References
Aguirre-Gutiérrez J, Biesmeijer JC, van Loon EE, Reemer M, WallisDeVries
MF, Carvalheiro LG (2015) Susceptibility of pollinators to ongoing
landscape changes depends on landscape history. Diversity and
distributions, 21(10):1129-1140
Amiet F, Herrmann M, Müller A, Neumeyer N (1996-2017) Apidae 1-6. Fauna
Helvetica.
Bankowska R (1980) Fly communities of the family Syrphidae in natural
and anthropogenic habitats of Poland. Memorabilia Zool 33:3-93
Bates D, Maechler M, Bolker B, et al (2020) lme4: Linear Mixed-Effects
Models using “Eigen” and S4. Version 1.1-26.
Bergamo PJ, Streher NS, Wolowski M, Sazima M (2020) Pollinator‐mediated
facilitation is associated with floral abundance, trait similarity and
enhanced community‐level fitness. Journal of Ecology, 108, 1334– 1346.
Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R et al. (2006)
Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain
and the Netherlands. Science 313 (5785), 351-354. https://DOI:
10.1126/science.1127863
Blaauw BR, Isaacs R (2014) Larger patches of diverse floral resources
increase insect pollinator density, diversity, and their pollination of
native wildflowers. 15 (8), 701-711.
https://doi.org/10.1016/j.baae.2014.10.001
Brandt K, Glemnitz M, Schröder B (2017) The impact of crop parameters
and surrounding habitats on different pollinator group abundance on
agricultural fields. Agric Ecosy Envir, 243, 55-66.
http://dx.doi.org/10.1016/j.agee.2017.03.009
Borer ET, Seabloom EW, Gruner DS, Harpole WS et al (2014) Herbivores and
nutrients control grassland plantdiversity via light limitation. Nature,
508, 517-520. https://doi.org/10.1038/nature13144
Bot S, van de Meutter F (2019) Veldgids Zweefvliegen. KNNV, Zeist
Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference:
A Practical Information-Theoretic Approach. Springer.
Donnelly SE, Lortie CJ, Aarssen LW (1998) Pollination in Verbascum
thapsus (Scrophulariaceae): The advantage of being tall. American
Journal of Botany, 85 (11), 1618-1625. https://doi.org/10.2307/2446490
Dorrmann CF, Calabrese JM, Guillera-Arroita G, Metachou E, et al. (2018)
Model averaging in ecology: a review of Bayesian, information‐theoretic,
and tactical approaches for predictive inference. Ecol Mono
88(4):485-504. https://doi.org/10.1002/ecm.1309
Dushoff J, Kain MP, Bolker BM (2019) I can see clearly now:
Reinterpreting statistical significance. Meth Ecol and Evol 10:756–759.
https://doi.org/10.1111/2041-210X.13159
Fahrig L, Baudry J, Brotons L, Burel FG et al (2011) Functional
landscape heterogeneity and animal biodiversity in agricultural
landscapes. Ecology Letters, 14, 101-112.
https://doi.org/10.1111/j.1461-0248.2010.01559.x
Fenster CB, Armbusruster WS, Wilson P, Dudash MR, Thomson JD (2004)
Pollination Syndromes and Floral Specialization. Annual Review of
Ecology, Evolution, and Systematics, 35, 375-403.
https://doi.org/10.1146/annurev.ecolsys.34.011802.132347
Fontaine C, Dajoz I, Meriguet J, Loreau M (2005) Functional Diversity of
Plant–Pollinator Interaction Webs Enhances the Persistence of Plant
Communities. PLOS Biology 4(1): e1.
https://doi.org/10.1371/journal.pbio.0040001
Fornoff F, Klein AM, Hartig F, Benadi G, et al (2017) Functional flower
traits and their diversity drive pollinator visitation. Oikos, 126,
1020-1030
Gabriel D, Sait SM, Hodgson JA, Schmutz U, Kunin WE, Benton TG (2010)
Scale matters: the impact of organic farming on biodiversity at
different spatial scales. Ecol letters, 13 (7), 858-869.
https://doi.org/10.1111/j.1461-0248.2010.01481.x
Gallai N, Salles JM, Settele J, Vaissière BE (2009) Economic valuation
of the vulnerability of world agriculture confronted with pollinator
decline. Ecological Economics, 68 (3), 810-821.
https://doi.org/10.1016/j.ecolecon.2008.06.014
Galán-Acedo C, Arroyo-Rodríguez, Estrada A, Ramos-Fernández G (2018)
Drivers of the spatial scale that best predict primate responses to
landscape structure. Ecography, 41 (12), 2027-2037.
https://doi.org/10.1111/ecog.03632.
Habel JC, Dengler J, Janisvá, Török P et al (2013) European grassland
ecosystems: threatened hotspots of biodiversity. Biodiversity and
Conservation,22, 2131–2138. https://doi.org/10.1007/s10531-013-0537-x
Haenke S, Scheid B, Schaefer M, Tscharntke T, Thies C (2009) Increasing
syrphid fly diversity and density in sown flower strips within simple
vs. complex landscapes. Journ Appl Ecol, 46, 1106-1114
Hahn R (2002) Das Blüte-Bestäuber-Netz auf Brachflächen. Biozönologische
Untersuchung zur Bedeutung von Brachen in einer intensiv genutzten
Ackerlandschaft. PhD Univ Potsdam
Hallmann CA, Sorg M, Jongejans E,Siepel H, Hofland N, Schwan H, et al.
(2017) More than 75 percent decline over 27 years in total flying insect
biomass in protected areas. PloS ONE 12(10):e0185809.
https://doi.org/10.1371/journal.pone.0185809
Hallmann CA, Ssymank A, Sorg M, de Kroona H, Jongejans E (2021) Insect
biomass decline scaled to species diversity: General patterns derived
from a hoverfly community. PNAS, 118 (2):e2002554117
Harrison XA, Donaldson L, Correa-Cano ME, Evens J et al. (2018) A brief
introduction to mixed effects modelling and multi-model inference in
ecology. PeerJ https://doi.org/10.7717/peerj.4794.
Hartig F, Lohse L (2020) DHARMa: Residual Diagnostics for Hierarchical
(Multi-Level / Mixed) Regression Models. Version 0.3.3.
Hopfenmüller S, Steffan-Dewenter I, Holzschuh A (2014) Trait-Specific
Responses of Wild Bee Communities to Landscape Composition,
Configuration and Local Factors. PLoS ONE 9(8): e104439. Landscape Ecol
33:1023–1028. https://doi.org/10.1007/s10980-018-0657-5
Huais PY (2018) multifit: an R function for multi-scale analysis in
landscape ecology. Landscape Ecology 33, 1023-1028.
https://doi.org/10.1007/s10980-018-0657-5
Jackson HB, Fahrig L (2015) Are ecologists conducting research at the
optimal scale? Glob Ecol Biog 24(1): 52-63.
https://doi.org/10.1111/geb.12233
Jäger EJ (2016). Rothmaler - Exkursionsflora von Deutschland.
Gefäßpflanzen: Grundband. Springer.
Jauker F, Diekötter T, Schwarzbach F, Wolters V (2009) Pollinator
dispersal in an agricultural matrix: opposing responses of wild bees and
hoverflies to landscape structure and distance from main habitat.
Landscape Ecol, 24, 547–555
Jauker F, Jauker B, Grass I, Steffan-Dewenter I, Wolters V (2019)
Partitioning wild bee and hoverfly contributions to plant–pollinator
network structure in fragmented habitats. Ecology 100(2):e02569.
10.1002/ecy.2569
Johnson SD, Steiner KE (2000) Generalization versus specialization in
plant pollination systems. TREE, 15(4), 140-143.
https://doi.org/10.1016/S0169-5347(99)01811-X
Klaus F, Tscharntke T, Uhler J, Grass I (2021) Calcareous grassland
fragments as sources of bee pollinators for the surrounding agricultural
landscape. Global Ecology and Conservation, 26, e01474,
https://doi.org/10.1016/j.gecco.2021.e01474.
Klotz S, Kühn I, Durka W (2002) BIOLFLOR - Eine Datenbank zu
biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. -
Schriftenreihe für Vegetationskunde 38. Bonn: Bundesamt für Naturschutz.
Leong JM, Thorpe RW (1999), Colour‐coded sampling: the pan trap colour
preferences of oligolectic and nonoligolectic bees associated with a
vernal pool plant. Ecological Entomology, 24, 329-335.
Lunau K (2014) Visual ecology of flies with particular reference to
colour vision and colour preferences. Journal of comparative physiology
A, 200, 497–512. doi:10.1007/s00359-014-0895-1
Maskell LC, SmartSM, Bullock JM, Thompson K, Stevens CJ (2010) Nitrogen
deposition causes widespread loss of species richness in British
habitats. Global Change Biology, 16, 671-679.
https://doi.org/10.1111/j.1365-2486.2009.02022.x
Maskell LC, Botham M, Henrys P et al. (2019) Exploring relationships
between land use intensity, habitat heterogeneity and biodiversity to
identify and monitor areas of High Nature Value farming. Biological
Conservation, 231, 20-38. https://doi.org/10.1016/j.biocon.2018.12.033
Meyer B, Jauker F, Steffan-Dewenter I (2009) Contrasting
resource-dependent responses of hoverfly richness and density to
landscape structure. BAAE 10:178-186.
Mudri-Stojnić S, Andrić A, Józan Z, Vujić A (2012) Pollinator diversity
(Hymenoptera and Diptera) in semi-natural habitats in Serbia during
summer. Arch Biol Sci 64 (2):777-786
Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are
pollinated by animals? OIKOS, 120 (3), 321-326.
https://doi.org/10.1111/j.1600-0706.2010.18644.x
Power EF, Jackson Z, Stout JC (2016) Organic farming and landscape
factors affectabundance and richness of hoverflies (Diptera,Syrphidae)
in grasslands. Insect Conservation and Diversity, 9, 244–253. doi:
10.1111/icad.12163
R Core Team (2021). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
Rader R, Cunningham SA, Howlett BG, Inouye DW (2020). Non-Bee Insects as
Visitors and Pollinators of Crops: Biology, Ecology, and Management.
Annual Review of Entomology, 65, 391-407.
https://doi.org/10.1146/annurev-ento-011019-025055
Riedinger V, Renner M, Rundlöf M, Steffan-Dewenter I, Holzschuh A (2014)
Early mass-flowering crops mitigate pollinator dilution in
late-flowering crops.
Sánchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the
entomofauna: A review of its drivers. Biological Conservation, 232,
8-27. https://doi.org/10.1016/j.biocon.2019.01.020
Saure C, Berger G (2006) Flächenstilllegungen in der Agrarlandschaft und
ihre Bedeutung für Wildbienen. Naturschutz Landschaftspflege Brandenburg
15 (2), 55-65
Scheuchel E (2000 – 2006) Illustrierte Bestimmungstabellen der
Wildbienen Deutschlands und Österreichs. Volume I/II. Self-publisher.
Stanley DA, Stout JC (2013) Quantifying the impacts of bioenergy crops
on pollinating insect abundance and diversity: a field-scale evaluation
reveals taxon-specific responses. Journal of Applied Ecology. 50 (2),
335-344. https://doi.org/10.1111/1365-2664.12060
Schielzeth H (2010) Simple means to improve the interpretability of
regression coefficients. Meth Ecol Evol 1:103–113.
https://doi.org/10.1111/j.2041-210X.2010.00012.x
Senapathi, D., Goddard, M.A., Kunin, W.E. and Baldock, K.C.R. (2017),
Landscape impacts on pollinator communities in temperate systems:
evidence and knowledge gaps. Funct Ecol, 31: 26-37.
Tscharntke T, Tylianaskis JM, Rand TA, Didham RK et al (2012) Landscape
moderation of biodiversity patterns and processes - eight hypotheses.
Biological Reviews ,87 (3), 661-685.
https://doi.org/10.1111/j.1469-185X.2011.00216.x
Van Rijn PCJ, Wackers FL (2016) Nectar accessibility determines fitness,
flower choice and abundance of hoverflies that provide natural pest
control. J Appl Ecol 53, 925–933
Van Veen MP (2010) Hoverflies of Northwest Europe. Identification keys
to the Syrphidae. 2 ed., KNNV, Zeist
Wagner DL, Grames EM, Forister ML, Berenbaum MR, Stopak D. Insect
decline in the Anthropocene: Death by a thousand cuts. Proc Natl Acad
Sci U S A. 2021 Jan 12;118(2):e2023989118. doi: 10.1073/pnas.2023989118.
Westrich P (1996). Habitat requirements of central European bees and the
problems of partial habitats. The conservation of Bees. ISBN
0-12-479740-7.
Westrich P 2019. Die Wildbienen Deutschlands. Verlag Eugen Ulmer; 2.
Edition (12. September 2019). 824 Seiten. ISBN-10 3818608806.
Wright I, Roberts S, Collins B (2015) Evidence of forage distance
limitations for small bees (Hymenoptera: Apidae). European Journal of
Entomology, 112. https://doi.org/10.14411/eje.2015.028.