References
Addo-Bediako, A., Chown, S. L., & Gaston, K. J. (2000). Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society B: Biological Sciences, 267 (1445), 739-745. doi:10.1098/rspb.2000.1065
Alton, L. A., Condon, C., White, C. R., & Angilletta Jr, M. J. (2017). Colder environments did not select for a faster metabolism during experimental evolution of Drosophila melanogaster .Evolution, 71 (1), 145-152. doi:10.1111/evo.13094
Andersson, M. L., Sundberg, F., & Eklöv, P. (2020). Chasing away accurate results: exhaustive chase protocols underestimate maximum metabolic rate estimates in European perch Perca fluviatilis .Journal of Fish Biology, 97 (6), 1644-1650. doi:10.1111/jfb.14519
Angilletta, M. J., & Dunham, A. E. (2003). The Temperature-Size Rule in Ectotherms: Simple Evolutionary Explanations May Not Be General.The American Naturalist, 162 (3), 332-342.
Araújo, M. B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P. A., Valladares, F., & Chown, S. L. (2013). Heat freezes niche evolution.Ecology Letters, 16 (9), 1206-1219. doi:10.1111/ele.12155
Bartolini, T., Butail, S., & Porfiri, M. (2015). Temperature influences sociality and activity of freshwater fish. Environmental Biology of Fishes, 98 (3), 825-832. doi:10.1007/s10641-014-0318-8
Barton, K. (2020). MuMIn: Multi-Model Inference.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67 (1), 48. doi:10.18637/jss.v067.i01
Bennett, J. M., Sunday, J., Calosi, P., Villalobos, F., Martínez, B., Molina-Venegas, R., . . . Olalla-Tárraga, M. Á. (2021). The evolution of critical thermal limits of life on Earth. Nature Communications, 12 (1), 1198. doi:10.1038/s41467-021-21263-8
Biro, P. A., Beckmann, C., & Stamps, J. A. (2010). Small within-day increases in temperature affects boldness and alters personality in coral reef fish. Proceedings of the Royal Society B: Biological Sciences, 277 (1678), 71-77. doi:10.1098/rspb.2009.1346
Biro, P. A., O’Connor, J., Pedini, L., & Gribben, P. E. (2013). Personality and plasticity: consistent responses within-, but not across-temperature situations in crabs. Behaviour, 150 (7), 799-811.
Biro, P. A., Post, J. R., & Booth, D. J. (2007). Mechanisms for climate-induced mortality of fish populations in whole-lake experiments.Proceedings of the National Academy of Sciences, 104 (23), 9715-9719. doi:10.1073/pnas.0701638104
Biro, P. A., & Stamps, J. A. (2010). Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends in Ecology & Evolution, 25 (11), 653-659. doi:10.1016/j.tree.2010.08.003
Brown, C., Burgess, F., & Braithwaite, V. A. (2007). Heritable and experimental effects on boldness in a tropical poeciliid.Behavioral Ecology and Sociobiology, 62 (2), 237–243. doi:10.1007/s00265-007-0458-3
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85 (7), 1771-1789. doi:10.1890/03-9000
Bruneaux, M., Nikinmaa, M., Laine, V. N., Lindström, K., Primmer, C. R., & Vasemägi, A. (2014). Differences in the metabolic response to temperature acclimation in nine-spined stickleback (Pungitius pungitius ) populations from contrasting thermal environments.Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 321 (10), 550-565. doi:10.1002/jez.1889
Burnham, K. P., & Anderson, D. R. (2001). Kullback-Leibler information as a basis for strong inference in ecological studies. Wildlife Research, 28 (2), 111-119. doi:10.1071/WR99107
Careau, V., Thomas, D., Humphries, M. M., & Réale, D. (2008). Energy metabolism and animal personality. Oikos, 117 (5), 641-653. doi:10.1111/j.0030-1299.2008.16513.x
Chabot, D., Steffensen, J. F., & Farrell, A. P. (2016). The determination of standard metabolic rate in fishes. Journal of Fish Biology, 88 (1), 81-121. doi:10.1111/jfb.12845
Cheung, W. W. L., Sarmiento, J. L., Dunne, J., Frölicher, T. L., Lam, V. W. Y., Deng Palomares, M. L., . . . Pauly, D. (2012). Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems.Nature Climate Change, 3 , 254. doi:10.1038/nclimate1691
Clark, T. D., Sandblom, E., & Jutfelt, F. (2013). Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. The Journal of Experimental Biology, 216 (15), 2771-2782. doi:10.1242/jeb.084251
Conover, D. O., Duffy, T. A., & Hice, L. A. (2009). The covariance between genetic and environmental influences across ecological gradients: reassessing the evolutionary significance of countergradient and cogradient variation. Annals of the New York Academy of Sciences, 1168 , 100-129. doi:10.1111/j.1749-6632.2009.04575.x.
Cote, J., Fogarty, S., Weinersmith, K., Brodin, T., & Sih, A. (2010). Personality traits and dispersal tendency in the invasive mosquitofish (Gambusia affinis ). Proceedings of the Royal Society B-Biological Sciences, 277 (1687), 1571-1579. doi:10.1098/rspb.2009.2128
Crozier, L. G., & Hutchings, J. A. (2014). Plastic and evolutionary responses to climate change in fish. Evolutionary Applications, 7 (1), 68-87. doi:10.1111/eva.12135
Forsatkar, M. N., Nematollahi, M. A., Biro, P. A., & Beckmann, C. (2016). Individual boldness traits influenced by temperature in male Siamese fighting fish. Physiology & Behavior, 165 , 267-272. doi:10.1016/j.physbeh.2016.08.007
Fry, F. E. J. (1971). The effect of environmental factors on the physiology of fish. In W. S. Hoar & D. J. Randall (Eds.), Fish Physiology (Vol. VI, pp. 1-98). New York: NY: Academic Press.
Fryxell, D. C., Hoover, A. N., Alvarez, D. A., Arnesen, F. J., Benavente, J. N., Moffett, E. R., . . . Palkovacs, E. P. (2020). Recent warming reduces the reproductive advantage of large size and contributes to evolutionary downsizing in nature. Proceedings of the Royal Society B-Biological Sciences, 287 (20200608). doi:10.1098/rspb.2020.0608
Fryxell, D. C., & Palkovacs, E. P. (2017). Warming Strengthens the Ecological Role of Intraspecific Variation in a Predator. Copeia, 105 (3), 523-532. doi:10.1643/CE-16-527
Gaitán-Espitia, J. D., & Nespolo, R. (2014). Is there metabolic cold adaptation in terrestrial ectotherms? Exploring latitudinal compensation in the invasive snail Cornu aspersum . The Journal of Experimental Biology, 217 (13), 2261-2267. doi:10.1242/jeb.101261
Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., & Heinsohn, R. (2011). Declining body size: a third universal response to warming?Trends in Ecology & Evolution, 26 (6), 285-291. doi:10.1016/j.tree.2011.03.005
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., & Charnov, E. L. (2001). Effects of size and temperature on metabolic rate.Science, 293 (5538), 2248-2251. doi:10.1126/science.1061967
Holt, R. E., & Jorgensen, C. (2015). Climate change in fish: effects of respiratory constraints on optimal life history and behaviour.Biology Letters, 11 (2), 20141032. doi:10.1098/rsbl.2014.1032
Jutfelt, F. (2020). Metabolic adaptation to warm water in fish.Functional Ecology, 34 (6), 1138-1141. doi:10.1111/1365-2435.13558
Killen, S. S., Glazier, D. S., Rezende, E. L., Clark, T. D., Atkinson, D., Willener, A. S. T., & Halsey, L. G. (2016). Ecological Influences and Morphological Correlates of Resting and Maximal Metabolic Rates across Teleost Fish Species. The American Naturalist, 187 (5), 592-606. doi:10.1086/685893
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82 (13), 26. doi:10.18637/jss.v082.i13
Mallard, F., Nolte, V., Tobler, R., Kapun, M., & Schlötterer, C. (2018). A simple genetic basis of adaptation to a novel thermal environment results in complex metabolic rewiring in Drosophila.Genome Biology, 19 (1), 119. doi:10.1186/s13059-018-1503-4
Mathot, K. J., & Dingemanse, N. J. (2015). Energetics and behavior: unrequited needs and new directions. Trends in Ecology & Evolution, 30 (4), 199-206. doi:10.1016/j.tree.2015.01.010
Mazerolle, M. J. (2019). AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). In (R package version 2.2-2 ed.).
McDowall, R. M. (1978). New Zealand freshwater fishes: a guide and natural history . Auckland: Heinemann Educational.
McKenzie, D. J., Estivales, G., Svendsen, J. C., Steffensen, J. F., & Agnèse, J.-F. (2013). Local Adaptation to Altitude Underlies Divergent Thermal Physiology in Tropical Killifishes of the Genus Aphyosemion.Plos One, 8 (1), e54345. doi:10.1371/journal.pone.0054345
Moffett, E. R., Fryxell, D. C., Palkovacs, E. P., Kinnison, M. T., & Simon, K. S. (2018). Local adaptation reduces the metabolic cost of environmental warming. Ecology, 99 (10), 2318-2326. doi:10.1002/ecy.2463
Morgan, R., Finnøen, M. H., Jensen, H., Pélabon, C., & Jutfelt, F. (2020). Low potential for evolutionary rescue from climate change in a tropical fish. Proceedings of the National Academy of Sciences, 117 (52), 33365-33372. doi:10.1073/pnas.2011419117
Munday, P. L., McCormick, M. I., & Nilsson, G. E. (2012). Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future? Journal of Experimental Biology, 215 (22), 3865-3873. doi:10.1242/jeb.074765
Niemela, P. T., & Dingemanse, N. J. (2018). Meta-analysis reveals weak associations between intrinsic state and personality. Proceedings of the Royal Society B-Biological Sciences, 285 (1873). doi:10.1098/rspb.2017.2823
NLNZ. (1928, 1928). War on mosquitos: Fish to eat larvae. Published: 28 March 1928, Volume LXV, issue 19907. New Zealand Herald . Retrieved from https://paperspast.natlib.govt.nz/
Norin, T., & Clark, T. D. (2016). Measurement and relevance of maximum metabolic rate in fishes. Journal of Fish Biology, 88 (1), 122-151. doi:10.1111/jfb.12796
Norin, T., Malte, H., & Clark, T. D. (2016). Differential plasticity of metabolic rate phenotypes in a tropical fish facing environmental change. Functional Ecology, 30 (3), 369-378. doi:10.1111/1365-2435.12503
Persson, L., Leonardsson, K., de Roos, A. M., Gyllenberg, M., & Christensen, B. (1998). Ontogenetic Scaling of Foraging Rates and the Dynamics of a Size-Structured Consumer-Resource Model. Theoretical Population Biology, 54 (3), 270-293. doi:10.1006/tpbi.1998.1380
Pilakouta, N., Killen, S. S., Kristjánsson, B. K., Skúlason, S., Lindström, J., Metcalfe, N. B., & Parsons, K. J. (2020). Multigenerational exposure to elevated temperatures leads to a reduction in standard metabolic rate in the wild. Functional Ecology, n/a (n/a). doi:10.1111/1365-2435.13538
Polverino, G., Santostefano, F., Díaz-Gil, C., & Mehner, T. (2018). Ecological conditions drive pace-of-life syndromes by shaping relationships between life history, physiology and behaviour in two populations of Eastern mosquitofish. Scientific Reports, 8 (1), 14673. doi:10.1038/s41598-018-33047-0
Pyke, G. H. (2008). Plague minnow or mosquitofish? A review of the biology and impacts of introduced Gambusia species. Annual Review of Ecology Evolution and Systematics, 39 , 171-191. doi:10.1146/annurev.ecolsys.39.110707.173451
R Development Core Team. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org
Réale, D., Garant, D., Humphries, M. M., Bergeron, P., Careau, V., & Montiglio, P.-O. (2010). Personality and the emergence of the pace-of-life syndrome concept at the population level.Philosophical Transactions of the Royal Society B: Biological Sciences, 365 (1560), 4051-4063. doi:10.1098/rstb.2010.0208
Royauté, R., Berdal, M. A., Garrison, C. R., & Dochtermann, N. A. (2018). Paceless life? A meta-analysis of the pace-of-life syndrome hypothesis. Behavioral Ecology and Sociobiology (72:64). doi:10.1007/s00265-018-2472-z
Säfken, B., Rügamer, D., Kneib, T., & Greven, S. (2018). Conditional Model Selection in Mixed-Effects Models with cAIC4. ArXiv e-prints 1803.05664 .
Salin, K., Auer, S. K., Rey, B., Selman, C., & Metcalfe, N. B. (2015). Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proceedings of the Royal Society B: Biological Sciences, 282 (1812), 20151028. doi:10.1098/rspb.2015.1028
Sandblom, E., Clark, T. D., Gräns, A., Ekström, A., Brijs, J., Sundström, L. F., . . . Jutfelt, F. (2016). Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nature Communications, 7 (1), 11447. doi:10.1038/ncomms11447
Sibly, R. M., Brown, J. H., & Kodric‐Brown, A. (2012). Metabolic Ecology: A Scaling Approach . West Sussex, UK: Wiley-Blackwell.
Sih, A., Bell, A., & Johnson, J. C. (2004). Behavioral syndromes: an ecological and evolutionary overview. Trends in Ecology & Evolution, 19 (7), 372-378. doi:10.1016/j.tree.2004.04.009.
Steffensen, J. F. (1989). Some errors in respirometry of aquatic breathers: How to avoid and correct for them. Fish Physiology and Biochemistry, 6 (1), 49-59.
Sterner, R. W. S., & George, N. B. (2000). Carbon, nitrogen, and phosphorus stoichiometry of cyprinid fishes. Ecology, 81 (1), 127-140. doi:10.1890/0012-9658(2000)081[0127:Cnapso]2.0.Co;2
Svendsen, M. B. S. (2017). AquaResp 2.0. Denmark: University of Copenhagen.
Tattersall, G. J., Sinclair, B. J., Withers, P. C., Fields, P. A., Seebacher, F., Cooper, C. E., & Maloney, S. K. (2012). Coping with thermal challenges: physiological adaptations to environmental temperatures. Comprehensive Physiology, 2 (3), 2151-2202. doi:10.1002/cphy.c110055
West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276 (5309), 122-126. doi:10.1126/science.276.5309.122
White, C. R., Alton, L. A., & Frappell, P. B. (2012). Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme. Proceedings of the Royal Society B: Biological Sciences, 279 (1734), 1740-1747. doi:10.1098/rspb.2011.2060
White, D. P., & Wahl, D. H. (2020). Growth and physiological responses in largemouth bass populations to environmental warming: Effects of inhabiting chronically heated environments. Journal of Thermal Biology, 88 , 102467. doi:10.1016/j.jtherbio.2019.102467
Wilson, A. D. M., Godin, J.-G. J., & Ward, A. J. W. (2010). Boldness and Reproductive Fitness Correlates in the Eastern Mosquitofish,Gambusia holbrooki . Ethology, 116 (1), 96-104. doi:10.1111/j.1439-0310.2009.01719.x