Ali, G., Tetzlaff, D., Soulsby, C., Mcdonnell, J. J., and Capell, R.
(2012). A comparison of similarity indices for catchment classification
using a cross-regional dataset. Advances in Water Resources,
40:11–22.
Bormann, H. (2010). Towards a hydrologically motivated soil texture
classification. Geoderma, 157(3-4):142– 153.
Buttle, J. (2006). Mapping first-order controls on streamflow from
drainage basins: the t3 template. Hydrological Processes,
20(15):3415–3422.
Carey, S. K., Tetzlaff, D., Seibert, J., Soulsby, C., Buttle, J.,
Laudon, H., …, and Pomeroy, J. W. (2010). Inter-comparison of
hydro-climatic regimes across northern catchments: synchronicity,
resistance and resilience. Hydrological Processes, 24:3591–3602.
Chollet, F. et al. (2015). Keras.
https://keras.io.
Goldberger, J., Roweis, S., Hinton, G., and Salakhutdinov, R. (2005).
Neighbourhood components analysis.
Advances in Neural Information Processing Systems, 17:513–520.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press.
http://www.
deeplearningbook.org.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial
nets. Proceedings of the 27th International Conference on Neural
Information Processing Systems, 2:2672–2680.
Haines, A. T., Finlayson, B. L., and McMahon, T. A. (1988). A global
classification of river regimes. Applied Geography, 8:255–272.
Hall, M. J. and Minns, A. W. (1999). The classification of
hydrologically homogeneous regions. Hydrological Sciences
Journal, 44(5):693–704.
Hinton, G. E. and Roweis, S. T. (2002). Stochastic neighbor embedding.
In Advances in Neural Information Processing Systems, pages
833–840. MIT Press, Cambridge, MA, USA.
Kennard, M. J., Pusey, B. J., Olden, J. D., Mackay, S. J., Stein, J. L.,
and Marsh, N. (2010). Classificaiton of natural flow regimes in
australia to support environmental flow management. Freshwater
Biology, 55:171–193.
Kingma, D. and Ba, J. (2015). Adam: A method for stochastic
optimization. Proceedings of the 3rd International Conference on
Learning Representations.
Laudon, H., Spence, C., Buttle, J., Carey, S. K., McDonnell, J. J.,
McNamara, J. P., Soulsby, C., and Tetzlaff, D. (2017). Save northern
high-latitude catchments. Nature Geosciences, 10(5):324–325.
Ley, R., Casper, M. C., Hellebrand, H., and Merz, R. (2011). Catchment
classification by runoff behaviours with self-organizing maps (som).Hydrology and Earth System Sciences, 15:2947–2962.
Liu, H., Yang, J., Ye, M., James, S. C., Tang, Z., Dong, J., and Xing,
T. (2021). Using t-distributed stochastic neighbor embedding (t-sne) for
cluster analysis and spatial zone delineation of groundwater
geochemistry data. Journal of Hydrology, 597:126146.
Mazher, A. (2020). Visualization framework for high-dimensional
spatio-temporal hydrological gridded datasets using machine-learning
techniques. Water, 12:590.
Merz, R. and Bloschl, G. (2005). Flood frequency regionalisation -
spatial proximity vs catchment attributes. Journal of Hydrology,
302(1-4):283–306.
Mishra, A. K. and Coulibaly, P. (2009). Developmentsin hydrological
network design: a review. Reviews of Geophysics, 47:RG2001.
Oudin, L., Kay, A., Andreassian, V., and Perrin, C. (2010). Are
seemingly physically similar catchments truly hydrologically similar.Water Resources Research, 46:W11558.
Patil, S. and Stieglitz, M. (2012). Controls on hydrologic similarity:
role of nearby gauged catchments for prediction at an ungauged
catchment. Hydrology and Earth System Sciences, 16:551–562.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., …, and Duchesnay, E. (2011). Scikit-learn: Machine
learning in python. Journal of Machine Learning Research,
12:2825–2830.
Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L.,
Richter, B. D., Sparks, R. E., and Stromberg, J. C. (1997). The natural
flow regime. BioScience, 47(11):769–784.
Razavi, T. and Coulibaly, P. (2013). Classification of ontario
watersheds based on physical attributes and streamflow series.Journal of Hydrology, 493:81–94.
Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., and Carrillo, G.
(2011). Catchment classification: emperical anlaysis of hydrological
similarity based on catchment function in the eastern usa.Hydrological and Earth System Sciences, 15:2895–2911.
Sawicz, K. A., Kelleher, C., Wagener, T., Troch, P., Sivapalan, M., and
Carrillo, G. (2014). Characterizing hydrological change through
catchment classification. Hydrology and Earth System Sciences,
18:273–285.
Singh, V. P. (1997). The use of entropy in hydrology and water
resources. Hydrological Processes , 11:587–626.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, L., and
Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine Learning Research ,
15:1929–1958.