References
Ballman, E. S. & Drummond, F. A. (2017). Infestation of wild fruit byDrosophila suzukii surrounding Maine wild blueberry
fields. Journal of Agricultural and Urban Entomology , 33 ,
61-70. https://doi.org/10.3954/1523-5475-33.1.61
Barringer, L. & Ciafré, C. M. (2020). Worldwide feeding host plants of
Spotted Lanternfly, with significant additions from North
America. Environmental Entomology , 49 , 999-1011.
https://doi.org/10.1093/ee/nvaa093
Bellamy, D. E., Sisterson, M. S. & Walse, S. S. (2013). Quantifying
host potentials: indexing postharvest fresh fruits for spotted wing
drosophila, Drosophila suzukii . PLoS One , 8 ,
e61227. https://doi.org/10.1371/journal.pone.0061227
Bernardi, D., Andreazza, F., Botton, M., Baronio, C. A. & Nava, D. E.
(2017). Susceptibility and interactions of Drosophila suzukii andZaprionus indianus (Diptera: Drosophilidae) in damaging
strawberry. Neotropical Entomology , 46 , 1-7.
https://doi.org/10.1007/s13744-016-0423-9
Calabria, G., Máca, J., Bächli, G., Serra, L. & Pascual, M. (2012).
First records of the potential pest species Drosophila suzukii(Diptera: Drosophilidae) in Europe. Journal of Applied
Entomology , 136 , 139-147.
https://doi.org/10.1111/j.1439-0418.2010.01583.x
Carrasco, D., Larsson, M. C. & Anderson, P. (2015). Insect host plant
selection in complex environments. Current Opinion in Insect
Science , 8 , 1-7. https://doi.org/10.1016/j.cois.2015.01.014
Chen, Y. H., Gols, R. & Benrey, B. (2015). Crop domestication and its
impact on naturally selected trophic interactions. Annual Review
of Entomology , 60 , 35-58.
https://doi.org/10.1146/annurev-ento-010814-020601
Compton, S. G. (2002). Sailing with the wind: dispersal by small flying
insects. In J. M. Powell, R. E. Kenward & R. S. Hails (Eds.),Dispersal Ecology , (pp.113-133). Blackwell Publishing.
de la Vega, G. J. & Corley, J. C. (2019). Drosophila suzukii(Diptera: Drosophilidae) distribution modelling improves our
understanding of pest range limits. International Journal of Pest
Management , 65 , 217-227.
https://doi.org/10.1080/09670874.2018.1547460
Deprá, M., Poppe, J. L., Schmitz, H. J., De Toni, D. C. & Valente, V.
L. (2014). The first records of the invasive pest Drosophila
suzukii in the South American continent. Journal of Pest
Science , 87 , 379-383. https://doi.org/10.1007/s10340-014-0591-5
Diepenbrock, L. M., Swoboda-Bhattarai, K. A. & Burrack, H. J. (2016).
Ovipositional preference, fidelity, and fitness of Drosophila
suzukii in a co-occurring crop and non-crop host system. Journal
of Pest Science , 89 , 761-769.
https://doi.org/10.1007/s10340-016-0764-5
dos Santos, L. A., Mendes, M. F., Krüger, A. P., Blauth, M. L.,
Gottschalk, M. S. & Garcia, F. R. (2017). Global potential distribution
of Drosophila suzukii (Diptera, Drosophilidae). PLoS
One , 12 , e0174318. https://doi.org/10.1371/journal.pone.0174318
Elith, J. & Leathwick, J. R. (2009). Species distribution models:
ecological explanation and prediction across space and
time. Annual Review of Ecology, Evolution, and
Systematics , 40 , 677-697.
https://doi.org/10.1146/annurev.ecolsys.110308.120159
Elsensohn, J. E. & Loeb, G. M. (2018). Non-crop host sampling yields
insights into small-scale population dynamics of Drosophila
suzukii (Matsumura). Insects , 9 , 5.
https://doi.org/10.3390/insects9010005
Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J. & Dunn, R. R.
(2007). The biogeography of prediction error: why does the introduced
range of the fire ant over‐predict its native range?. Global
Ecology and Biogeography , 16 , 24-33.
https://doi.org/10.1111/j.1466-8238.2006.00258.x
Fraimout, A. & Monnet, A. C. (2018). Accounting for intraspecific
variation to quantify niche dynamics along the invasion routes ofDrosophila suzukii . Biological Invasions , 20 ,
2963-2979. https://doi.org/10.1007/s10530-018-1750-z
Futuyma, D. J. & Peterson, S. C. (1985). Genetic variation in the use
of resources by insects. Annual Review of Entomology , 30 ,
217-238.
Gutierrez, A. P., Ponti, L. & Dalton, D. T. (2016). Analysis of the
invasiveness of spotted wing Drosophila (Drosophila suzukii ) in
North America, Europe, and the Mediterranean Basin. Biological
Invasions , 18 , 3647-3663.
https://doi.org/10.1007/s10530-016-1255-6
Hardin, J. A., Kraus, D. A. & Burrack, H. J. (2015). Diet quality
mitigates intraspecific larval competition in Drosophila
suzukii . Entomologia Experimentalis et Applicata , 156 ,
59-65. https://doi.org/10.1111/eea.12311
Hassani, I. M., Behrman, E. L., Prigent, S. R., Gidaszewski, N.,
Ravaomanarivo, L. R., Suwalski, A., Debat, V., David, J. R. & Yassin,
A. (2020). First occurrence of the pest Drosophila suzukii(Diptera: Drosophilidae) in the Comoros Archipelago (Western Indian
Ocean). African Entomology , 28 , 78-83.
https://doi.org/10.4001/003.028.0078
Hauser, M. (2011). A historic account of the invasion ofDrosophila suzukii (Matsumura)(Diptera: Drosophilidae) in the
continental United States, with remarks on their
identification. Pest Management Science , 67 , 1352-1357.
https://doi.org/10.1002/ps.2265
Heiser, C. B. (1988). Aspects of unconscious selection and the evolution
of domesticated plants. Euphytica , 37 , 77-81.
Hoelscher, C. E. (1967). Wind dispersal of brown soft scale crawlers,Coccus hesperidum (Homoptera: Coccidae), and Texas citrus mites,Eutetranychus banksi (Acarina: Tetranychidae) from Texas
citrus. Annals of the Entomological Society of
America , 60 , 673-678. https://doi.org/10.1093/aesa/60.3.673
Jaenike, J. (1978). On optimal oviposition behavior in phytophagous
insects. Theoretical Population Biology , 14 , 350-356.
https://doi.org/10.1016/0040-5809(78)90012-6
Jaramillo, S. L., Mehlferber, E. & Moore, P. J. (2015). Life‐history
trade‐offs under different larval diets in Drosophila suzukii(Diptera: Drosophilidae). Physiological Entomology , 40 ,
2-9. https://doi.org/10.1111/phen.12082
Kamiyama, M. T. & Guédot, C. (2019). Varietal and developmental
susceptibility of tart cherry (Rosales: Rosaceae) to Drosophila
suzukii (Diptera: Drosophilidae). Journal of Economic
Entomology , 112 , 1789-1797. https://doi.org/10.1093/jee/toz102
Kennedy, G. G. & Storer, N. P. (2000). Life systems of polyphagous
arthropod pests in temporally unstable cropping systems. Annual
Review of Entomology , 45 , 467-493.
https://doi.org/10.1146/annurev.ento.45.1.467
Klick, J., Yang, W. Q., Walton, V. M., Dalton, D. T., Hagler, J. R.,
Dreves, A. J., Lee, J. C. & Bruck, D. J. (2016). Distribution and
activity of Drosophila suzukii in cultivated raspberry and
surrounding vegetation. Journal of Applied
Entomology , 140 , 37-46. https://doi.org/10.1111/jen.12234
Lee, J. C., Bruck, D. J., Curry, H., Edwards, D., Haviland, D. R., Van
Steenwyk, R. A. & Yorgey, B. M. (2011). The susceptibility of small
fruits and cherries to the spotted‐wing drosophila, Drosophila
suzukii . Pest Management Science , 67 , 1358-1367.
https://doi.org/10.1002/ps.2225
Lee, J. C., Dreves, A. J., Cave, A. M., Kawai, S., Isaacs, R., Miller,
J. C., Van Timmeren, S. & Bruck, D. J. (2015). Infestation of wild and
ornamental noncrop fruits by Drosophila suzukii (Diptera:
Drosophilidae). Annals of the Entomological Society of
America , 108 , 117-129. https://doi.org/10.1093/aesa/sau014
Little, C. M., Chapman, T. W. & Hillier, N. K. (2020). Plasticity is
key to success of Drosophila suzukii (Diptera: Drosophilidae)
invasion. Journal of Insect Science , 20 , 5.
https://doi.org/10.1093/jisesa/ieaa034
Mazzi, D. & Dorn, S. (2012). Movement of insect pests in agricultural
landscapes. Annals of Applied Biology , 160 , 97-113.
https://doi.org/10.1111/j.1744-7348.2012.00533.x
Mitsui, H., Beppu, K. & Kimura, M. T. (2010). Seasonal life cycles and
resource uses of flower‐and fruit‐feeding drosophilid flies (Diptera:
Drosophilidae) in central Japan. Entomological
Science , 13 , 60-67.
https://doi.org/10.1111/j.1479-8298.2010.00372.x
Moser, D., Drapela, T., Zaller, J. G. & Frank, T. (2009). Interacting
effects of wind direction and resource distribution on insect pest
densities. Basic and Applied Ecology , 10 , 208-215.
https://doi.org/10.1016/j.baae.2008.03.008
Mueller, M. C. (2015). Islands within islands: The effects of habitat
fragmentation, novel community interactions, and climate on HawaiianDrosophila populations. Masters thesis. University of Hawai’i,
Hilo.
Ometto, L., Cestaro, A., Ramasamy, S., Grassi, A., Revadi, S., Siozios,
S., Moretto, M., Fontana, P., Varotto, C., Pisani, D. & Dekker, T.
(2013). Linking genomics and ecology to investigate the complex
evolution of an invasive Drosophila pest. Genome Biology and
Evolution , 5 , 745-757. https://doi.org/10.1093/gbe/evt034
Ørsted, I. V. & Ørsted, M. (2019). Species distribution models of the
Spotted Wing Drosophila (Drosophila suzukii , Diptera:
Drosophilidae) in its native and invasive range reveal an ecological
niche shift. Journal of Applied Ecology , 56 , 423-435.
https://doi.org/10.1111/1365-2664.13285
Panel, A. D., Zeeman, L., Van der Sluis, B. J., Van Elk, P.,
Pannebakker, B. A., Wertheim, B. & Helsen, H. H. (2018). OverwinteredDrosophila suzukii are the main source for infestations of the
first fruit crops of the season. Insects , 9 , 145.
https://doi.org/10.3390/insects9040145
Papaj, D. R. & Prokopy, R. J. (1989). Ecological and evolutionary
aspects of learning in phytophagous insects. Annual Review of
Entomology , 34 , 315-350.
Parchami-Araghi, M., Gilasian, E. & Keyhanian, A. A. (2015). Spotted
wing drosophila, Drosophila suzukii (Matsumura)(Dip.:
Drosophilidae), an invasive fruit pest new to the middle East and
Iran. Drosophila Information Service , 98 , 59-60.
Pelton, E., Gratton, C., Isaacs, R., Van Timmeren, S., Blanton, A. &
Guédot, C. (2016). Earlier activity of Drosophila suzukii in high
woodland landscapes but relative abundance is unaffected. Journal
of Pest Science , 89 , 725-733.
https://doi.org/10.1007/s10340-016-0733-z
Powell, R. A. & Seaman, D. E. (1990). Production of important black
bear foods in the southern Appalachians. Bears: Their Biology and
Management , 8 , 183-187.
Poyet, M., Eslin, P., Héraude, M., Le Roux, V., Prévost, G., Gibert, P.
& Chabrerie, O. (2014). Invasive host for invasive pest: when the
Asiatic cherry fly (Drosophila suzukii ) meets the American black
cherry (Prunus serotina ) in Europe. Agricultural and Forest
Entomology , 16 , 251-259. https://doi.org/10.1111/afe.12052
Rand, T. A., Tylianakis, J. M. & Tscharntke, T. (2006). Spillover edge
effects: the dispersal of agriculturally subsidized insect natural
enemies into adjacent natural habitats. Ecology
Letters , 9 , 603-614.
https://doi.org/10.1111/j.1461-0248.2006.00911.x
Rice, K. B., Short, B. D., Jones, S. K. & Leskey, T. C. (2016).
Behavioral responses of Drosophila suzukii (Diptera:
Drosophilidae) to visual stimuli under laboratory, semifield, and field
conditions. Environmental Entomology , 45 , 1480-1488.
https://doi.org/10.1093/ee/nvw123
Roach, N. S., Hunter, E. A., Nibbelink, N. P. & Barrett, K. (2017).
Poor transferability of a distribution model for a widespread coastal
marsh bird in the southeastern United
States. Ecosphere , 8 , e01715.
https://doi.org/10.1002/ecs2.1715
Rodriguez-Saona, C., Cloonan, K. R., Sanchez-Pedraza, F., Zhou, Y.,
Giusti, M. M. & Benrey, B. (2019). Differential susceptibility of wild
and cultivated blueberries to an invasive frugivorous
pest. Journal of Chemical Ecology , 45 , 286-297.
https://doi.org/10.1007/s10886-018-1042-1
Rossi-Stacconi, M. V., Kaur, R., Mazzoni, V., Ometto, L., Grassi, A.,
Gottardello, A., Rota-Stabelli, O. & Anfora, G. (2016). Multiple lines
of evidence for reproductive winter diapause in the invasive pestDrosophila suzukii : useful clues for control
strategies. Journal of Pest Science , 89 , 689-700.
https://doi.org/10.1007/s10340-016-0753-8
Sakai, A. K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J.,
With, K. A., Baughman, S., Cabin, R. J., Cohen, J. E., Ellstrand, N. C.
& McCauley, D. E. (2001). The population biology of invasive
species. Annual Review of Ecology and Systematics , 32 ,
305-332. https://doi.org/10.1146/annurev.ecolsys.32.081501.114037
Santoiemma, G., Mori, N., Tonina, L. & Marini, L. (2018). Semi-natural
habitats boost Drosophila suzukii populations and crop damage in
sweet cherry. Agriculture, Ecosystems & Environment , 257 ,
152-158. https://doi.org/10.1016/j.agee.2018.02.013
Santoiemma, G., Fioretto, D., Corcos, D., Mori, N. & Marini, L. (2019).
Spatial synchrony in Drosophila suzukii population dynamics along
elevational gradients. Ecological Entomology , 44 , 182-189.
https://doi.org/10.1111/een.12688
Sarquis, J. A., Cristaldi, M. A., Arzamendia, V., Bellini, G. &
Giraudo, A.R. (2018). Species distribution models and empirical test:
Comparing predictions with well‐understood geographical distribution ofBothrops alternatus in Argentina. Ecology and
Evolution , 8 , 10497-10509. https://doi.org/10.1002/ece3.4517
Swoboda-Bhattarai, K.A. & Burrack, H.J. (2015). Drosophila
suzukii infestation in ripe and ripening caneberries. Acta
Horticulturae , 1133 , 419-430.
https://doi.org/10.17660/ActaHortic.2016.1133.65
Tait, G., Grassi, A., Pfab, F., Crava, C. M., Dalton, D. T., Magarey,
R., Ometto, L., Vezzulli, S., Rossi-Stacconi, M. V., Gottardello, A. &
Pugliese, A. (2018). Large-scale spatial dynamics of Drosophila
suzukii in Trentino, Italy. Journal of Pest Science , 91 ,
1213-1224. https://doi.org/10.1007/s10340-018-0985-x
Teulon, D. A. J., Leskey, T. C. & Cameron, E. A. (1998). Pear thripsTaeniothrips inconsequens (Thysanoptera: Thripidae) life history
and population dynamics in sugar maple in Pennsylvania. Bulletin
of Entomological Research , 88 , 83-92.
https://doi.org/10.1017/S0007485300041584
Tonina, L., Mori, N., Sancassani, M., Dall’Ara, P. & Marini, L. (2018).
Spillover of Drosophila suzukii between noncrop and crop areas:
implications for pest management. Agricultural and Forest
Entomology , 20 , 575-581. https://doi.org/10.1111/afe.12290
Wallingford, A. K., Rice, K. B., Leskey, T. C. & Loeb, G. M. (2018).
Overwintering behavior of Drosophila suzukii , and potential
springtime diets for egg maturation. Environmental
Entomology , 47 , 1266-1273. https://doi.org/10.1093/ee/nvy115
Ward, L.K. & Spalding, D.F. (1993). Phytophagous British insects and
mites and their food-plant families: total numbers and
polyphagy. Biological Journal of the Linnean Society , 49 ,
257-276.
Weakley, A. S. (2006). Flora of the Carolinas, Virginia, Georgia and
surrounding areas. University of North Carolina at Chapel Hill.
https://herbarium.unc.edu
Whitehead, S. R., Turcotte, M. M. & Poveda, K. (2017). Domestication
impacts on plant–herbivore interactions: a
meta-analysis. Philosophical Transactions of the Royal Society B:
Biological Sciences , 372 , 20160034.
https://doi.org/10.1098/rstb.2016.0034
Wink, M. (1988). Plant breeding: importance of plant secondary
metabolites for protection against pathogens and
herbivores. Theoretical and Applied Genetics , 75 , 225-233.
Wong, J. S., Cave, A. C., Lightle, D. M., Mahaffee, W. F., Naranjo, S.
E., Wiman, N. G., Woltz, J. M. & Lee, J. C. (2018). Drosophila
suzukii flight performance reduced by starvation but not affected by
humidity. Journal of Pest Science , 91 , 1269-1278.
https://doi.org/10.1007/s10340-018-1013-x
Wright, J. W., Davies, K. F., Lau, J. A., McCall, A. C. & McKay, J. K.
(2006). Experimental verification of ecological niche modeling in a
heterogeneous environment. Ecology , 87 , 2433-2439.
https://doi.org/10.1890/0012-9658(2006)87[2433:EVOENM]2.0.CO;2
Young, Y., Buckiewicz, N. & Long, T. A. (2018). Nutritional geometry
and fitness consequences in Drosophila suzukii , the Spotted‐Wing
Drosophila. Ecology and Evolution , 8 , 2842-2851.
https://doi.org/10.1002/ece3.3849