Anni Yang

and 6 more

Contact among animals is crucial for various ecological processes, including social behaviors, disease transmission, and predator-prey interactions. However, the distribution of contact events across time and space is heterogeneous, influenced by environmental factors and biological purposes. Previous studies have assumed that areas with abundant resources and preferred habitats attract more individuals and, therefore, lead to more contact. To examine the accuracy of this assumption, we used a use-available framework to identify landscape factors influencing contact locations. Our study focused on two wild pig populations in Florida and Texas, USA. We employed a contact-resource selection function (RSF) model, where contact locations were defined as used points and locations without contact as available points. By comparing the contact RSF with a population-level RSF, we assessed the factors driving both habitat selection and contact. We found that the landscape predictors (e.g., wetland, linear features, and food resources) played different roles in habitat selection and contact processes for wild pigs in both study areas. This indicates that pigs interacted with their landscapes differently when choosing habitats compared to when they encountered other individuals. Consequently, relying solely on the spatial overlap of individual or population-level RSF models may lead to a misleading understanding of contact-related ecology. Our findings challenge prevailing assumptions about contact and introduce innovative approaches to better understand the ecological drivers of spatially explicit contact. By accurately predicting the spatial distribution of contact events, we can enhance our understanding of ecological processes and their spatial dynamics.

Anni Yang

and 9 more

Quantifying spatiotemporally explicit interactions within animal populations facilitates the understanding of social structure and its relationship with ecological processes. Data from animal tracking technologies (Global Positioning Systems [“GPS”]) can circumvent longstanding challenges in the estimation of spatiotemporally explicit interactions, but the discrete nature and coarse temporal resolution of data mean that ephemeral interactions that occur between consecutive GPS locations go undetected. Here, we developed a method to quantify individual and spatial patterns of interaction using continuous-time movement models (CTMMs) fit to GPS tracking data. We first applied CTMMs to infer the full movement trajectories at an arbitrarily fine temporal scale before estimating interactions, thus allowing inference of interactions occurring between observed GPS locations. Our framework then infers indirect interactions – individuals occurring at the same location, but at different times– while allowing the identification of indirect interactions to vary with ecological context based on CTMM outputs. We assessed the performance of our new method using simulations and illustrated its implementation by deriving disease-relevant interaction networks for two behaviorally differentiated species, wild pigs (Sus scrofa) that can host African Swine Fever and mule deer (Odocoileus hemionus) that can host Chronic Wasting Disease. Simulations showed that interactions derived from observed GPS data can be substantially underestimated when temporal resolution of movement data exceeds 30-minute intervals. Empirical application suggested that underestimation occurred in both interaction rates and their spatial distributions. CTMM-Interaction method, which can introduce uncertainties, recovered the majority of true interactions. Our method leverages advances in movement ecology to quantify fine-scale spatiotemporal interactions between individuals from lower temporal resolution GPS data. It can be leveraged to infer dynamic social networks, transmission potential in disease systems, consumer-resource interactions, information sharing, and beyond. The method also sets the stage for future predictive models linking observed spatiotemporal interaction patterns to environmental drivers.

Kezia Manlove

and 9 more

Environment drives the host movements that shape pathogen transmission through three mediating processes: host density, host mobility, and contact. These processes combine with pathogen life-history to give rise to an “epidemiological landscape” that determines spatial patterns of pathogen transmission. Yet despite its central role in transmission, strategies for predicting the epidemiological landscape from real-world data remain limited. Here, we develop the epidemiological landscape as an interface between movement ecology and spatial epidemiology. We propose a movement-pathogen pace-of-life heuristic for prioritizing the landscape’s central processes by positing that spatial dynamics for fast pace-of-life pathogens are best-approximated by the spatial ecology of host contacts; spatial dynamics for slower pace-of-life pathogens are best approximated by host densities; and spatial dynamics for pathogens with environmental reservoirs reflect a convolution of those densities with the spatial configuration of environmental reservoir sites. We then identify mechanisms that underpin the epidemiological landscape and match each mechanism to emerging tools from movement ecology. Finally, we outline workflows for describing the epidemiological landscape and using it to predict subsequent patterns of pathogen transmission. Our framework links transmission to environmental context, providing a scaffold for mechanistically understanding how environmental context can generate and shift existing patterns in spatial epidemiology.