References

Aguirre-Gutiérrez J, Biesmeijer JC, van Loon EE, Reemer M, WallisDeVries MF, Carvalheiro LG (2015) Susceptibility of pollinators to ongoing landscape changes depends on landscape history. Diversity and distributions, 21(10):1129-1140
Amiet F, Herrmann M, Müller A, Neumeyer N (1996-2017) Apidae 1-6. Fauna Helvetica.
Bankowska R (1980) Fly communities of the family Syrphidae in natural and anthropogenic habitats of Poland. Memorabilia Zool 33:3-93
Bates D, Maechler M, Bolker B, et al (2020) lme4: Linear Mixed-Effects Models using “Eigen” and S4. Version 1.1-26.
Bergamo PJ, Streher NS, Wolowski M, Sazima M (2020) Pollinator‐mediated facilitation is associated with floral abundance, trait similarity and enhanced community‐level fitness. Journal of Ecology, 108, 1334– 1346.
Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R et al. (2006) Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. Science 313 (5785), 351-354. https://DOI: 10.1126/science.1127863
Blaauw BR, Isaacs R (2014) Larger patches of diverse floral resources increase insect pollinator density, diversity, and their pollination of native wildflowers. 15 (8), 701-711. https://doi.org/10.1016/j.baae.2014.10.001
Brandt K, Glemnitz M, Schröder B (2017) The impact of crop parameters and surrounding habitats on different pollinator group abundance on agricultural fields. Agric Ecosy Envir, 243, 55-66. http://dx.doi.org/10.1016/j.agee.2017.03.009
Borer ET, Seabloom EW, Gruner DS, Harpole WS et al (2014) Herbivores and nutrients control grassland plantdiversity via light limitation. Nature, 508, 517-520. https://doi.org/10.1038/nature13144
Bot S, van de Meutter F (2019) Veldgids Zweefvliegen. KNNV, Zeist
Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer.
Donnelly SE, Lortie CJ, Aarssen LW (1998) Pollination in Verbascum thapsus (Scrophulariaceae): The advantage of being tall. American Journal of Botany, 85 (11), 1618-1625. https://doi.org/10.2307/2446490
Dorrmann CF, Calabrese JM, Guillera-Arroita G, Metachou E, et al. (2018) Model averaging in ecology: a review of Bayesian, information‐theoretic, and tactical approaches for predictive inference. Ecol Mono 88(4):485-504. https://doi.org/10.1002/ecm.1309
Dushoff J, Kain MP, Bolker BM (2019) I can see clearly now: Reinterpreting statistical significance. Meth Ecol and Evol 10:756–759. https://doi.org/10.1111/2041-210X.13159
Fahrig L, Baudry J, Brotons L, Burel FG et al (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 14, 101-112. https://doi.org/10.1111/j.1461-0248.2010.01559.x
Fenster CB, Armbusruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination Syndromes and Floral Specialization. Annual Review of Ecology, Evolution, and Systematics, 35, 375-403. https://doi.org/10.1146/annurev.ecolsys.34.011802.132347
Fontaine C, Dajoz I, Meriguet J, Loreau M (2005) Functional Diversity of Plant–Pollinator Interaction Webs Enhances the Persistence of Plant Communities. PLOS Biology 4(1): e1. https://doi.org/10.1371/journal.pbio.0040001
Fornoff F, Klein AM, Hartig F, Benadi G, et al (2017) Functional flower traits and their diversity drive pollinator visitation. Oikos, 126, 1020-1030
Gabriel D, Sait SM, Hodgson JA, Schmutz U, Kunin WE, Benton TG (2010) Scale matters: the impact of organic farming on biodiversity at different spatial scales. Ecol letters, 13 (7), 858-869. https://doi.org/10.1111/j.1461-0248.2010.01481.x
Gallai N, Salles JM, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 68 (3), 810-821. https://doi.org/10.1016/j.ecolecon.2008.06.014
Galán-Acedo C, Arroyo-Rodríguez, Estrada A, Ramos-Fernández G (2018) Drivers of the spatial scale that best predict primate responses to landscape structure. Ecography, 41 (12), 2027-2037. https://doi.org/10.1111/ecog.03632.
Habel JC, Dengler J, Janisvá, Török P et al (2013) European grassland ecosystems: threatened hotspots of biodiversity. Biodiversity and Conservation,22, 2131–2138. https://doi.org/10.1007/s10531-013-0537-x
Haenke S, Scheid B, Schaefer M, Tscharntke T, Thies C (2009) Increasing syrphid fly diversity and density in sown flower strips within simple vs. complex landscapes. Journ Appl Ecol, 46, 1106-1114
Hahn R (2002) Das Blüte-Bestäuber-Netz auf Brachflächen. Biozönologische Untersuchung zur Bedeutung von Brachen in einer intensiv genutzten Ackerlandschaft. PhD Univ Potsdam
Hallmann CA, Sorg M, Jongejans E,Siepel H, Hofland N, Schwan H, et al. (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PloS ONE 12(10):e0185809. https://doi.org/10.1371/journal.pone.0185809
Hallmann CA, Ssymank A, Sorg M, de Kroona H, Jongejans E (2021) Insect biomass decline scaled to species diversity: General patterns derived from a hoverfly community. PNAS, 118 (2):e2002554117
Harrison XA, Donaldson L, Correa-Cano ME, Evens J et al. (2018) A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ https://doi.org/10.7717/peerj.4794.
Hartig F, Lohse L (2020) DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. Version 0.3.3.
Hopfenmüller S, Steffan-Dewenter I, Holzschuh A (2014) Trait-Specific Responses of Wild Bee Communities to Landscape Composition, Configuration and Local Factors. PLoS ONE 9(8): e104439. Landscape Ecol 33:1023–1028. https://doi.org/10.1007/s10980-018-0657-5
Huais PY (2018) multifit: an R function for multi-scale analysis in landscape ecology. Landscape Ecology 33, 1023-1028. https://doi.org/10.1007/s10980-018-0657-5
Jackson HB, Fahrig L (2015) Are ecologists conducting research at the optimal scale? Glob Ecol Biog 24(1): 52-63. https://doi.org/10.1111/geb.12233
Jäger EJ (2016). Rothmaler - Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband. Springer.
Jauker F, Diekötter T, Schwarzbach F, Wolters V (2009) Pollinator dispersal in an agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landscape Ecol, 24, 547–555
Jauker F, Jauker B, Grass I, Steffan-Dewenter I, Wolters V (2019) Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. Ecology 100(2):e02569. 10.1002/ecy.2569
Johnson SD, Steiner KE (2000) Generalization versus specialization in plant pollination systems. TREE, 15(4), 140-143. https://doi.org/10.1016/S0169-5347(99)01811-X
Klaus F, Tscharntke T, Uhler J, Grass I (2021) Calcareous grassland fragments as sources of bee pollinators for the surrounding agricultural landscape. Global Ecology and Conservation, 26, e01474, https://doi.org/10.1016/j.gecco.2021.e01474.
Klotz S, Kühn I, Durka W (2002) BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. - Schriftenreihe für Vegetationskunde 38. Bonn: Bundesamt für Naturschutz.
Leong JM, Thorpe RW (1999), Colour‐coded sampling: the pan trap colour preferences of oligolectic and nonoligolectic bees associated with a vernal pool plant. Ecological Entomology, 24, 329-335.
Lunau K (2014) Visual ecology of flies with particular reference to colour vision and colour preferences. Journal of comparative physiology A, 200, 497–512. doi:10.1007/s00359-014-0895-1
Maskell LC, SmartSM, Bullock JM, Thompson K, Stevens CJ (2010) Nitrogen deposition causes widespread loss of species richness in British habitats. Global Change Biology, 16, 671-679. https://doi.org/10.1111/j.1365-2486.2009.02022.x
Maskell LC, Botham M, Henrys P et al. (2019) Exploring relationships between land use intensity, habitat heterogeneity and biodiversity to identify and monitor areas of High Nature Value farming. Biological Conservation, 231, 20-38. https://doi.org/10.1016/j.biocon.2018.12.033
Meyer B, Jauker F, Steffan-Dewenter I (2009) Contrasting resource-dependent responses of hoverfly richness and density to landscape structure. BAAE 10:178-186.
Mudri-Stojnić S, Andrić A, Józan Z, Vujić A (2012) Pollinator diversity (Hymenoptera and Diptera) in semi-natural habitats in Serbia during summer. Arch Biol Sci 64 (2):777-786
Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? OIKOS, 120 (3), 321-326. https://doi.org/10.1111/j.1600-0706.2010.18644.x
Power EF, Jackson Z, Stout JC (2016) Organic farming and landscape factors affectabundance and richness of hoverflies (Diptera,Syrphidae) in grasslands. Insect Conservation and Diversity, 9, 244–253. doi: 10.1111/icad.12163
R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Rader R, Cunningham SA, Howlett BG, Inouye DW (2020). Non-Bee Insects as Visitors and Pollinators of Crops: Biology, Ecology, and Management. Annual Review of Entomology, 65, 391-407. https://doi.org/10.1146/annurev-ento-011019-025055
Riedinger V, Renner M, Rundlöf M, Steffan-Dewenter I, Holzschuh A (2014) Early mass-flowering crops mitigate pollinator dilution in late-flowering crops.
Sánchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 232, 8-27. https://doi.org/10.1016/j.biocon.2019.01.020
Saure C, Berger G (2006) Flächenstilllegungen in der Agrarlandschaft und ihre Bedeutung für Wildbienen. Naturschutz Landschaftspflege Brandenburg 15 (2), 55-65
Scheuchel E (2000 – 2006) Illustrierte Bestimmungstabellen der Wildbienen Deutschlands und Österreichs. Volume I/II. Self-publisher.
Stanley DA, Stout JC (2013) Quantifying the impacts of bioenergy crops on pollinating insect abundance and diversity: a field-scale evaluation reveals taxon-specific responses. Journal of Applied Ecology. 50 (2), 335-344. https://doi.org/10.1111/1365-2664.12060
Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Meth Ecol Evol 1:103–113. https://doi.org/10.1111/j.2041-210X.2010.00012.x
Senapathi, D., Goddard, M.A., Kunin, W.E. and Baldock, K.C.R. (2017), Landscape impacts on pollinator communities in temperate systems: evidence and knowledge gaps. Funct Ecol, 31: 26-37.
Tscharntke T, Tylianaskis JM, Rand TA, Didham RK et al (2012) Landscape moderation of biodiversity patterns and processes - eight hypotheses. Biological Reviews ,87 (3), 661-685. https://doi.org/10.1111/j.1469-185X.2011.00216.x
Van Rijn PCJ, Wackers FL (2016) Nectar accessibility determines fitness, flower choice and abundance of hoverflies that provide natural pest control. J Appl Ecol 53, 925–933
Van Veen MP (2010) Hoverflies of Northwest Europe. Identification keys to the Syrphidae. 2 ed., KNNV, Zeist
Wagner DL, Grames EM, Forister ML, Berenbaum MR, Stopak D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc Natl Acad Sci U S A. 2021 Jan 12;118(2):e2023989118. doi: 10.1073/pnas.2023989118.
Westrich P (1996). Habitat requirements of central European bees and the problems of partial habitats. The conservation of Bees. ISBN 0-12-479740-7.
Westrich P 2019. Die Wildbienen Deutschlands. Verlag Eugen Ulmer; 2. Edition (12. September 2019). 824 Seiten. ISBN-10 3818608806.
Wright I, Roberts S, Collins B (2015) Evidence of forage distance limitations for small bees (Hymenoptera: Apidae). European Journal of Entomology, 112. https://doi.org/10.14411/eje.2015.028.