References

Ali, G., Tetzlaff, D., Soulsby, C., Mcdonnell, J. J., and Capell, R. (2012). A comparison of similarity indices for catchment classification using a cross-regional dataset. Advances in Water Resources, 40:11–22. Bormann, H. (2010). Towards a hydrologically motivated soil texture classification. Geoderma, 157(3-4):142– 153. Buttle, J. (2006). Mapping first-order controls on streamflow from drainage basins: the t3 template. Hydrological Processes, 20(15):3415–3422. Carey, S. K., Tetzlaff, D., Seibert, J., Soulsby, C., Buttle, J., Laudon, H., …, and Pomeroy, J. W. (2010). Inter-comparison of hydro-climatic regimes across northern catchments: synchronicity, resistance and resilience. Hydrological Processes, 24:3591–3602.
Chollet, F. et al. (2015). Keras. https://keras.io.
Coulibaly, P., Samuel, J., Pietroniro, A., and Harvey, D. (2013). Evaluation of canadian national hydrometric network density based on wmo 2008 standards. Canadian Water Resources Journal, 38(2):259–167. Di Prinzio, M., Castellarin, A., and Toth, E. (2011). Data-driven catchment classification: application to the pub problem.Hydrology and Earth System Sciences, 15:1921–1935.
Goldberger, J., Roweis, S., Hinton, G., and Salakhutdinov, R. (2005). Neighbourhood components analysis.
Advances in Neural Information Processing Systems, 17:513–520. Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http://www. deeplearningbook.org. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. Proceedings of the 27th International Conference on Neural Information Processing Systems, 2:2672–2680. Haines, A. T., Finlayson, B. L., and McMahon, T. A. (1988). A global classification of river regimes. Applied Geography, 8:255–272. Hall, M. J. and Minns, A. W. (1999). The classification of hydrologically homogeneous regions. Hydrological Sciences Journal, 44(5):693–704. Hinton, G. E. and Roweis, S. T. (2002). Stochastic neighbor embedding. In Advances in Neural Information Processing Systems, pages 833–840. MIT Press, Cambridge, MA, USA. Kennard, M. J., Pusey, B. J., Olden, J. D., Mackay, S. J., Stein, J. L., and Marsh, N. (2010). Classificaiton of natural flow regimes in australia to support environmental flow management. Freshwater Biology, 55:171–193. Kingma, D. and Ba, J. (2015). Adam: A method for stochastic optimization. Proceedings of the 3rd International Conference on Learning Representations. Laudon, H., Spence, C., Buttle, J., Carey, S. K., McDonnell, J. J., McNamara, J. P., Soulsby, C., and Tetzlaff, D. (2017). Save northern high-latitude catchments. Nature Geosciences, 10(5):324–325. Ley, R., Casper, M. C., Hellebrand, H., and Merz, R. (2011). Catchment classification by runoff behaviours with self-organizing maps (som).Hydrology and Earth System Sciences, 15:2947–2962. Liu, H., Yang, J., Ye, M., James, S. C., Tang, Z., Dong, J., and Xing, T. (2021). Using t-distributed stochastic neighbor embedding (t-sne) for cluster analysis and spatial zone delineation of groundwater geochemistry data. Journal of Hydrology, 597:126146. Mazher, A. (2020). Visualization framework for high-dimensional spatio-temporal hydrological gridded datasets using machine-learning techniques. Water, 12:590. Merz, R. and Bloschl, G. (2005). Flood frequency regionalisation - spatial proximity vs catchment attributes. Journal of Hydrology, 302(1-4):283–306. Mishra, A. K. and Coulibaly, P. (2009). Developmentsin hydrological network design: a review. Reviews of Geophysics, 47:RG2001. Oudin, L., Kay, A., Andreassian, V., and Perrin, C. (2010). Are seemingly physically similar catchments truly hydrologically similar.Water Resources Research, 46:W11558. Patil, S. and Stieglitz, M. (2012). Controls on hydrologic similarity: role of nearby gauged catchments for prediction at an ungauged catchment. Hydrology and Earth System Sciences, 16:551–562. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., …, and Duchesnay, E. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12:2825–2830. Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., Sparks, R. E., and Stromberg, J. C. (1997). The natural flow regime. BioScience, 47(11):769–784. Razavi, T. and Coulibaly, P. (2013). Classification of ontario watersheds based on physical attributes and streamflow series.Journal of Hydrology, 493:81–94. Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., and Carrillo, G. (2011). Catchment classification: emperical anlaysis of hydrological similarity based on catchment function in the eastern usa.Hydrological and Earth System Sciences, 15:2895–2911. Sawicz, K. A., Kelleher, C., Wagener, T., Troch, P., Sivapalan, M., and Carrillo, G. (2014). Characterizing hydrological change through catchment classification. Hydrology and Earth System Sciences, 18:273–285.
Singh, V. P. (1997). The use of entropy in hydrology and water resources. Hydrological Processes , 11:587–626.
Sivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karambiri, H., Lakshmi, V., …, and Zehe, E. (2003). Iahs decade on predictions in ungauged basins (pub), 2003–2012: shaping an exciting future for the hydrological sciences. Hydrological Sciences Journal, 48(6):857–880. Snelder, T. H., Biggs, B. J. F., and Woods, R. A. (2005). Improved eco-hydrological classification of rivers. River Research and Applications, 21:609–628.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, L., and Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research , 15:1929–1958.
Toth, E. (2013). Catchment classification based on characterization of streamflow and precipitation time series. Hydrology and Earth System Sciences, 17:1149–1159. van der Maaten, L. (2009). Learning a parametric embedding by preserving local structure. Proceedings of the 12th International Conference on Artificial Intelligence and Statistics, 5:384–391. van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne.Journal of Machine Learning Research, 9:2579–2605. Wagener, T., Sivapalan, M., Troch, P., and Woods, R. (2007). Catchment classification and hydrologic similarity. Geography Compass, 1/4:901–931.