REFERENCES
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, & Begley DJ (2010).
Structure and function of the blood-brain barrier. Neurobiol Dis
37: 13-25.
Abrahao A, Meng Y, Llinas M, Huang Y, Hamani C, Mainprize T, et
al. (2019). First-in-human trial of blood–brain barrier opening in
amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nat
Commun 10: 4373.
Al-Bachari S, Naish JH, Parker GJM, Emsley HCA, & Parkes LM (2020).
Blood–brain barrier leakage is increased in Parkinson’s disease. Front
Physiol 11: 593026.
Andjus PR, Bataveljić D, Vanhoutte G, Mitrecic D, Pizzolante F, Djogo
N, et al. (2009). In vivo morphological changes in animal models
of amyotrophic lateral sclerosis and Alzheimer’s-like disease: MRI
approach. Anat Rec 292: 1882-1892.
Bartels AL, Willemsen AT, Kortekaas R, de Jong BM, de Vries R, de Klerk
O, et al. (2008). Decreased blood-brain barrier P-glycoprotein
function in the progression of Parkinson’s disease, PSP and MSA. J
Neural Transm 115: 1001-1009.
Beghi E, Mennini T, Bendotti C, Bigini P, Logroscino G, Chiò A, et
al. (2007). The heterogeneity of amyotrophic lateral sclerosis: a
possible explanation of treatment failure. Curr Med Chem 14:3185-3200.
Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland
NG, et al. (1997). ALS-linked SOD1 mutant G85R mediates damage to
astrocytes and promotes rapidly progressive disease with SOD1-containing
inclusions. Neuron 18: 327-338.
Chan GNY, Evans RA, Banks DB, Mesev EV, Miller DS, & Cannon RE (2017).
Selective induction of P-glycoprotein at the CNS barriers during
symptomatic stage of an ALS animal model. Neurosci lett 639:103-113.
Chiò A, Logroscino G, Hardiman O, Swingler R, Mitchell D, Beghi E,
et al. (2009). Prognostic factors in ALS: A critical review. Amyotroph
Lateral Scler 10: 310-323.
Davis TP, Sanchez-Covarubias L, & Tome ME (2014). P-glycoprotein
trafficking as a therapeutic target to optimize CNS drug delivery. Adv
Pharmacol 71: 25-44.
Donnenfeld H, Kascsak RJ, & Bartfeld H (1984). Deposits of IgG and C3
in the spinal cord and motor cortex of ALS patients. J Neuroimmunol
6: 51-57.
Engelhardt JI, & Appel SH (1990). IgG reactivity in the spinal cord and
motor cortex in amyotrophic lateral sclerosis. Arch Neurol 47:1210-1216.
Garbuzova-Davis S, Haller E, Saporta S, Kolomey I, Nicosia SV, &
Sanberg PR (2007). Ultrastructure of blood–brain barrier and
blood–spinal cord barrier in SOD1 mice modeling ALS. Brain Res
1157: 126-137.
Garbuzova-Davis S, Hernandez-Ontiveros DG, Rodrigues MCO, Haller E,
Frisina-Deyo A, Mirtyl S, et al. (2012). Impaired
blood–brain/spinal cord barrier in ALS patients. Brain Res
1469: 114-128.
Garbuzova-Davis S, Saporta S, Haller E, Kolomey I, Bennett SP, Potter
H, et al. (2007). Evidence of compromised blood-spinal cord
barrier in early and late symptomatic SOD1 mice modeling ALS. PLoS One
2: e1205-e1205.
Ge S, & Pachter JS (2006). Isolation and culture of microvascular
endothelial cells from murine spinal cord. J Neuroimmunol 177:209-214.
Golden PL, & Pardridge WM (1999). P-glycoprotein on astrocyte foot
processes of unfixed isolated human brain capillaries. Brain Res
819: 143-146.
Grande G, Morin L, Vetrano DL, Fastbom J, & Johnell K (2017). Drug use
in older adults with amyotrophic lateral sclerosis near the end of life.
Drugs Aging 34: 529-533.
Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD,
et al. (1994). Motor neuron degeneration in mice that express a human
Cu,Zn superoxide dismutase mutation. Science 264: 1772-1775.
Han-Xiang D, Hujun J, Ronggen F, Hong Z, Yong S, Erdong L, et al.(2008). Molecular dissection of ALS-associated toxicity of SOD1 in
transgenic mice using an exon-fusion approach. Hum Mol Genet
17: 2310-2319.
Henkel JS, Beers DR, Wen S, Bowser R, & Appel SH (2009). Decreased mRNA
expression of tight junction proteins in lumbar spinal cords of patients
with ALS. Neurology 72: 1614-1616.
Hobson EV, & McDermott CJ (2016). Supportive and symptomatic management
of amyotrophic lateral sclerosis. Nat Rev Neurol 12: 526-538.
Howland DS, Liu J, She Y, Goad B, Maragakis NJ, Kim B, et al.(2002). Focal loss of the glutamate transporter EAAT2 in a transgenic
rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS).
Proc Natl Acad Sci USA 99: 1604-1609.
Jablonski MR, Jacob DA, Campos C, Miller DS, Maragakis NJ, Pasinelli
P, et al. (2012). Selective increase of two ABC drug efflux
transporters at the blood-spinal cord barrier suggests induced
pharmacoresistance in ALS. Neurobiol Dis 47: 194-200.
Jablonski MR, Markandaiah SS, Jacob D, Meng NJ, Li K, Gennaro V,
et al. (2014). Inhibiting drug efflux transporters improves efficacy of
ALS therapeutics. ACTN 1: 996-1005.
Jiang J, Zhu Q, Gendron Tania F, Saberi S, McAlonis-Downes M, Seelman
A, et al. (2016). Gain of toxicity from ALS/FTD-linked repeat
expansions in C9orf72 is alleviated by antisense oligonucleotides
targeting GGGGCC-Containing RNAs. Neuron 90: 535-550.
Leonardi A, Abbruzzese G, Arata L, Cocito L, & Vische M (1984).
Cerebrospinal fluid (CSF) findings in amyotrophic lateral sclerosis. J
Neurol 231: 75-78.
Longinetti E, & Fang F (2019). Epidemiology of amyotrophic lateral
sclerosis: an update of recent literature. Curr Opin Neurol 32:771-776.
Lubberink M, van Assema D, Hendrikse NH, Schuit R, Lammertsma A, & Van
Berckel B (2010). Decreased P-glycoprotein function at the blood-brain
barrier in patients with Alzheimer’s disease as shown by
[11C]-verapamil and PET. J Nucl Med 51:443-443.
Mehta DC, Short J, & Nicolazzo J (2013). Altered brain uptake of
therapeutics in a triple transgenic mouse model of Alzheime’ s Disease.
Pharm Res 30: 2868-2879.
Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, & Akkari PA
(2019). ALS genetics, mechanisms, and therapeutics: where are we now?
Front Neurosci 13.
Meyer T, Kettemann D, Maier A, Grehl T, Weyen U, Grosskreutz J, et
al. (2020). Symptomatic pharmacotherapy in ALS: data analysis from a
platform-based medication management programme. J Neurol Neurosurg
Psychiatry 91: 783-785.
Milane A, Fernandez C, Dupuis L, Buyse M, Loeffler JP, Farinotti
R, et al. (2010). P-glycoprotein expression and function are
increased in an animal model of amyotrophic lateral sclerosis. Neurosci
Lett 472: 166-170.
Miyazaki K, Ohta Y, Nagai M, Morimoto N, Kurata T, Takehisa Y, et
al. (2011). Disruption of neurovascular unit prior to motor neuron
degeneration in amyotrophic lateral sclerosis. J Neurosci Res
89: 718-728.
Nicaise C, Mitrecic D, Demetter P, De Decker R, Authelet M, Boom
A, et al. (2009). Impaired blood-brain and blood-spinal cord
barriers in mutant SOD1-linked ALS rat. Brain Res 1301:152-162.
Nicolazzo JA, Charman SA, & Charman WN (2006). Methods to assess drug
permeability across the blood-brain barrier. J Pharm Pharmacol
58: 281-293.
O’Rourke Jacqueline G, Bogdanik L, Muhammad AKMG, Gendron Tania F, Kim
Kevin J, Austin A, et al. (2015). C9orf72 BAC transgenic mice
display typical pathologic features of ALS/FTD. Neuron 88:892-901.
Ono S, Imai T, Munakata S, Takahashi K, Kanda F, Hashimoto K, et
al. (1998). Collagen abnormalities in the spinal cord from patients
with amyotrophic lateral sclerosis. J Neurol Sci 160: 140-147.
Pan W, Banks WA, & Kastin AJ (1997). Permeability of the blood–brain
and blood–spinal cord barriers to interferons. J Neuroimmunol
76: 105-111.
Pan Y, & Nicolazzo JA (2018). Impact of aging, Alzheimer’s disease and
Parkinson’s disease on the blood-brain barrier transport of
therapeutics. Adv Drug Deliv Rev 135: 62-74.
Peters Owen M, Cabrera Gabriela T, Tran H, Gendron Tania F, McKeon
Jeanne E, Metterville J, et al. (2015). Human C9orf72
hexanucleotide expansion reproduces RNA foci and dipeptide repeat
proteins but not neurodegeneration in BAC transgenic mice. Neuron
88: 902-909.
Philips T, & Rothstein JD (2015). Rodent models of amyotrophic lateral
sclerosis. Curr Protoc Pharmacol 69: 5.67.61-65.67.21.
Picher-Martel V, Valdmanis PN, Gould PV, Julien J-P, & Dupré N (2016).
From animal models to human disease: a genetic approach for personalized
medicine in ALS. Acta Neuropathol Commun 4: 70.
Puris E, Gynther M, Auriola S, & Huttunen KM (2020). L-Type amino acid
transporter 1 as a target for drug delivery. Pharm Res 37:88-88.
Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati
A, et al. (1993). Mutations in Cu/Zn superoxide dismutase gene
are associated with familial amyotrophic lateral sclerosis. Nature
362: 59-62.
Sasaki S (2015). Alterations of the blood-spinal cord barrier in
sporadic amyotrophic lateral sclerosis. Neuropathology 35:518-528.
Shefner J, Heiman-Patterson T, Pioro EP, Wiedau-Pazos M, Liu S, Zhang
J, et al. (2020). Long-term edaravone efficacy in amyotrophic
lateral sclerosis: Post-hoc analyses of Study 19 (MCI186-19). Muscle
Nerve 61: 218-221.
Shelkovnikova TA, Peters OM, Deykin AV, Connor-Robson N, Robinson H,
Ustyugov AA, et al. (2013). Fused in sarcoma (FUS) protein
lacking nuclear localization signal (NLS) and major RNA binding motifs
triggers proteinopathy and severe motor phenotype in transgenic mice. J
Biol Chem 288: 25266-25274.
Sweeney MD, Sagare AP, & Zlokovic BV (2018). Blood-brain barrier
breakdown in Alzheimer disease and other neurodegenerative disorders.
Nat Rev Neurol 14: 133-150.
Uchida Y, Yagi Y, Takao M, Tano M, Umetsu M, Hirano S, et al.(2020). Comparison of absolute protein abundances of transporters and
receptors among blood–brain barriers at different cerebral regions and
the blood–spinal cord barrier in humans and rats. Mol Pharm
17: 2006-2020.
van Vliet EA, Iyer AM, Mesarosova L, Çolakoglu H, Anink JJ, van
Tellingen O, et al. (2019). Expression and cellular distribution
of P-glycoprotein and breast cancer resistance protein in amyotrophic
lateral sclerosis patients. J Neuropathol Exp Neurol 79:266-276.
Wang J, Xu G, Li H, Gonzales V, Fromholt D, Karch C, et al.(2005). Somatodendritic accumulation of misfolded SOD1-L126Z in motor
neurons mediates degeneration: αB-crystallin modulates aggregation. Hum
Mol Genet 14: 2335-2347.
Waters S, Swanson MEV, Dieriks BV, Zhang YB, Grimsey NL, Murray
HC, et al. (2021). Blood-spinal cord barrier leakage is
independent of motor neuron pathology in ALS. Acta Neuropathol Commun
9: 144.
Wegorzewska I, Bell S, Cairns NJ, Miller TM, & Baloh RH (2009). TDP-43
mutant transgenic mice develop features of ALS and frontotemporal lobar
degeneration. Proc Natl Acad Sci USA 106: 18809-18814.
Winkler EA, Sengillo JD, Sullivan JS, Henkel JS, Appel SH, & Zlokovic
BV (2013). Blood-spinal cord barrier breakdown and pericyte reductions
in amyotrophic lateral sclerosis. Acta Neuropathol 125:111-120.
Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA,
et al. (1995). An adverse property of a familial ALS-linked SOD1
mutation causes motor neuron disease characterized by vacuolar
degeneration of mitochondria. Neuron 14: 1105-1116.
Yamadera M, Fujimura H, Inoue K, Toyooka K, Mori C, Hirano H, et
al. (2015). Microvascular disturbance with decreased pericyte coverage
is prominent in the ventral horn of patients with amyotrophic lateral
sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 16:393-401.
Zhong Z, Deane R, Ali Z, Parisi M, Shapovalov Y, O’Banion MK, et
al. (2008). ALS-causing SOD1 mutants generate vascular changes prior to
motor neuron degeneration. Nat Neurosci 11: 420-422.
Zoccolella S, Beghi E, Palagano G, Fraddosio A, Guerra V, Samarelli
V, et al. (2007). Riluzole and amyotrophic lateral sclerosis
survival: a population-based study in southern Italy. Eur J Neurol
14: 262-268.