name.

The nix package manager stores its packages (i.e. its output paths) under

a fixed path in the file system, /nix/store, which is simply called the nix

store. Packages are not allowed to refer to dependencies outside the nix

store, thus avoiding dependencies with the system software. All builds that

are stored in the nix store are immutable and can not be changed after a

build is completed, thus guaranteeing full stability of a given package.

The dependencies between nix store paths are tracked in a local database

for proper handling by the Nix package manager. Every package (and every

variation of it) is stored under a unique path name. As a result, many

versions or variations of the same package can be installed in parallel in

the nix store without interfering with the operating system’s packages or

interference between Nix store paths. Nix provides several mechanisms that

allow for a user-friendly composition of the paths in the nix store into an

environment for individual users. Only a selected set of nix store paths is

projected into a user environment. Packages are either built on demand or

downloaded from a binary cache, thus making the manual installation of a

package unnecessary. No installation procedure by an administrator is thus

necessary. This enables the end-user to use packaged software and create

4

their own builds.

Nix is, by design, a package manager which builds packages from source.

If the output of a derivation is not available in the local nix store or in

a remote binary cache, it will be built from source. This means that if a

dependency of a package changes, the package will be rebuilt and potential

problems with the update are either avoided or uncovered.

Note that the Nix approach differs substantially from the use of con-

tainers, which only statically bundle dependencies but provide no further

mechanism to update, rebuild and maintain the contents of a container.

The second important component, besides Nix, is the nixpkgs package

collection8, which provides over 64,000 packages in the form of derivations9

(including several quantum chemistry programs) and provides the basis for

our work. The packages provided by the nixpkgs package collection are also

available in form of binaries through a binary cache and thus do not need to

be build from source by the end-user. This package set can be extended by

the user with the help of overlays that allows us to add, modify, or replace

packages. We will introduce NixOS-QChem overlay in sec 3, and show how

it is used to add and optimize packages.

2.1 Nix in an HPC environment

In this section, we address the challenges that arise in a high performance

computer cluster environment and how they can be addressed with Nix.

Environment modules10 are an approach commonly used by super com-

puting centers and on scientific computer clusters to create on-demand en-

vironments for users. A module sets environment variables pointing the

5

requested package paths upon a module load <package> call. However,

a significant shortcoming of this approach is that it does not track depen-

dencies between modules or any dependencies with system libraries. As a

consequence, even a minor system update, addressing only security updates,

may silently break installed packages or software compiled by a user.

The Nix package manager explicitly addresses these shortcomings. Users

can choose to build their own packages with Nix or use a centrally provided

package set. These user builds are independent of the operating system’s

software or centrally installed packages. The immutability of the nix store

guarantees that a dependency on an existing package (nix store path) can

never be quietly replaced. This allows users to pin a package and all its de-

pendencies to a fixed version, providing stability and reproducibility of the

binaries. When a dependent derivation is replaced or upgraded, it forces the

rebuild of all derivations which depend on it, ensuring a valid build. The Nix

package manager also provides an easy path for portability: packages can be

transferred between different compute cluster systems (assuming that the nix

package manager is installed on both systems) either as binary or by automat-

ically rebuilding the required derivations from their source. Nix store paths

and their dependencies can be transferred between machines by means of a

custom copy command (nix copy --[to|from] <machine> <store path>).

Note that a proper installation of the nix package manager requires ad-

ministrator rights and thus has to be carried out by a system administrator.

The Gricad facility in Grenoble has demonstrated11 how the nix package

manager can be used on a computer cluster with a shared nix store. Nix has

been used for example at CERN to distribute software for LHCb12.

6

3 Structure of the Overlay and nixpkgs

To customise nixpkgs for use with quantum chemistry software packages, we

make use of the overlay mechanism, which allows us to extend and modify

the package set provided by nixpkgs. Note that many scientific libraries and

some quantum chemistry packages are already packaged in nixpkgs. These

packages can be used directly after the installation of the Nix package man-

ager. Our overlay, NixOS-QChem 13, is thus tightly coupled to nixpkgs. The

overlay serves multiple purposes: it selects quantum chemistry related soft-

ware packages and adds additional quantum chemistry software packages that

are not available in nixpkgs. The overlay also serves as an incubator for new

packages that need to be matured first with respect to its integration into the

nixpkgs environment. This includes packages that have non-standard build

systems and are thus more difficult to integrate. The aim is to integrate

useful variety of quantum chemistry packages into nixpkgs collection and to

maintain a high code quality of the corresponding nixpkgs guidelines.

NixOS-QChem focuses on providing derivations for the x86-64 CPU archi-

tecture on the Linux platform, as this is currently the most common architec-

ture for scientific high-performance computing14. The overlay also provides

optional performance optimizations, which make use of modern x86-64 pro-

cessors, that are not provided by nixpkgs itself due to compatibility reasons.

The optimizations allow for setting custom compiler flags and automatically

select optimization flags provided by individual packages.

All packages provided through the overlay are projected into a package

subset (name prefix: qchem), which allows to also optimize basic libraries,

such as the fftw library15, without causing the rebuild of non-scientific soft-

7

ware packages. Open source packages can be downloaded automatically from

the internet, but proprietary packages which require a license need to be pro-

vided by the user. For these cases, the overlay also provides a mechanism

which allows for downloading from a custom, internal location. As a result,

NixOS-QChem can provide derivations for commercial packages - such as

Turbomole, Molpro and others - as well as packages that require user regis-

tration - such as CFour, MRCC, and ORCA16–18. While such packages often

exclude the hurdles of compilation, packaging them enhances their compos-

ability.

Composing different major software packages in a single, coherent envi-

ronment often proves difficult: the problems range from different providers

of MPI and BLAS/LAPACK implementations for different codes and name

conflicts in a global $PATH (e.g. libblas.so, mpiexec, ...), over different ver-

sion constraints of the same dependencies (e.g. different version constraints

of numpy19 in different python packages, that cannot be fullfilled simultane-

ously). In those cases correct behaviour can become dependent on detailed

choices, such as in which order different environment modules are loaded.

For selected packages, we have implemented automated tests in the over-

lay, which ensure that the basic functionality of a package is still given after

an update or a rebuild. These tests are less comprehensive than the test

suites provided by individual quantum chemistry packages, but aim at un-

covering potential problems in connection with dependencies that have been

observed during the integration.

The nixpkgs repository provides a simple mechanism to switch between

libraries, either on a per-package basis or globally, for the whole package

8

set. One example is the message passing interface system (MPI)20, which

is provided by different implementations21. The default implementation is

OpenMPI22 but it can be readily replaced by the overlay mechanism. The

following example shows the Nix code for an overlay that replaces OpenMPI

globally with MVAPICH23 and builds the CP2K24 package explicitly with

MPICH25:

self: super: {
mpi = super.mvapich;
cp2k = self.cp2k.override { mpi = super.mpich; };

}

Linear algebra libraries, such as BLAS and LAPACK can be replaced in

a similar way. Nixpkgs has a wrapper for BLAS and LAPACK26,27, which

provides custom libraries through the standard interface. The default imple-

mentation is OpenBLAS28, but Intel’s MKL29 or AMD’s blis/libFlame30 are

also available. The following example demonstrates how an overlay can be

used to replace BLAS and LAPACK with MKL:

self: super: {
blas = super.blas.override {

blasProvider = super.mkl;
};
lapack = super.lapack.override {

lapackProvider = super.mkl;
};

}

The Nix code in the NixOS-QChem overlay13 is structured as follows:

• default.nix: the base of the overlay

• cfg.nix: defines all configuration options for the overlay

• nixpkgs-opt.nix: defines all packages from the nixpkgs collections

9

that are projected into the qchem subset and are subject to processor

dependent optimisations.

• tests/: folder with tests for various packages.

• examples/: folder with examples showing different configuration sce-

narios.

• pkgs/: contains sub folders with derivations for additional packages.

• install.sh: installs nix, nixpkgs and the NixOS-QChem overlay.

3.1 List of Packaged Software

In combination, nixpkgs and NixOS-QChem provide a set of packages for

quantum chemistry, molecular dynamics, and quantum dynamics (see table

1 for a subset of packages) that can be used directly in a production environ-

ment. The Nix derivations describe how to build software from source, and

the builds are executed on demand. The package set is not restricted to free

software and includes also derivations for proprietary packages. Many pack-

ages profit from this integrated packaging, and composing coherent runtime

environments is simplified. Noteworthy examples for improved composabil-

ity are the Pysisyphus optimiser31, which wraps Turbomole, ORCA, and

Psi4 among others, or the polarizable LICHEM QM/MM implementation,

which relies on the Tinker MM engine and the Gaussian, NWChem, and Psi4

quantum chemistry codes. The SHARC surface hopping code, which depends

on electronic structure codes, can be used conveniently from NixOS-QChem.

SHARC requires deprecated Python2 as well as free and proprietary quantum

10

chemistry engines (BAGEL, Molcas, ORCA, Turbomole, Gaussian, Molpro).

Using Nix an isolated environment with Python2 dependencies is available,

quantum chemistry engines are directly provided to the SHARC scripts, and

proper environment variables are set automatically, thus avoiding the error

prone and difficult installation of multiple large quantum chemistry codes by

the user.

To the best of the authors knowledge, the support for this variety of free

and proprietary packages makes NixOS-QChem unique among such packag-

ing efforts. With the DebiChem project of the Debian GNU/Linux distri-

bution32, another major packaging effort for chemical software exists. While

the DebiChem team often provides valuable knowledge and patches, the ar-

chitecture and philosophy of Debian packaging prevents clean isolation and

tight integration between packages. Note that traditional package managers

such as the Debian package manager are meant to be operated by system

administrators and thus provide no straight forward way for end-user instal-

lations on a shared computer cluster.

3.2 Usage examples

We will outline the basic installation procedure of the Nix package manager

and the overlay for a simple setup on a single machine. For the setup on a

compute cluster, we refer to the setup of the Gricad team11 for a shared nix

store. A multi-user installation of Nix can be obtained with the following

commands:

To be executed by an admin
Multi -user installation of Nix.

11

Table 1: List of selected quantum chemistry packages and utilities provided

by the overlay.

Package Attribute Reference

avogadro2-1.94.0 qchem.avogadro2 33

bagel-1.2.2 qchem.bagel 34,35

cfour-2.1 qchem.cfour 16

cp2k-8.2.0 qchem.cp2k 24

crest-2.11.1 qchem.crest 36

dalton-2020.0 qchem.dalton 37

ergoscf-3.8 qchem.ergoscf 38

gpaw-21.6.0 qchem.gpaw 39

gromacs-2020.4 qchem.gromacs 40

nwchem-7.0.2 qchem.nwchem 41

molden-6.3 qchem.molden 42

molpro-2021.2.0 qchem.molpro 17

mrcc-2020.02.22 qchem.mrcc 43

octopus-10.3 qchem.octopus 44

openmolcas-21.06 qchem.molcas 45

orca-5.0.1 qchem.orca 18

pcmsolver-1.3.0 qchem.pcmsolver 46

psi4-1.4 qchem.psi4 47

pyscf-1.7.6.post1 qchem.python3.pkgs.pyscf 48

pysisyphus-0.7.2 qchem.pysisyphus 31

quantum-espresso-6.6 qchem.quantum-espresso 49

sharc-2.1.1 qchem.sharc 50

siesta-4.1-b3 qchem.siesta 51

tinker-8.8.3 qchem.tinker 52

turbomole-7.5.1 qchem.turbomole 53

vmd-1.9.3 qchem.vmd 54

xcfun-2.1.1 qchem.xcfun 55

xtb-6.4.1 qchem.xtb 56

12

Will request root privileges for the inital setup.
sh $> curl -L https :// nixos.org/nix/install |

sh -s -- --daemon

To be executed by a user
Setup of a Nix package channel
sh $> nix -channel --add \

https :// nixos.org/channels/nixpkgs -unstable \
nixpkgs

sh $> nix -channel --update

Make user channels available
sh $> echo ’export NIX_PATH=nixpkgs =\
 $HOME/.nix -defexpr/channels/nixpkgs\
 :$HOME/.nix -defexpr/channels\
 :/nix/var/nix/profiles/per -user/root/channels ’\

>> ~/.bashrc
sh $> source ~/.bashrc

These commands will install Nix in multi-user mode; a Nix daemon will

listen for evaluation requests from the Nix commands and execute builds or

download the store paths from a binary cache.

The packages in the NixOS-QChem can be accessed with different meth-

ods. We will discuss two main methods here: as a direct system-wide or

user-installed overlay to the nixpkgs channel and explicit use as a project-

based package source. The first method allows for a direct use of the latest

package versions, while the second method allows to fix the version on a

per-project basis. Other options to access NixOS-QChem overlay packages,

which we will not discuss here further in detail, are the Nix User Repositories

(NUR)57, the experimental Nix flakes feature, or a customised Nix channel.

None of the above variants is mutual exclusive and each one can be useful

for different scenarios. NUR and the channel mechanism provide convenient

automatic updates, while flakes provide hermetic expressions, that are not

influenced by the runtime environment, and the implicit overlay yields a

convenient compostion of the package set.

13

The NixOS-QChem overlay can be used as an implicit overlay by placing

the repository in a directory reconginzed by nixpkgs :

sh $> mkdir -p ~/. config/nixpkgs/overlays
sh $> git clone \

https :// github.com/markuskowa/NixOS -QChem.git \
~/. config/nixpkgs/overlays/qchem

Packages from the overlay are then available for use via Nix commands,

e.g. nix-shell -p qchem.xtb. Updates to the overlay happen explicitly

by calling git pull. The behaviour of nixpkgs and NixOS-QChem can be

controlled by settings in ~/.config/nixpkgs/config.nix, which allows to

enabl the build of proprietary packages and apply CPU related tuning op-

tions. The Nix code of a configuration that enables AVX2 performance tuning

for CPUs from the Haswell generation onwards, and allows using proprietary

packages, is given by the following example:

{
config = {

Attempt build of packages
with non open source licences
allowUnfree = true;
qchem -config = {

Enable AVX2 CPU optmisations
(Haswell CPU target).
optAVX = true;
Molpro license token if available
licMolpro = null;

};
}

}

Nix can serve different use cases for computational tasks: installing a

package in the user’s environment, launching an isolated shell, interactive

use of a program, or the noninteractive execution of programs in a resource

manager like SLURM. To exemplify some common use cases, we will refer to

14

illustrative examples in the following.

Interactive Program Usage (Turbomole) : Turbomole uses a set of

interactive programs, such as define and eiger, to create input files and

analyse output files. Furthermore, Turbomole requires environment variables

such as $TURBODIR and $PARA_ARCH to be set. An interactive nix-shell

makes the Turbomole package available and reduces the required user input,

by wrapping Turbomole with appropriate environment variables and settings:

starts a interative nix -shell with Turbomole
sh $> nix -shell -p qchem.turbomole

Turbomole commands can directly be used
normal interaction with define
e.g. set up a RI-ADC(2) calculation
nix -shell $> define
ground state calculation
nix -shell $> ridft -smpcpus 4
excited state calculation
nix -shell $> ricc2 -smpcpus 4
interactive overview of results
nix -shell $> eiger
will drop back to normal bash
nix -shell $> exit

Non-Interactive Calculation (Molcas) A noninteractive, Molcas cal-

culation with OMP parallelism can directly be executed from a nix-shell.

The PyMolcas driver requires specfic Python packages, such as six, to be

installed. Instead of globally installing Python dependencies, the Nix deriva-

tion wraps the python scripts in an isolated python runtime environment and

can be used directly:

sh $> nix -shell \
-p qchem.molcas \
--run "OMP_NUM_THREADS =4

pymolcas molcas.inp"

15

Interactive Python Session (MEEP) Some scientific Python packages

may be used interactively within an interpreter, e.g. to experiment with

different settings. Packages such as MEEP58, that provide a Python API

around a C/C++ code are often difficult to install; they are not available

from PyPi and require both Python and C/C++ tooling. MEEP can be

used interactively from Python within a nix-shell:

sh $> nix -shell \
-p python3 python3.pkgs.numpy \

qchem.python3.pkgs.meep \
--run "python3"

python3 $> import numpy as np
python3 $> import meep as mp
python3 $> # ...

Project-Based Calculation Environment with Fixed Versions Com-

putational environments, that are associated with a specific project, can

strongly benefit from fixing all package versions in a custom environment.

Projects can use different versions or variations of programs without inter-

fering with a system level package set. Such a computational environment

can in principle be defined in a single nix file and thus be easily shared be-

tween coworkers. Fixing all program versions in such an environment also

allows to reproduce its results at a later point in time. Such an environ-

ment can be described by a shell.nix file, which defines an environment

for a nix-shell. To achieve reproducibility, the versions of nixpkgs and

NixOS-QChem must be fixed:

let
Reproducible , pinned import of the
NixOS -QChem overlay function
gh = "https :// github.com";

16

qchemOvl = import (builtins.fetchGit {
url = "${gh}/ markuskowa/NixOS -QChem.git";
name = "NixOS -QChem_2021 -09 -25";
rev = "9604 e9b7f8d6ea68f07d621e1f70a9ebf857efa0";
ref = "master";

});

nixpkgs = import (builtins.fetchGit {
url = "${gh}/ NixOS/nixpkgs.git";
name = "nixpkgs_2021 -09 -25";
rev = "a3a23d9599b0a82e333ad91db2cdc479313ce154";
ref = "nixpkgs -unstable";

});

pkgs = nixpkgs {
overlays = [qchemOvl];
config = { ... };

};

in with pkgs; mkShell { ... }

Here, the fetchGit function is used to access a specific version of the overlay,

and the nixpkgs package set (fixed by the respective rev statements). Alter-

natively, the Niv tool59 provides a convenient command line interface to auto-

mate the version fixing and update processes. The overlay and configuration

settings are applied explicitly in the shell.nix file. For the rather verbose,

full example of the shell.nix file and the usage of Niv, we refer to60. The

shell.nix file can either be referenced implicitly by executing nix-shell in

the same directory, or explicitly by nix-shell /path/to/shell.nix.

Reproducible Jupyter Notebooks Jupyter notebooks61 are commonly

used tools for experimentation with codes and methods, the development of

scientific ideas, as well as for visualization of data. However, distributing

Jupyter notebooks can be difficult, since the environment and all dependen-

cies, such as Python packages, also needs to be reproduced. Like in the

previous example, nix-shell can be used to make Jupyter notebooks repro-

17

ducible. Using version fixing, as in the example above, a Jupyter environment

for GPAW simulations can be formulated in a shell.nix file:

let
qchemOvl = ...
pkgs = ...
pythonWithPackages =

pkgs.qchem.python3.withPackages
(p: with p; [

numpy
jupyterlab
ipympl
gpaw

]);
in with pkgs; mkShell {

buildInputs = [pythonWithPackages];
shellHook = "jupyter -lab";

}

Executing nix-shell will then directly open the Jupyter-Lab interface in the

browser and allow using packages such as GPAW, along with Python and all

the necessary Python packages. The complete examples can be found in

Ref.60.

Self-Contained Programs and Shell Scripts The nix-shell command

can be used as the shebang line of scripts. This allows to write small, re-

producible, self-contained scripts and programs, or to write scripts in the

scope of a project-associated shell.nix file. The following example shows a

self-contained Python script for data visualization:

#! /usr/bin/env nix -shell
#! nix -shell -i python3
#! nix -shell -p python3Packages.numpy
#! nix -shell -p python3Packages.matplotlib

import numpy as np
import matplotlib.pyplot as plt

xs = np.linspace(-2, 2, num =100)
plt.plot(xs , np.exp(-xs **2))

18

plt.show()

Note, that here we use the latest versions of numpy and matplotlib as they

are provided directly by nixpkgs.

This mechanism can also be used to write SLURM (or other resource

management system) scripts for working in a computer cluster environment.

Such batch scripts can either pull in packages via nix-shell’s -p option or

can be combined with a project-associated shell.nix file

#! /usr/bin/env nix -shell
#! nix -shell /path/to/project/shell.nix -i bash

#SBATCH --ntasks =360
#SBATCH --ntasks -per -node =36
#SBATCH --nodes =10
#SBATCH --mem=0
#SBATCH --partition=s_standard

mpiexec \
-np $SLURM_NTASKS \
--map -by ppr:$SLURM_TASKS_PER_NODE:node \
nwchem input.nw > output.log

Reusing the environment from the project’s shell.nix ensures to have ex-

actly the same computational environment on the compute nodes, the front-

end node, or the user’s local work station. This eliminates error-prone

module load operations, and ensures independence of potentially different

system libraries between nodes. These scripts can also be easily transferred

between Nix enabled computing centers.

4 Conclusion and Outlook

The nixpkgs set and the NixOS-QChem overlay provide numerous scientific

packages and packages relevant for quantum chemistry. The presented solu-

19

tion makes these programs easily available without complicated installation

or manual compilation procedures. Proprietary packages can also be made

available without explicit installation if the user has obtained a license and

has the corresponding installation file. The NixOS-QChem overlay is config-

urable and allows for optimization depending on the used processor architec-

tures. The option to build self-contained scripts and batch jobs has proven

itself highly useful in daily use. The presented examples demonstrate how to

create reproducible environments for electronic structure calculations as for

scripted pre- and post-processing tasks.

The presented approach is focused on applications for the theoretical

chemistry community, but the general principle is of broad applicability. We

think that many scientific applications would benefit from the Nix approach.

Reproducible environments are not only useful for users of scientific software,

but are also helpful during the development of software.

Future developments of the NixOS-QChem overlay will aim at integrating

more quantum chemistry software packages with Nix. We encourage users

and developers of scientific software to contribute to NixOS-QChem and

nixpkgs as well as to report bugs. It would be a great advantage if more

computing facilities will adopt the approach and provide a Nix installation

to allow for more reproducible compute environments.

5 Acknowledgments

The authors would like to thank to the nixpkgs community for providing the

software infrastructure, that made this work possible. Phillip Seeber grate-

20

fully acknowledges the financial support provided by the German Research

Foundation within the TRR CATALIGHT – Projektnummer 364549901-

TRR234 (project C5).

References

1. O. S. Navarro Leija, K. Shiptoski, R. G. Scott, B. Wang, N. Renner, R. R.

Newton, and J. Devietti, in Proceedings of the Twenty-Fifth International

Conference on Architectural Support for Programming Languages and

Operating Systems (Association for Computing Machinery, New York,

NY, USA, 2020), ASPLOS ’20, p. 167–182, ISBN 9781450371025, URL

https://doi.org/10.1145/3373376.3378519.

2. D. Merkel, Linux journal 2014, 2 (2014).

3. G. M. Kurtzer, V. Sochat, and M. W. Bauer, PLos ONE 12, e0177459

(2017).

4. E. Dolstra, Ph.D. thesis, Utrecht University (2006).

5. L. Courtès and R. Wurmus, in 2nd International Workshop on Repro-

ducibility in Parallel Computing (RepPar) (Vienne, Austria, 2015), URL

https://hal.inria.fr/hal-01161771.

6. Guix hpc: Reproducible software deployment for high-performance com-

puting., https://hpc.guix.info/, accessed: 2021-08-26.

7. Nix manual, https://nixos.org/manual/nix/stable/, accessed:

2021-09-13.

21

8. Nixpkgs manual, https://nixos.org/manual/nixpkgs/stable/, ac-

cessed: 2021-09-10.

9. Repology, the packaging hub, https://repology.org/repositories/

statistics/total, accessed: 2021-08-31.

10. Environment modules, https://modules.readthedocs.io/en/latest/

index.html, accessed: 2021-09-10.

11. B. Bzeznik, O. Henriot, V. Reis, O. Richard, and L. Tavard, in Pro-

ceedings of the Fourth International Workshop on HPC User Support

Tools (Association for Computing Machinery, New York, NY, USA,

2017), HUST’17, ISBN 9781450351300, URL https://doi.org/10.

1145/3152493.3152556.

12. Burr, Chris, Clemencic, Marco, and Couturier, Ben, EPJ Web

Conf. 214, 05005 (2019), URL https://doi.org/10.1051/epjconf/

201921405005.

13. https://github.com/markuskowa/NixOS-QChem, accessed: 2021-09-13.

14. Top 500 the list., https://www.top500.org/statistics/list/, ac-

cessed: 2021-09-21.

15. M. Frigo and S. Johnson, Proc. IEEE 93, 216 (2005).

16. D. A. Matthews, L. Cheng, M. E. Harding, F. Lipparini, S. Stopkowicz,

T.-C. Jagau, P. G. Szalay, J. Gauss, and J. F. Stanton, The Journal

of Chemical Physics 152, 214108 (2020), URL https://doi.org/10.

1063%2F5.0004837.

22

17. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz,

Wiley Interdisciplinary Reviews: Computational Molecular Science 2,

242 (2012), URL https://doi.org/10.1002%2Fwcms.82.

18. F. Neese, Wiley Interdisciplinary Reviews: Computational Molecular

Science 2, 73 (2012).

19. C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Vir-

tanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith,

et al., Nature 585, 357 (2020), URL https://doi.org/10.1038/

s41586-020-2649-2.

20. M. P. Forum, Tech. Rep., USA (1994).

21. Nixpkgs manual: Switching the mpi implementation, https://nixos.

org/manual/nixpkgs/stable/#sec-overlays-alternatives-mpi, ac-

cessed: 2021-09-15.

22. E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.

Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, et al.,

in Proceedings, 11th European PVM/MPI Users’ Group Meeting (Bu-

dapest, Hungary, 2004), pp. 97–104.

23. D. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour, Journal of

Computational Science 52, 101208 (2020).

24. T. D. Kühne, M. Iannuzzi, M. Del Ben, V. V. Rybkin, P. Seewald,

F. Stein, T. Laino, R. Z. Khaliullin, O. Schütt, F. Schiffmann, et al.,

J. Chem. Phys. 152, 194103 (2020), https://doi.org/10.1063/5.

0007045, URL https://doi.org/10.1063/5.0007045.

23

25. W. Gropp, in Proceedings of the 9th European PVM/MPI Users’ Group

Meeting on Recent Advances in Parallel Virtual Machine and Message

Passing Interface (Springer-Verlag, Berlin, Heidelberg, 2002), p. 7, ISBN

3540442960.

26. L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley,

J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, et al., ACM

Transactions on Mathematical Software 28, 135 (2002).

27. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,

J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, et al., LA-

PACK Users’ Guide (Society for Industrial and Applied Mathematics,

Philadelphia, PA, 1999), 3rd ed., ISBN 0-89871-447-8 (paperback).

28. Openblas: An optimized blas library, http://www.openblas.net/, ac-

cessed: 2021-09-21.

29. Intel oneapi math kernel library, https://software.intel.com/

content/www/us/en/develop/tools/oneapi/components/onemkl.

html#gs.bbhali, accessed: 2021-09-21.

30. Amd optimizing cpu libraries (aocl), blas library, https://developer.

amd.com/amd-aocl/blas-library/, accessed: 2021-09-28.

31. J. Steinmetzer, S. Kupfer, and S. Gräfe, International Journal of Quan-

tum Chemistry 121 (2021), URL https://doi.org/10.1002%2Fqua.

26390.

32. Debichem is a debian pure blend targeted at chemistry, https://wiki.

debian.org/Debichem, accessed: 2021-09-21.

24

33. K. Sharkey, M. D. Hanwell, C. Harris, and A. Va-

canti, The Source 26 (2013), https://blog.kitware.com/

avogadro-2-and-open-chemistry/, URL https://blog.kitware.

com/avogadro-2-and-open-chemistry/.

34. Bagel, brilliantly advanced general electronic-structure library.

http://www.nubakery.org under the gnu general public license.,

http://www.nubakery.org, accessed: 2021-09-10.

35. T. Shiozaki, WIREs Comput. Mol. Sci. 8, e1331 (2018), https:

//wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1331,

URL https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/

wcms.1331.

36. P. Pracht, F. Bohle, and S. Grimme, Physical Chemistry Chem-

ical Physics 22, 7169 (2020), URL https://doi.org/10.1039%

2Fc9cp06869d.

37. K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Chris-

tiansen, R. Cimiraglia, S. Coriani, P. Dahle, et al., Wiley Interdiscip Rev

Comput Mol Sci 4, 269 (2014), URL https://www.ncbi.nlm.nih.gov/

pubmed/25309629.

38. E. Rudberg, E. H. Rubensson, P. Sa lek, and A. Kruchinina, SoftwareX

7, 107 (2018).

39. J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Du lak, L. Fer-

righi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, et al., J.

Phys.: Condens. Matter 22, 253202 (2010).

25

40. M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess,

and E. Lindahl, SoftwareX 1-2, 19 (2015), URL https://doi.org/10.

1016%2Fj.softx.2015.06.001.

41. E. Aprà, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, T. P.

Straatsma, M. Valiev, H. J. J. van Dam, Y. Alexeev, J. Anchell, et al.,

J. Chem. Phys. 152, 184102 (2020).

42. G. Schaftenaar and J. M. Noordik, J. Comput. Aided. Mol. Des. 14, 123

(2000).

43. M. Kállay, P. R. Nagy, D. Mester, Z. Rolik, G. Samu, J. Csontos,

J. Csóka, P. B. Szabó, L. Gyevi Nagy, B. Hégely, et al., J. Chem. Phys.

152, 074107 (2020), URL https://doi.org/10.1063%2F1.5142048.

44. N. Tancogne-Dejean, M. J. T. Oliveira, X. Andrade, H. Appel, C. H.

Borca, G. Le Breton, F. Buchholz, A. Castro, S. Corni, A. A. Correa,

et al., J. Chem. Phys. 152, 124119 (2020), https://doi.org/10.1063/

1.5142502, URL https://doi.org/10.1063/1.5142502.

45. I. Fdez. Galván, M. Vacher, A. Alavi, C. Angeli, F. Aquilante,

J. Autschbach, J. J. Bao, S. I. Bokarev, N. A. Bogdanov, R. K. Carl-

son, et al., J. Chem. Theo. Comput. 15, 5925 (2019), pMID: 31509407,

https://doi.org/10.1021/acs.jctc.9b00532, URL https://doi.

org/10.1021/acs.jctc.9b00532.

46. R. Di Remigio, A. H. Steindal, K. Mozgawa, V. Weijo, H. Cao, and

L. Frediani, International Journal of Quantum Chemistry 119, e25685

(2019), https://onlinelibrary.wiley.com/doi/pdf/10.1002/qua.

26

25685, URL https://onlinelibrary.wiley.com/doi/abs/10.1002/

qua.25685.

47. D. G. A. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C.

Schieber, R. Galvelis, P. Kraus, H. Kruse, R. Di Remigio, A. Alenaizan,

et al., The Journal of Chemical Physics 152, 184108 (2020), URL https:

//doi.org/10.1063%2F5.0006002.

48. Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z. Li,

J. Liu, J. D. McClain, E. R. Sayfutyarova, S. Sharma, et al., WIREs

Computational Molecular Science 8 (2018), URL https://doi.org/10.

1002%2Fwcms.1340.

49. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni,

D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, et al., Journal of

Physics: Condensed Matter 21, 395502 (2009), URL https://doi.org/

10.1088%2F0953-8984%2F21%2F39%2F395502.

50. S. Mai, M. Richter, M. Heindl, M. F. S. J. Menger, A. Atkins, M. Ruck-

enbauer, F. Plasser, L. M. Ibele, S. Kropf, M. Oppel, et al., Sharc2.1:

Surface hopping including arbitrary couplings — program package for

non-adiabatic dynamics, sharc-md.org (2019).

51. A. Garćıa, N. Papior, A. Akhtar, E. Artacho, V. Blum, E. Bosoni,

P. Brandimarte, M. Brandbyge, J. I. Cerdá, F. Corsetti, et al., The

Journal of Chemical Physics 152, 204108 (2020), https://doi.org/10.

1063/5.0005077, URL https://doi.org/10.1063/5.0005077.

27

52. J. A. Rackers, Z. Wang, C. Lu, M. L. Laury, L. Lagardère, M. J.

Schnieders, J.-P. Piquemal, P. Ren, and J. W. Ponder, Journal of Chem-

ical Theory and Computation 14, 5273 (2018), URL https://doi.org/

10.1021%2Facs.jctc.8b00529.

53. TURBOMOLE V7.5.1 2021, a development of University of Karlsruhe

and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE

GmbH, since 2007; available from

http://www.turbomole.com.

54. W. Humphrey, A. Dalke, and K. Schulten, Journal of Molecular Graphics

14, 33 (1996).

55. U. Ekström, L. Visscher, R. Bast, A. J. Thorvaldsen, and K. Ruud,

Journal of Chemical Theory and Computation 6, 1971 (2010), URL

https://doi.org/10.1021%2Fct100117s.

56. C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seib-

ert, S. Spicher, and S. Grimme, WIREs Computational Molecular Science

11 (2021), URL https://doi.org/10.1002%2Fwcms.1493.

57. Nur - nix user repository: User contributed nix packages, https://

github.com/nmattia/niv, accessed: 2021-09-24.

58. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos,

and S. G. Johnson, Computer Physics Communications 181, 687 (2010),

URL https://doi.org/10.1016%2Fj.cpc.2009.11.008.

59. Niv - easy dependecy management for nix projects, https://github.

com/nmattia/niv, accessed: 2021-09-24.

28

60. Pinned and reproducible environemt for a computational molecular mod-

elling project, https://github.com/markuskowa/NixOS-QChem/tree/

master/examples, accessed: 2021-09-21.

61. T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier,

J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, et al., in Position-

ing and Power in Academic Publishing: Players, Agents and Agendas,

edited by F. Loizides and B. Schmidt (IOS Press, 2016), pp. 87 – 90.

29

