References
1. Mendoza JA, Weinberger KK, Swan MJ. The Hsp60 protein of helicobacter pylori displays chaperone activity under acidic conditions.Biochem Biophys Rep . 2016;9:95–99.
2. Yer EN, Baloglu MC, Ayan S. Identification and expression profiling of all Hsp family member genes under salinity stress in different poplar clones. Gene . 2018;678:324–336.
3. Sangiorgi C, Vallese D, Gnemmi I, Bucchieri F, et al. Hsp60 activity on human bronchial epithelial cells. Int J Immunopathol Pharmacol . 2017;30(4):333–340.
4. Swaroop S, Sengupta N, Suryawanshi AR, Adlakha YK, et al. Hsp60 plays a regulatory role in IL-1β-induced microglial inflammation via TLR4-p38 MAPK axis. J Neuroinflammation . 2016;13.
5. Sell H, Poitou C, Habich C, Bouillot J-L, et al. Heat shock protein 60 in obesity: effect of bariatric surgery and its relation to inflammation and cardiovascular risk. Obesity (Silver Spring) . 2017;25(12):2108–2114.
6. Wick C. Tolerization against atherosclerosis using heat shock protein 60. Cell Stress Chaperones . 2016;21(2):201–211.
7. Hong Y, Long J, Li H, Chen S, et al. An analysis of immunoreactive signatures in early stage hepatocellular carcinoma. EBioMedicine . 2015;2(5):438–446.
8. Cappello F, Angileri F, de Macario EC, Macario AJL. Chaperonopathies and chaperonotherapy. Hsp60 as therapeutic target in cancer: potential benefits and risks. Curr. Pharm. Des. 2013;19(3):452–457.
9. Abdeen S, Salim N, Mammadova N, Summers CM, et al. Targeting the Hsp60/10 chaperonin systems of Trypanosoma brucei as a strategy for treating African sleeping sickness. Bioorg. Med. Chem. Lett.2016;26(21):5247–5253.
10. Stevens M, Abdeen S, Salim N, Ray A-M, et al. Hsp60/10 chaperonin systems are inhibited by a variety of approved drugs, natural products, and known bioactive molecules. Bioorg. Med. Chem. Lett.2019;29(9):1106–1112.
11. Washburn A, Abdeen S, Ovechkina Y, Ray A-M, et al. Dual-targeting GroEL/ES chaperonin and protein tyrosine phosphatase B (PtpB) inhibitors: A polypharmacology strategy for treating Mycobacterium tuberculosis infections. Bioorg. Med. Chem. Lett.2019;29(13):1665–1672.
12. Brocchieri L, Karlin S. Conservation among Hsp60 sequences in relation to structure, function, and evolution. Protein Science . 2000;9(3):476–486.
13. Karlin S, Brocchieri L. Heat shock protein 60 sequence comparisons: Duplications, lateral transfer, and mitochondrial evolution. Proc Natl Acad Sci U S A . 2000;97(21):11348–11353.
14. Tikhomirova TS, Galzitskaya OV. Functionally significant amino acid motifs of heat shock proteins: structural and bioinformatics analyses of Hsp60/Hsp10 in five classes of Chordata. Mol Biol . 2018;52(5):761–778.
15. Seddigh S. Proteomics analysis of two heat shock proteins in insects. J. Biomol. Struct. Dyn. 2019;37(10):2652–2668.
16. Guo L, Yang H, Tang F, Yin R, et al. Oral immunization with a multivalent epitope-based vaccine, based on NAP, urease, Hsp60, and HpaA, provides therapeutic effect on H. pylori infection in Mongolian gerbils. Front Cell Infect Microbiol . 2017;7.
17. Marchan J. In silico identification of epitopes present in human heat shock proteins (HSPs) overexpressed by tumour cells. J. Immunol. Methods . 2019.
18. Huang C-H, Chang M-T, Huang L, Chua W-S. Molecular discrimination and identification of Acetobacter genus based on the partial heat shock protein 60 gene (Hsp60) sequences. J. Sci. Food Agric.2014;94(2):213–218.
19. Puri A, Rai A, Dhanaraj PS, Lal R, et al. An in silico approach for identification of the pathogenic species, Helicobacter pylori and its relatives. Indian J. Microbiol. 2016;56(3):277–286.
20. Kwok AYC, Su S-C, Reynolds RP, Bay SJ, et al. Species identification and phylogenetic relationships based on partial Hsp60 gene sequences within the genus Staphylococcus. Int J Syst Evol Microbiol . 1999;49(3):1181–1192.
21. Stenico V, Michelini S, Modesto M, Baffoni L, et al. Identification of Bifidobacterium spp . using Hsp60 PCR-RFLP analysis: an update.Anaerobe . 2014;26:36–40.
22. Zhu L, Li W, Dong X. Species identification of genus Bifidobacterium based on partial Hsp60 gene sequences and proposal ofBifidobacterium thermacidophilum subsp. porcinum subsp. nov.Int J Syst Evol Microbiol . 2003;53(5):1619–1623.
23. Sakamoto M, Suzuki N, Benno Y. Hsp60 and 16S rRNA gene sequence relationships among species of the genus Bacteroides with the finding that Bacteroides suis and Bacteroides tectus are heterotypic synonyms of Bacteroides pyogenes . Int J Syst Evol Microbiol . 2010;60(12):2984–2990.
24. Padmadas N, Panda PK, Durairaj S. Binding patterns associated Aß-Hsp60 P458 conjugate to HLA-DR-DRB allele of human in Alzheimer’s disease: an in silico approach. Interdiscip Sci Comput Life Sci . 2016:1–12.
25. Marino C, Krishnan B, Cappello F, Taglialatela G. Hsp60 protects against amyloid β oligomer synaptic toxicity via modification of toxic oligomer conformation. ACS Chem Neurosci . 2019.
26. Sievers F, Higgins DG. Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol. Biol.2014;1079:105–116.
27. Cock PJA, Antao T, Chang JT, Chapman BA, et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics . 2009;25(11):1422–1423.
28. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res . 2004;32(5):1792–1797.
29. Kumar S, Stecher G, Peterson D, Tamura K. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics . 2012;28(20):2685–2686.
30. Lobanov MYu, Galzitskaya OV. Disordered patterns in clustered protein data bank and in eukaryotic and bacterial proteomes. PLoS One . 2011;6(11).
31. Virtanen P, Gommers R, Oliphant TE, Haberland M, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods . 2020;17(3):261–272.
32. Jones E, Oliphant T, Peterson P. SciPy: Open source scientific tools for Python. 2001.
33. Sokal RR, Rohlf FJ. The comparison of dendrograms by objective methods. Taxon . 1962;11(2):33–40.
34. Sueoka N. Directional mutation pressure, selective constraints, and genetic equilibria. J. Mol. Evol. 1992;34(2):95–114.
35. Sueoka N. Directional mutation pressure and neutral molecular evolution. Proc. Natl. Acad. Sci. U.S.A. 1988;85(8):2653–2657.
36. Fuglsang A. The “effective number of codons” revisited.Biochem. Biophys. Res. Commun. 2004;317(3):957–964.
37. Liu X. A more accurate relationship between ‘effective number of codons’ and GC3s under assumptions of no selection. Computational Biology and Chemistry . 2013;42:35–39.
38. Li X, Song H, Kuang Y, Chen S, et al. Genome-wide analysis of codon usage bias in Epichloë festucae . Int J Mol Sci . 2016;17(7).
39. Boto L. Horizontal gene transfer in the acquisition of novel traits by metazoans. Proc Biol Sci . 2014;281(1777).
40. Bazzocchi C, Jamnongluk W, O’Neill SL, Anderson TJ, et al. Wsp gene sequences from the Wolbachia of filarial nematodes. Curr. Microbiol. 2000;41(2):96–100.
41. Bartolucci C, Lamba D, Grazulis S, Manakova E, et al. Crystal structure of wild-type chaperonin GroEL. J. Mol. Biol.2005;354(4):940–951.
42. Douglas NR, Reissmann S, Zhang J, Chen B, et al. Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber. Cell . 2011;144(2):240–252.
43. Clare DK, Vasishtan D, Stagg S, Quispe J, et al. ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin. Cell . 2012;149(1):113–123.
44. Nisemblat S, Yaniv O, Parnas A, Frolow F, et al. Crystal structure of the human mitochondrial chaperonin symmetrical football complex.PNAS . 2015;112(19):6044–6049.
45. Shimamura T, Koike-Takeshita A, Yokoyama K, Masui R, et al. Crystal structure of the native chaperonin complex from Thermus thermophilus revealed unexpected asymmetry at the cis-cavity.Structure . 2004;12(8):1471–1480.
46. Lassalle F, Périan S, Bataillon T, Nesme X, et al. GC-content evolution in bacterial genomes: the biased gene conversion hypothesis expands. PLOS Genetics . 2015;11(2):e1004941.
47. Niu Z, Xue Q, Wang H, Xie X, et al. Mutational biases and GC-biased gene conversion affect GC content in the plastomes of Dendrobiumgenus. Int J Mol Sci . 2017;18(11).
48. Weissman JL, Fagan WF, Johnson PLF. Linking high GC content to the repair of double strand breaks in prokaryotic genomes. PLoS Genet . 2019;15(11).
49. Villada JC, Duran MF, Lee PKH. Genomic evidence for simultaneous optimization of transcription and translation through codon variants in the pmoCAB operon of type Ia methanotrophs. mSystems . 2019;4(4).
50. Seward EA, Kelly S. Dietary nitrogen alters codon bias and genome composition in parasitic microorganisms. Genome Biol . 2016;17(1):226.
51. Tatarinova T, Kerton O. GC3 biology in Eukaryotes and Prokaryotes. In: DNA Methylation - From Genomics to Technology . London: IntechOpen; 2012:55–68.
52. Khrustalev VV, Barkovsky EV. Study of completed archaeal genomes and proteomes: hypothesis of strong mutational at pressure existed in their common predecessor. Genomics, Proteomics & Bioinformatics . 2010;8(1):22–32.
53. Brown TA. Mutation, Repair and Recombination. In: Genomes . 2nd ed. Oxford: Wiley-Liss; 2002:1–35.
54. Botzman M, Margalit H. Variation in global codon usage bias among prokaryotic organisms is associated with their lifestyles. Genome Biol . 2011;12(10):R109.
55. Arella D, Dilucca M, Giansanti A. Codon usage bias and environmental adaptation in microbial organisms. Mol Genet Genomics . 2021;296(3):751–762.
56. Carbone A, Képès F, Zinovyev A. Codon bias signatures, organization of microorganisms in codon space, and lifestyle. Mol Biol Evol . 2005;22(3):547–561.
57. Khandia R, Singhal S, Kumar U, Ansari A, et al. Analysis of Nipah virus codon usage and adaptation to hosts. Front. Microbiol.2019;10.
58. Martiny AC, Treseder K, Pusch G. Phylogenetic conservatism of functional traits in microorganisms. ISME J . 2013;7(4):830–838.
59. Wright F. The “effective number of codons” used in a gene.Gene . 1990;87(1):23–29.
60. Butt AM, Nasrullah I, Tong Y. Genome-wide analysis of codon usage and influencing factors in Chikungunya viruses. PLoS ONE . 2014;9(3):e90905.
61. Guan D-L, Ma L-B, Khan MS, Zhang X-X, et al. Analysis of codon usage patterns in Hirudinaria manillensis reveals a preference for GC-ending codons caused by dominant selection constraints. BMC Genomics . 2018;19.
62. Yi S, Li Y, Wang W. Selection shapes the patterns of codon usage in three closely related species of genus Misgurnus .Genomics . 2018;110(2):134–142.
63. Chamani Mohasses F, Solouki M, Ghareyazie B, Fahmideh L, et al. Correlation between gene expression levels under drought stress and synonymous codon usage in rice plant by in-silico study.PLoS One . 2020;15(8).
64. Xu Q, Chen H, Sun W, Zhu D, et al. Genome-wide analysis of the synonymous codon usage pattern of Streptococcus suis .Microbial Pathogenesis . 2021;150:104732.
65. Hussain S, Rasool ST, Asif AH. A detailed analysis of synonymous codon usage in human bocavirus. Arch Virol . 2019;164(2):335–347.
66. Cho M, Kim H, Son HS. Codon usage patterns of LT-Ag genes in polyomaviruses from different host species. Virol J . 2019;16.
67. Tyagi A, Kumar BTN, Singh NK. Genome dynamics and evolution of codon usage patterns in shrimp viruses. Arch Virol . 2017;162(10):3137–3142.
68. Behura SK, Severson DW. Codon usage bias: causative factors, quantification methods and genome-wide patterns: with emphasis on insect genomes. Biol Rev Camb Philos Soc . 2013;88(1):49–61.
69. Chen Y. A comparison of synonymous codon usage bias patterns in DNA and RNA virus genomes: quantifying the relative importance of mutational pressure and natural selection. Biomed Res Int . 2013;2013:406342.
70. Zhou Z, Dang Y, Zhou M, Li L, et al. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. PNAS . 2016;113(41):E6117–E6125.
71. Frumkin I, Lajoie MJ, Gregg CJ, Hornung G, et al. Codon usage of highly expressed genes affects proteome-wide translation efficiency.PNAS . 2018;115(21):E4940–E4949.
72. Ermolaeva MD. Synonymous codon usage in bacteria. Curr Issues Mol Biol . 2001;3(4):91–97.
73. Korkmaz G, Holm M, Wiens T, Sanyal S. Comprehensive analysis of stop codon usage in bacteria and its correlation with release factor abundance. J Biol Chem . 2014;289(44):30334–30342.