References
Ballman, E. S. & Drummond, F. A. (2017). Infestation of wild fruit byDrosophila suzukii surrounding Maine wild blueberry fields. Journal of Agricultural and Urban Entomology33 , 61-70. https://doi.org/10.3954/1523-5475-33.1.61
Barringer, L. & Ciafré, C. M. (2020). Worldwide feeding host plants of Spotted Lanternfly, with significant additions from North America. Environmental Entomology49 , 999-1011. https://doi.org/10.1093/ee/nvaa093
Bellamy, D. E., Sisterson, M. S. & Walse, S. S. (2013). Quantifying host potentials: indexing postharvest fresh fruits for spotted wing drosophila, Drosophila suzukiiPLoS One8 , e61227. https://doi.org/10.1371/journal.pone.0061227
Bernardi, D., Andreazza, F., Botton, M., Baronio, C. A. & Nava, D. E. (2017). Susceptibility and interactions of Drosophila suzukii andZaprionus indianus (Diptera: Drosophilidae) in damaging strawberry. Neotropical Entomology46 , 1-7. https://doi.org/10.1007/s13744-016-0423-9
Calabria, G., Máca, J., Bächli, G., Serra, L. & Pascual, M. (2012). First records of the potential pest species Drosophila suzukii(Diptera: Drosophilidae) in Europe. Journal of Applied Entomology136 , 139-147. https://doi.org/10.1111/j.1439-0418.2010.01583.x
Carrasco, D., Larsson, M. C. & Anderson, P. (2015). Insect host plant selection in complex environments. Current Opinion in Insect Science8 , 1-7. https://doi.org/10.1016/j.cois.2015.01.014
Chen, Y. H., Gols, R. & Benrey, B. (2015). Crop domestication and its impact on naturally selected trophic interactions. Annual Review of Entomology60 , 35-58. https://doi.org/10.1146/annurev-ento-010814-020601
Compton, S. G. (2002). Sailing with the wind: dispersal by small flying insects. In J. M. Powell, R. E. Kenward & R. S. Hails (Eds.),Dispersal Ecology , (pp.113-133). Blackwell Publishing.
de la Vega, G. J. & Corley, J. C. (2019). Drosophila suzukii(Diptera: Drosophilidae) distribution modelling improves our understanding of pest range limits. International Journal of Pest Management65 , 217-227. https://doi.org/10.1080/09670874.2018.1547460
Deprá, M., Poppe, J. L., Schmitz, H. J., De Toni, D. C. & Valente, V. L. (2014). The first records of the invasive pest Drosophila suzukii in the South American continent. Journal of Pest Science87 , 379-383. https://doi.org/10.1007/s10340-014-0591-5
Diepenbrock, L. M., Swoboda-Bhattarai, K. A. & Burrack, H. J. (2016). Ovipositional preference, fidelity, and fitness of Drosophila suzukii in a co-occurring crop and non-crop host system. Journal of Pest Science89 , 761-769. https://doi.org/10.1007/s10340-016-0764-5
dos Santos, L. A., Mendes, M. F., Krüger, A. P., Blauth, M. L., Gottschalk, M. S. & Garcia, F. R. (2017). Global potential distribution of Drosophila suzukii (Diptera, Drosophilidae). PLoS One12 , e0174318. https://doi.org/10.1371/journal.pone.0174318
Elith, J. & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics40 , 677-697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
Elsensohn, J. E. & Loeb, G. M. (2018). Non-crop host sampling yields insights into small-scale population dynamics of Drosophila suzukii (Matsumura). Insects9 , 5. https://doi.org/10.3390/insects9010005
Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J. & Dunn, R. R. (2007). The biogeography of prediction error: why does the introduced range of the fire ant over‐predict its native range?. Global Ecology and Biogeography16 , 24-33. https://doi.org/10.1111/j.1466-8238.2006.00258.x
Fraimout, A. & Monnet, A. C. (2018). Accounting for intraspecific variation to quantify niche dynamics along the invasion routes ofDrosophila suzukiiBiological Invasions20 , 2963-2979. https://doi.org/10.1007/s10530-018-1750-z
Futuyma, D. J. & Peterson, S. C. (1985). Genetic variation in the use of resources by insects. Annual Review of Entomology30 , 217-238.
Gutierrez, A. P., Ponti, L. & Dalton, D. T. (2016). Analysis of the invasiveness of spotted wing Drosophila (Drosophila suzukii ) in North America, Europe, and the Mediterranean Basin. Biological Invasions18 , 3647-3663. https://doi.org/10.1007/s10530-016-1255-6
Hardin, J. A., Kraus, D. A. & Burrack, H. J. (2015). Diet quality mitigates intraspecific larval competition in Drosophila suzukiiEntomologia Experimentalis et Applicata156 , 59-65. https://doi.org/10.1111/eea.12311
Hassani, I. M., Behrman, E. L., Prigent, S. R., Gidaszewski, N., Ravaomanarivo, L. R., Suwalski, A., Debat, V., David, J. R. & Yassin, A. (2020). First occurrence of the pest Drosophila suzukii(Diptera: Drosophilidae) in the Comoros Archipelago (Western Indian Ocean). African Entomology28 , 78-83. https://doi.org/10.4001/003.028.0078
Hauser, M. (2011). A historic account of the invasion ofDrosophila suzukii (Matsumura)(Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Management Science67 , 1352-1357. https://doi.org/10.1002/ps.2265
Heiser, C. B. (1988). Aspects of unconscious selection and the evolution of domesticated plants. Euphytica37 , 77-81.
Hoelscher, C. E. (1967). Wind dispersal of brown soft scale crawlers,Coccus hesperidum (Homoptera: Coccidae), and Texas citrus mites,Eutetranychus banksi (Acarina: Tetranychidae) from Texas citrus. Annals of the Entomological Society of America60 , 673-678. https://doi.org/10.1093/aesa/60.3.673
Jaenike, J. (1978). On optimal oviposition behavior in phytophagous insects. Theoretical Population Biology14 , 350-356. https://doi.org/10.1016/0040-5809(78)90012-6
Jaramillo, S. L., Mehlferber, E. & Moore, P. J. (2015). Life‐history trade‐offs under different larval diets in Drosophila suzukii(Diptera: Drosophilidae). Physiological Entomology40 , 2-9. https://doi.org/10.1111/phen.12082
Kamiyama, M. T. & Guédot, C. (2019). Varietal and developmental susceptibility of tart cherry (Rosales: Rosaceae) to Drosophila suzukii (Diptera: Drosophilidae). Journal of Economic Entomology112 , 1789-1797. https://doi.org/10.1093/jee/toz102
Kennedy, G. G. & Storer, N. P. (2000). Life systems of polyphagous arthropod pests in temporally unstable cropping systems. Annual Review of Entomology45 , 467-493. https://doi.org/10.1146/annurev.ento.45.1.467
Klick, J., Yang, W. Q., Walton, V. M., Dalton, D. T., Hagler, J. R., Dreves, A. J., Lee, J. C. & Bruck, D. J. (2016). Distribution and activity of Drosophila suzukii in cultivated raspberry and surrounding vegetation. Journal of Applied Entomology140 , 37-46. https://doi.org/10.1111/jen.12234
Lee, J. C., Bruck, D. J., Curry, H., Edwards, D., Haviland, D. R., Van Steenwyk, R. A. & Yorgey, B. M. (2011). The susceptibility of small fruits and cherries to the spotted‐wing drosophila, Drosophila suzukiiPest Management Science67 , 1358-1367. https://doi.org/10.1002/ps.2225
Lee, J. C., Dreves, A. J., Cave, A. M., Kawai, S., Isaacs, R., Miller, J. C., Van Timmeren, S. & Bruck, D. J. (2015). Infestation of wild and ornamental noncrop fruits by Drosophila suzukii (Diptera: Drosophilidae). Annals of the Entomological Society of America108 , 117-129. https://doi.org/10.1093/aesa/sau014
Little, C. M., Chapman, T. W. & Hillier, N. K. (2020). Plasticity is key to success of Drosophila suzukii (Diptera: Drosophilidae) invasion. Journal of Insect Science20 , 5. https://doi.org/10.1093/jisesa/ieaa034
Mazzi, D. & Dorn, S. (2012). Movement of insect pests in agricultural landscapes. Annals of Applied Biology160 , 97-113. https://doi.org/10.1111/j.1744-7348.2012.00533.x
Mitsui, H., Beppu, K. & Kimura, M. T. (2010). Seasonal life cycles and resource uses of flower‐and fruit‐feeding drosophilid flies (Diptera: Drosophilidae) in central Japan. Entomological Science13 , 60-67. https://doi.org/10.1111/j.1479-8298.2010.00372.x
Moser, D., Drapela, T., Zaller, J. G. & Frank, T. (2009). Interacting effects of wind direction and resource distribution on insect pest densities. Basic and Applied Ecology10 , 208-215. https://doi.org/10.1016/j.baae.2008.03.008
Mueller, M. C. (2015). Islands within islands: The effects of habitat fragmentation, novel community interactions, and climate on HawaiianDrosophila populations. Masters thesis. University of Hawai’i, Hilo.
Ometto, L., Cestaro, A., Ramasamy, S., Grassi, A., Revadi, S., Siozios, S., Moretto, M., Fontana, P., Varotto, C., Pisani, D. & Dekker, T. (2013). Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest. Genome Biology and Evolution5 , 745-757. https://doi.org/10.1093/gbe/evt034
Ørsted, I. V. & Ørsted, M. (2019). Species distribution models of the Spotted Wing Drosophila (Drosophila suzukii , Diptera: Drosophilidae) in its native and invasive range reveal an ecological niche shift. Journal of Applied Ecology56 , 423-435. https://doi.org/10.1111/1365-2664.13285
Panel, A. D., Zeeman, L., Van der Sluis, B. J., Van Elk, P., Pannebakker, B. A., Wertheim, B. & Helsen, H. H. (2018). OverwinteredDrosophila suzukii are the main source for infestations of the first fruit crops of the season. Insects9 , 145. https://doi.org/10.3390/insects9040145
Papaj, D. R. & Prokopy, R. J. (1989). Ecological and evolutionary aspects of learning in phytophagous insects. Annual Review of Entomology34 , 315-350.
Parchami-Araghi, M., Gilasian, E. & Keyhanian, A. A. (2015). Spotted wing drosophila, Drosophila suzukii (Matsumura)(Dip.: Drosophilidae), an invasive fruit pest new to the middle East and Iran. Drosophila Information Service98 , 59-60.
Pelton, E., Gratton, C., Isaacs, R., Van Timmeren, S., Blanton, A. & Guédot, C. (2016). Earlier activity of Drosophila suzukii in high woodland landscapes but relative abundance is unaffected. Journal of Pest Science89 , 725-733. https://doi.org/10.1007/s10340-016-0733-z
Powell, R. A. & Seaman, D. E. (1990). Production of important black bear foods in the southern Appalachians. Bears: Their Biology and Management , 8 , 183-187.
Poyet, M., Eslin, P., Héraude, M., Le Roux, V., Prévost, G., Gibert, P. & Chabrerie, O. (2014). Invasive host for invasive pest: when the Asiatic cherry fly (Drosophila suzukii ) meets the American black cherry (Prunus serotina ) in Europe. Agricultural and Forest Entomology16 , 251-259. https://doi.org/10.1111/afe.12052
Rand, T. A., Tylianakis, J. M. & Tscharntke, T. (2006). Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecology Letters9 , 603-614. https://doi.org/10.1111/j.1461-0248.2006.00911.x
Rice, K. B., Short, B. D., Jones, S. K. & Leskey, T. C. (2016). Behavioral responses of Drosophila suzukii (Diptera: Drosophilidae) to visual stimuli under laboratory, semifield, and field conditions. Environmental Entomology45 , 1480-1488. https://doi.org/10.1093/ee/nvw123
Roach, N. S., Hunter, E. A., Nibbelink, N. P. & Barrett, K. (2017). Poor transferability of a distribution model for a widespread coastal marsh bird in the southeastern United States. Ecosphere8 , e01715. https://doi.org/10.1002/ecs2.1715
Rodriguez-Saona, C., Cloonan, K. R., Sanchez-Pedraza, F., Zhou, Y., Giusti, M. M. & Benrey, B. (2019). Differential susceptibility of wild and cultivated blueberries to an invasive frugivorous pest. Journal of Chemical Ecology45 , 286-297. https://doi.org/10.1007/s10886-018-1042-1
Rossi-Stacconi, M. V., Kaur, R., Mazzoni, V., Ometto, L., Grassi, A., Gottardello, A., Rota-Stabelli, O. & Anfora, G. (2016). Multiple lines of evidence for reproductive winter diapause in the invasive pestDrosophila suzukii : useful clues for control strategies. Journal of Pest Science89 , 689-700. https://doi.org/10.1007/s10340-016-0753-8
Sakai, A. K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J., With, K. A., Baughman, S., Cabin, R. J., Cohen, J. E., Ellstrand, N. C. & McCauley, D. E. (2001). The population biology of invasive species. Annual Review of Ecology and Systematics32 , 305-332. https://doi.org/10.1146/annurev.ecolsys.32.081501.114037
Santoiemma, G., Mori, N., Tonina, L. & Marini, L. (2018). Semi-natural habitats boost Drosophila suzukii populations and crop damage in sweet cherry. Agriculture, Ecosystems & Environment257 , 152-158. https://doi.org/10.1016/j.agee.2018.02.013
Santoiemma, G., Fioretto, D., Corcos, D., Mori, N. & Marini, L. (2019). Spatial synchrony in Drosophila suzukii population dynamics along elevational gradients. Ecological Entomology44 , 182-189. https://doi.org/10.1111/een.12688
Sarquis, J. A., Cristaldi, M. A., Arzamendia, V., Bellini, G. & Giraudo, A.R. (2018). Species distribution models and empirical test: Comparing predictions with well‐understood geographical distribution ofBothrops alternatus in Argentina. Ecology and Evolution8 , 10497-10509. https://doi.org/10.1002/ece3.4517
Swoboda-Bhattarai, K.A. & Burrack, H.J. (2015). Drosophila suzukii infestation in ripe and ripening caneberries. Acta Horticulturae , 1133 , 419-430. https://doi.org/10.17660/ActaHortic.2016.1133.65
Tait, G., Grassi, A., Pfab, F., Crava, C. M., Dalton, D. T., Magarey, R., Ometto, L., Vezzulli, S., Rossi-Stacconi, M. V., Gottardello, A. & Pugliese, A. (2018). Large-scale spatial dynamics of Drosophila suzukii in Trentino, Italy. Journal of Pest Science91 , 1213-1224. https://doi.org/10.1007/s10340-018-0985-x
Teulon, D. A. J., Leskey, T. C. & Cameron, E. A. (1998). Pear thripsTaeniothrips inconsequens (Thysanoptera: Thripidae) life history and population dynamics in sugar maple in Pennsylvania. Bulletin of Entomological Research88 , 83-92. https://doi.org/10.1017/S0007485300041584
Tonina, L., Mori, N., Sancassani, M., Dall’Ara, P. & Marini, L. (2018). Spillover of Drosophila suzukii between noncrop and crop areas: implications for pest management. Agricultural and Forest Entomology20 , 575-581. https://doi.org/10.1111/afe.12290
Wallingford, A. K., Rice, K. B., Leskey, T. C. & Loeb, G. M. (2018). Overwintering behavior of Drosophila suzukii , and potential springtime diets for egg maturation. Environmental Entomology47 , 1266-1273. https://doi.org/10.1093/ee/nvy115
Ward, L.K. & Spalding, D.F. (1993). Phytophagous British insects and mites and their food-plant families: total numbers and polyphagy. Biological Journal of the Linnean Society49 , 257-276.
Weakley, A. S. (2006). Flora of the Carolinas, Virginia, Georgia and surrounding areas. University of North Carolina at Chapel Hill. https://herbarium.unc.edu
Whitehead, S. R., Turcotte, M. M. & Poveda, K. (2017). Domestication impacts on plant–herbivore interactions: a meta-analysis. Philosophical Transactions of the Royal Society B: Biological Sciences372 , 20160034. https://doi.org/10.1098/rstb.2016.0034
Wink, M. (1988). Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theoretical and Applied Genetics75 , 225-233.
Wong, J. S., Cave, A. C., Lightle, D. M., Mahaffee, W. F., Naranjo, S. E., Wiman, N. G., Woltz, J. M. & Lee, J. C. (2018). Drosophila suzukii flight performance reduced by starvation but not affected by humidity. Journal of Pest Science91 , 1269-1278. https://doi.org/10.1007/s10340-018-1013-x
Wright, J. W., Davies, K. F., Lau, J. A., McCall, A. C. & McKay, J. K. (2006). Experimental verification of ecological niche modeling in a heterogeneous environment. Ecology87 , 2433-2439. https://doi.org/10.1890/0012-9658(2006)87[2433:EVOENM]2.0.CO;2
Young, Y., Buckiewicz, N. & Long, T. A. (2018). Nutritional geometry and fitness consequences in Drosophila suzukii , the Spotted‐Wing Drosophila. Ecology and Evolution8 , 2842-2851. https://doi.org/10.1002/ece3.3849