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ABSTRACT. The main aim of this paper is to study hyponormal and dissipative correct restrictions and extensions as well as
their applications to differential operators.

1. INTRODUCTION

The theory of extensions and restrictions started from a pioneer work of J. Von Neumann [23] and it is further
developed to several directions by M.A. Krasnosel’skii [18], M.A. Naimark [22], M.I. Vishik [27], A.V. Bicadze and
A. A. Samarskiĭ [1], and A.A. Dezin [5, 6]. Later, Bitsadze-Samarsky type problems were investigated by M. Otelbaev
[24] and his disciples [16, 17]. A description of regular extensions of hyperbolic and mixed type operators in terms of
boundary conditions was studied in [10, 11, 12]. Various applications of this theory and its further development can
be found from the papers [2, 3, 4, 6, 7, 9, 13, 14, 15, 19, 20, 21, 25, 26] and references therein.

In this paper, we investigate correct restrictions of hyponormal and dissipative operators, and present some ap-
plications to differential operators. Many spectral properties of linear operators are closely related to these notions.
Hyponormal operators give a lot of information about the spectral properties of linear operators. For example, a com-
pact hyponormal operator has a nonzero eigenvalue and if a compact hyponormal operator is invertible, then its system
of root vectors is complete in a Hilbert space H. Furthermore, if the spectrum of the hyponormal operator lies in
the right half-plane, then for all f ∈ D(A) we have (ℜe(A)f, f ) ≥ 0. All these interesting properties hyponormal
operators motivate us to study their correct restrictions and extensions.

The structure of this paper is as follows. Section 2 recalls a necessary theory on correct restrictions and extensions
of linear operators. In Section 3, we describe all possible correct hyponormal restrictions of the maximal and correct
hyponormal extensions of the minimal operators. Section 4 is devoted to study correct hyponormal restrictions and
extensions whenever minimal operator is symmetric. Finally, we investigate dissipative correct restrictions of arbitrary
maximal operators, which we address section 5. The results on dissipative restrictions obtained in this section are max-
imally dissipative restrictions due to their correctness. Such operators generate a continuous semigroup. In addition,
they are necessary for proving many theorems on the completeness of the system of root vectors such as theorems
of M.S. Livshits [28] and V.B. Lidskii [29] (see also [8]). The obtained results allow to single out whole classes of
disspative correct operators, which, in the case of Nuclearity, are automatically operators with a complete system of
root vectors. For example, the dissipative operators obtained from Theorem 5.2 for the differential operator for n ≥ 2
have a complete system of root vectors.

2. PRELIMINARIES

This paper is a continuation of the research in [26]. Therefore, for convenience, we keep almost all notations as in
[26]. So, for undefined notations and notions below, we refer the reader to [26]. Recall that an operator A with domain
D(A) is said to be a restriction of an operator B or B is called an extension of A, if
(i) D(A) ⊂ D(B);
(ii) Ax = Bx for all x ∈ D(A).

Definition 2.1. (i) A linear closed operator A0 inH will be called minimal, if R(A0) ≠ H ;
(ii) A linear closed operator Â inH is called maximal, if R(Â) = H and KerÂ ≠ {0}.
Definition 2.2. A correctly and everywhere solvable extension A of the minimal operator A0 will be called a correct
extension, and a correctly and everywhere solvable restriction A of the maximal operator Â will be called a correct
restriction.
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Definition 2.3. A unbounded linear operator is called normal if D(A) = D(A∗) and ‖A∗x‖ = ‖Ax‖ holds for all
x ∈ D(A). A closed densely defined operator is called hyponormal ifD(A) = D(A∗) and ‖A∗x‖ ≤ ‖Ax‖ holds for all
x ∈ D(A). An unbounded operator A is called a formally hyponormal operator if for all f inD(A) ⊂ D(A∗), such that
‖A∗f‖ ≤ ‖Af‖, and is called a hyponormal operator in case D(A) = D(A∗).

In this regard, we are interested in hyponormal correct restrictions of the maximal operator L̂, and hyponormal correct
extensions of minimal operator L0. We shall notice, that for hyponormality, the density of the domain is necessary.
And hyponormality of restriction LK means for all f ∈ D(L∗K ) = D(LK ) such that ‖L∗Kf‖ ≤ ‖LKf‖. If there is
some known correct restriction of the maximal operator and we take a correct self-adjoint restrictionLs of the maximal
operator L̂, then the inverse operator to the arbitrary correct restriction of LK has the form

(2.1) L−1K f = L
−1
s f +Kf,

where K is a linear bounded operator inH such that R(K) ⊂ KerL̂.

Definition 2.4. If minimal operator L0 and maximal operator L̂ are connected each other as L0 ⊂ L̂, then a correct
extension L of the minimal operator L0 will be called a boundary correct extension of the minimal operator L0 with
respect to L̂, if it is also a correct restriction of the maximal operator L̂, that is L0 ⊂ L ⊂ L̂.

It was shown in [2] ( see also [3]) that all kinds of correct extensions of the minimal operator L0 are exhausted by
adjoint operators to all kinds of correct restrictions with dense domains. Due to this connection, it is enough to study
many spectral properties for correct restrictions. It follows that, the correct restrictions of LK from (2.1) turn out to be
boundary correct extension if and only if R(L0) ⊂ KerK [6]. Let L be any known boundary correct extension of L0,
i.e., L0 ⊂ L ⊂ L̂. The existence of at least one boundary correct extension L was proved by Vishik in [27]. It is known
that any self-adjoint correct extension Ls of the minimal operator L0 is also a restriction of the maximal operator L̂,
that is, Ls is a boundary correct extension. The domain of definition of the operator Ls is usually defined as a kernel
of some linear boundary operator Γs, i.e.

D(Ls) = {u ∈ D(L̂) ∶ Γsu = 0}.

In the case of differential operators, Γs is a boundary operator, and Γsu = 0 is a boundary condition.
Let us consider some minimal operator L0 in a Hilbert space H. Then, L̂ = L∗0 is a maximal operator. We will

denote by Ls some self-adjoint boundary extension. It is well known that L0 ⊂ Ls ⊂ L̂, and conversely all correct
restrictions LK of the maximal operator L̂ have the following form

(2.2) u = L−1K f = L
−1
s f +Kf,

where K is an arbitrary bounded operator acting from H into KerL̂. Moreover, it is only correct restriction of the
maximal operator L̂. We shall notice, that the normal correct restriction of the maximal operator L̂ coincides with
self-adjoint if only if L0 is symmetric and L̂ = L∗0.We also need the following definition.

Definition 2.5. A linear operator A ∶ H → H with the dense domain D(A) is called dissipative if ℑmA ⩾ 0.

It is known that if A is a dissipative operator, then operators A−1 and A∗ are also dissipative.
As usual, we denote byW k

2 [0, 1], k ∈ ℕ, the Sobolev space with respect to the norm

‖f‖W k
2 [0,1]

=

(

∫

1

0
(|f (t)|2 + |f (k)(t)|2)dt

)1∕2

.

Moreover, this space is a Hilbert space with the inner product

⟨f, g⟩W k
2 [0,1]

= ∫

1

0

(

f (t)g(t) + f (k)(t)g(k)(t)
)

dt.

3. ON COINCIDENCE OF HYPONORMAL AND SELF-ADJOINT CORRECT EXTENSIONS OF SYMMETRIC MINIMAL
OPERATOR

The following is the main results of this section.
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Theorem 3.1. Hyponormal correct extensions L∗K of the symmetric operator L0 and hyponormal correct restrictions
LK of the maximal operator L̂ = L∗0 are exhausted by self-adjoint boundary extensions of the minimal operator L0.

Proof. For the hyponormality of L∗K , it is necessary that D(L∗K ) = D(LK ). Then

D(L0) ⊂ D(L∗K ) = D(LK ) ⊂ D(L̂).

Moreover, we have representation (2.2) for the operator L−1K . Let us take arbitrary element u0 ∈ D(L0). Then, by (2.2)
we have

(3.1) u0 = L−1s f0 +Kf0.

Hence,
L̂u0 = f0 ∈ R(L0).

It is well known that L−1s f0 = L
−1
0 f0 ∈ D(L0). By (3.1) we have that Kf0 ∈ D(L0). Since R(K) ⊂ KerL̂, it follows

from the uniquely solvability of L0 that Kf0 = 0. In other words, R(L0) ⊂ KerK . Thus, we obtain

L0 ⊂ LK ⊂ L̂.

Further, for all g ∈ H , there exists inverse image v = (L∗K )
−1g, and for any v by D(L∗K ) = D(LK ) there exists f ∈ H

such that v = L−1K f. Therefore, for every f and g inH we have

L−1K f = (L
∗
K )
−1g.

Since (L∗K )
−1 = (L−1K )

∗, we obtain

(3.2) L−1s f +Kf = L
−1
s g +K

∗g.

It follows from L0 ⊂ LK ⊂ L̂ that K∗g ∈ KerL̂. Applying the maximal operator L̂ to both side of (3.2) we obtain
that f = g. Since g is arbitrary, it follows that L∗K is self-adjoint. Thus, correct hyponormal extensions of the minimal
operator L0 coincide with self-adjoint correct extensions. Here, we used only D(LK ) = D(L∗K ) and this condition is
also figured in condition of hyponormality of LK . This concludes the proof. �

Example 3.1. Hyponormal correct extensions or restrictions of the equation

Ly = i
dy
dx

= f

in L2(0, 1) are operators L with domains

D(L) =
{

y ∈ W 1
2 [0, 1] ∶ y(0) = �y(1), |�| = 1

}

.

They are all possible self-adjoint boundary extensions.

4. ON HYPONORMAL CORRECT EXTENSIONS IN CASE THE MINIMAL OPERATOR IS NOT SYMMETRIC

In a Hilbert spaceH we will consider a correct operator L0 with the dense domain and not dense range. Let there
exist other correct solvable operatorM0 satisfying

(L0u, v) = (u,M0v), ∀u, v ∈ D(L0) = D(M0).

It is well known that, if there is a normal correct restriction LH of the maximal operator L̂ = M∗
0 or a normal

correct extension LH of the minimal operator L0, then it is a boundary extension. In other words, L0 ⊂ LH ⊂ L̂.
Therefore, L∗H is also a normal operator andM0 ⊂ L∗H ⊂ M̂ = L∗0. The following theorem shows that hyponormal
correct extensions or restrictions have the same properties.

Theorem 4.1. If there is only one correct boundary extension LH of the minimal operator L0, then all hyponormal
correct extensions LK of the minimal operator L0 and hyponormal correct restrictions LK of the maximal operator L̂
are boundary, i.e.

L0 ⊂ LK ⊂ L̂.
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Proof. For the hyponormality of correct restrictions and correct extensions, the condition
D(Lk) = D(L∗k)

is required. Let us consider the case when Lk is a correct restriction. If Lk is a correct extension, then working with
the adjoint operator the problem is proved similarly to the case of correct restriction. Therefore, it is sufficient to prove
the theorem in the case of correct restriction.

Indeed, using the representation
u = L−1k f = L

−1
H f +Kf

of the correct restriction, where LH is a normal restriction of the maximal operator L̂ =M∗
0 andK is a linear bounded

operator fromH into KerL̂. Hence, by the equality D(Lk) = D(L∗k), for each f there exists g ∈ H such that

u =
(

L∗k
)−1 g =

(

L∗H
)−1 g +K∗g.

Thus,
(4.1) L−1H f +Kf = (L

∗
H )

−1g +K∗g.

It follows from (4.1) that K∗g ∈ D(L̂) and Kf ∈ D(M̂). Acting on both sides of (4.1) with the operators L̂ and M̂
we obtain the following equalities

(4.2) f = LH (L∗H )
−1g + L̂K∗g,

g = L∗HL
−1
H f + M̂Kf,

respectively. Substituting (4.2) into (4.1) we get

(4.3) KLH (L∗H )
−1g +KL̂K∗g + L−1H L̂K

∗g = K∗g

for all g inH. If in (4.3) elements g are taken fromR(M0), then, sinceR(M0) ⊂ KerK∗ andR(L0) = LH (L∗H )
−1R(M0),

we obtain
R(L0) ⊂ KerK.

In other words, we have that L0 ⊂ Lk ⊂ L̂, thereby completing the proof. �

Example 4.1. Let us consider the equation
Ly ≡ dy

dx
= f

in the Hilbert space L2(0, 1). Then, all possible hyponormal correct extensions and restrictions of this equation are
operators L with domains

D(L) =
{

y ∈ W 1
2 [0, 1] ∶

(1
2
− ic

)

y(0) +
(1
2
+ ic

)

y(1) = 0, c ∈ ℝ
}

.

It is clear that, they are boundary extensions, i.e.

L0 ⊂ L ⊂ L̂.

Remark 4.1. This example shows that hyponormal correct operatorsL are exhausted by normal boundary extensions.
Also, note that hyponormal correct extensions of a symmetric minimal operator are exhausted by self-adjoint extensions.

There is an essential question that

Question 4.1. Do not hyponormal correct operators have the same property as in Remark 4.1 under the condition of
Theorem 4.1?

In order to answer this question, first it is necessary to describe all normal correct restrictions. Although normal
operators have been studied by many authors for many years, there is still no effective approach to describe normal
boundary extensions. The next theorem is devoted to the above question.

Theorem 4.2. Suppose that one normal boundary extensionLH of the minimal operatorL0 is known. Then the correct
restriction Lk is normal if and only if D(Lk) = D(L∗k) and (M̂K)∗ = L̂K∗, where K is a linear bounded operator
fromH into KerL̂ which satisfies

(4.4) u ≡ L−1k f = L
−1
H f +Kf.
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Proof. Let Lk be a normal boundary extension. Then L−1k (L
∗
k)
−1 = (L∗k)

−1L−1k . By virtue of representation (4.4) we
obtain

(L−1H +K)((L∗H )
−1 +K∗)f = ((L∗H )

−1 +K∗)(L−1H +K)f, ∀f ∈ H.
Hence,

(4.5) L−1H K
∗f +K(L∗H )

−1f +KK∗f = (L∗H )
−1Kf +K∗L−1H f +K

∗Kf.

It follows from the necessary condition of normality D(Lk) = D(L∗k) that

R(K) ⊂ D(M̂), R(K∗) ⊂ D(L̂), R(K∗) ⊂ KerM̂.

Therefore, it follows from the closedness of the operators L̂ and M̂ we obtain the boundedness of the operators M̂K
and L̂K∗. Acting on both sides of (4.5) from the left with the maximal operator L̂, we obtain

K∗f = LH (L∗H )
−1Kf + L̂K∗L−1H f + L̂K

∗Kf.

It follows that
Kf = K∗L∗HL

−1
H f + (L

∗
H )

−1(L̂K∗)∗f +K∗(L̂K∗)∗f.

Again, acting on both sides of above equation with the operator M̂ we have

M̂Kf = (L̂K∗)∗f, ∀f ∈ H.

This is equivalent to L̂K∗ = (M̂K)∗.
Conversely, let D(Lk) ∈ D(L∗k) and L̂K

∗ = (M̂K)∗. Then, for any f ∈ H , there is a function g ∈ H such that
u = L−1k f = L

∗−1
k g, where g ranges over the entireH. This equality will be rewritten as

(4.6) L−1H f +Kf = (L
∗
H )

−1g +K∗g.

Acting on both sides of the equality with the operator M̂, we obtain

g = L∗HL
−1
H f + M̂Kf.

Substituting g into (4.6), we have

Kf = (L∗H )
−1M̂Kf +K∗L∗HL

−1
H f +K

∗M̂Kf, ∀f ∈ H.

Then
K∗f = (M̂K)∗L−1H f + LH (L

∗
H )

−1Kf + (M̂K)∗Kf.

Since (M̂K)∗ = L̂K∗, we have

(4.7) K∗f = L̂K∗L−1H f + LH (L
∗
H )

−1Kf + L̂K∗Kf.

Adding (L∗H )
−1f to both sides of equality (4.7) we obtain

K∗f + (L∗H )
−1f = (L∗H )

−1f + L̂K∗L−1H f + LH (L
∗
H )

−1Kf + L̂K∗Kf.

This is equivalent to the following equality

K∗f + (L∗H )
−1f = LH (L∗H )

−1f + L̂K∗L−1H f + LH (L
∗
H )

−1Kf + L̂K∗Kf.

It follows that
(L∗H )

−1f = L̂((L∗H )
−1 +K∗)L−1H f + L̂((L

∗
H )

−1 +K∗)Kf.
This is equivalent to the following equality

(L∗k)
−1f = Lk(L∗k)

−1L−1k f.

Thus, we have
L−1k (L

∗
k)
−1f = (L∗k)

−1L−1k f, ∀f ∈ H.
This completes the proof. �
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Example 4.2. Let us consider the differential equation
(4.8) Ly ≡ y′′ + y′ = f

in L2(0, 1). Then, it is easy to see that formally adjoint equation has the form

Mv = v′′ − v′ = g.

Hence,
D(L0) = D(M0) =

{

g ∈ W 2
2 [0, 1] ∶ y(0) = y(1) = y

′(0) = y′(1) = 0
}

,

D(L̂) = {y ∈ W 2
2 [0, 1]},

D(M̂) =
{

v ∈ W 2
2 [0, 1]

}

.
Moreover, it is easy to check that the operator LH , corresponding to the equation (4.8) with conditions

y(0) + y(1) = 0, y′(0) + y′(1) = 0,

is normal. Thus, using Theorem 4.2, we find all possible correct normal operators. To do this, first we need to check
the condition L̂K∗ = (M̂K)∗. Any correct restriction Lk of the maximal operator L̂ has the following inverse

y ≡ L−1k f = L
−1
H f +Kf.

Taking into account the fact that normal correct operators lie between L0 and L̂ we have a general form for K

(Kf )(x) = ∫

1

0
f (t)(a11 + a12et)dt + e−x ∫

1

0
f (t)(a21 + a22et)dt.

Then,

(K∗f )(x) = (a11 + a12ex)∫

1

0
f (t)dt + (a21 + a22ex)∫

1

0
e−tf (t)dt.

Now, acting on K and K∗ with the operators M̂ and L̂, respectively, we have

(M̂Kf )(x) = 2e−x ∫

1

0
(a21 + a22et)f (t)dt,

(L̂K∗f )(x) = 2a12ex ∫

1

0
f (t)dt + 2a22ex ∫

1

0
e−tf (t)dt.

Finding (M̂K)∗,

(M̂K∗f )(x) = 2(a21 + a22ex)∫

1

0
e−tf (t)dt

from the condition (M̂K)∗ = L̂K∗, we obtain a21 = 0 and a12 = 0. Therefore, the operator K has the form

(Kf )(x) = a11 ∫

1

0
f (t)dt + a22e−x ∫

1

0
etf (t)dt.

Thus,

(K∗f )(x) = a11 ∫

1

0
f (t)dt + a22ex ∫

1

0
e−tf (t)dt.

Now, from the condition D(Lk) = D(L∗k) it is easy to obtain conditions for a11 and a22. It follows that all possible
normal correct operators Lk correspond to the following boundary conditions for equation (4.8)

y(0) = �y(1), y′(0) = �y′(1), |�| = 1, � ≠ 1.

Example 4.3. Consider the linear differential equation

(4.9) Ly ≡ d2n+1y
dx2n+1

= f (x)

in L2(0, 1). Then the formally adjoint differential equation has the form

Mv ≡ −d
2n+1v
dx2n+1

= g(x).
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Since D(L̂) = D(M̂), then the condition L̂K∗ = (M̂K)∗ is satisfied. Therefore, any boundary extension of the
minimal operator L0, generated by the differential equation (4.9), is normal for all self-adjoint boundary conditions,
that is, D(Lk) = D(L∗k). In this case, all possible hyponormal boundary extensions are exhausted by normal ones. If
we do not assume the existence of a normal regular extension, then difficulties arise in describing and even proving the
existence of hyponormal operators. The next example shows that for differential operators for which normal ones do
not exist, one can find a formally hyponormal operator.

Example 4.4. Let us given the following differential expression

Lu = −1
x
du
dx

+ u
2x2

+ x2u

in L2(a, b), 0 < a < b < +∞. Then, the formally adjoint differential expression has the form

L+� = 1
x
d�
dx

− 1
2x2

� + x2�.

If L0 is a differential operator generated by the differential expression L with the domain

D(L) =
o

W 1
2 [a, b],

then L∗ is defined by the differential expression L+ with the domain

D(L∗) = W 1
2 [a, b].

Hence, it is easy to show that on D(L0) ⊂ D(L∗) the inequality

‖L∗u‖ ⩽ ‖L0u‖, u ∈ D(L0)

holds.

5. ON DISSIPATIVE CORRECT RESTRICTIONS OF ONE CLASS OF MAXIMAL OPERATORS

Let us consider a minimal symmetric operator L0 in a Hilbert spaceH. Then the maximal operator is L = L∗0 and
there exists at least one self-adjoint boundary extension L̃ of the minimal operator L0, i.e. L0 ⊂ L̃ ⊂ L. Hence, for all
correct restriction of the maximal operator LK the representation L−1K f = L̃

−1f +Kf holds, where f is an arbitrary
function inH and K is a linear operator acting fromH into KerL.

The following abstract theorem is the main result of this section.

Theorem 5.1. The imaginary part of the operator Lk is sign-defined if and only if R(L0) ⊂ KerK and ℑm(K) is
sign-defined on KerL.

Proof. It is known that H = R(L0) ⊕ KerL. In other words, each element of f ∈ H is uniquely decomposed as
f = f0 + u0, where f0 ∈ R(L0) and u0 ∈ KerL. The sign-definiteness of ℑm(L−1k )f means the sign-definiteness of
(ℑm(L−1k )f, f ) for all f inH. Therefore,

(

ℑm(L−1k )f, f
)

=

(

L−1k −
(

L−1k
)∗

2i
f , f

)

=
(

K −K∗

2i
f , f

)

= 1
2i
(Kf, f ) − 1

2i
(K∗f, f ) = 1

2i
(Kf, u0) −

1
2i

(

K∗(f0 + u0), f
)

= 1
2i
(Kf, u0) −

1
2i
(f0 + u0, Kf ) =

1
2i
(Kf, u0) −

1
2i
(u0, Kf )

= 1
2i
(K(f0 + u0), u0) −

1
2i
(K∗u0, f0 + u0)

= 1
2i

[

(Kf0, u0) − (u0, Kf0)
]

+ 1
2i

[

(Ku0, u0) − (K∗u0, u0)
]

.

(5.1)

There are two possible cases.
Case I. Kf0 = 0, ∀f0 ∈ R(L0). This means that R(L0) ⊂ KerL̂, and it can be seen from (5.1) that the sign-

definiteness of ℑm(L−1k ) is equivalent to the sign-definiteness of ℑm(K) on KerL.
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Case II. Let there exist f0 ∈ R(L0) satisfying Kf0 ≢ 0. We will show that, in this case the sign-definiteness of
ℑm(L−1k ) is impossible. It is well known that Kf0 ∈ KerL. Set u2 = Kf0. As u0 we take u0 =

u2
� , where � is a

non-zero complex parameter. Then (5.1) will take the form

� − �̄
2i

(u0, u0) + (ℑm(K)u0, u0), u0 ∈ KerL.

The sign-definiteness of this expression is equivalent to the sign-definiteness of the following expression

� − �̄
2i

+
(ℑm(K)u0, u0)

(u0, u0)
.

SinceK is bounded and �−�̄
2i is arbitrary, it follows thatℑm(L−1k ) cannot be sign-defined. This completes the proof. �

Consider the maximal operator L , generated by the differential expression l(y) ≡ (i)n d
ny
dxn in the space L2(0, 1). In

this case the domain of the minimal operator L0 coincides with W n
2 [0, 1] and domains of all boundary extensions of

Lk of the minimal operator L0 consists of functions inW n−1
2 [0, 1] satisfying the conditions

y(0) = in
{ n

∑

k=1
(−1)kā1ky(n−k)(0) +

n
∑

j=1

n
∑

k=j

(−1)j−1ā1k
(k − j)!

y(n−j)(1)

}

,

y′(0) = in
{ n

∑

k=1
(−1)kā2ky(n−k)(0) +

n
∑

j=1

n
∑

k=j

(−1)j−1ā2k
(k − j)!

y(n−j)(1)

}

,

⋮

y(n−1)(0) = in
{ n

∑

k=1
(−1)kānky(n−k)(0) +

n
∑

j=1

n
∑

k=j

(−1)j−1ānk
(k − j)!

y(n−j)(1)

}

.

(5.2)

It can be seen that these boundary conditions exhaust all correct boundary value problems for the differential expression
l(y).

Theorem 5.2. A correct restriction Lk of the maximal operator L, generated by the differential expression l(y), is
dissipative if and only if Lk is a boundaty extension, i.e. D(Lk) is determined by the boundary conditions (5.2) and
the sums of minors

Sp =
∑

1≤i1<...<ip<k1<...kp≤2n
A =

(

i1 … ip
k1 … kp

)

, p = 1,… , 2n,

of the matrix
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

b11 ⋯ bn1 c11 ⋯ cn1
b12 ⋯ bn2 c12 ⋯ cn2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
b1n ⋯ bnn c1n ⋯ cnn
1 ⋯ 1

n b̄11 ⋯ b̄1n
1
2 ⋯ 1

n+1 b̄21 ⋯ b̄2n
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1
n ⋯ 1

2n−1 b̄n1 ⋯ b̄nn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where bki =
∑

j=1

̄aij
(j−1)!(j+k−1) , cik = ai1

n
∑

l=1

ākl
l! + ai2

n
∑

l=1

ākl
l!(l+1) +⋯ + ain

(n−1)!

n
∑

l=1

ākl
l!(l+n−1) are non-negative numbers.

Proof. The dissipativity of Lk is equivalent to the dissipativity of L−1k . By Theorem 5.1, we only need to check the
condition ℑm(K) = K−K∗

2i ≤ 0 on KerL, where

(Kf )(x) =
n
∑

i=1

n
∑

j=1

xi−1

(i − 1)!
āij ∫

1

0

tj−1

(j − 1)!
f (t)dt,
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(K∗f )(x) =
n
∑

i=1

n
∑

j=1

xj−1

(j − 1)!
aij ∫

1

0

ti−1

(i − 1)!
f (t)dt.

SinceK is a finite-dimensional operator, it follows thatℑm(K) ≤ 0 if and only if its all eigenvalues � are non-positive.
Therefore, we need to find the criterion of non-positivity of the operator ℑm(K). Its Fredholm determinant is

Δ(�) = |A − �E| = (−�)2n + S1(−�)2n−1 + S2(−�)2n−2 +⋯ + S2n = 0,

where

Sp =
∑

1≤i1<...<ip<k1<...kp≤2n
A =

(

i1 … ip
k1 … kp

)

, p = 1,… , 2n,

is the sum of principal minors of order p of the matrix A. But, by the Hurwitz criterion for the stability of a polynomial
with real coefficients, the eigenvalues � are non-positive if and only if the principal minors of the Hurwitz matrix for
Δ(�) are non-negative. This concludes the proof. �

Example 5.1. Consider the case n = 1. Then

(5.3) l(y) ≡ i
dy
dx
.

Hence, operators, which are inverse for all correct constrictions of the maximal operator generated by the differential
expression (5.3), have the form

L−1k f = L
−1
� f + ∫

1

0
f (t)�(t)dt,

where L� is a self-adjoint operator corresponding to the correct the problem
{

iy′(x) = f (x),
y(0) = −y(1).

By Theorem 5.1, dissipative correct restrictions lie among boundary extensions. In other words, �(x) = �+i� ≡ const.
Therefore, by Theorem 5.2, those correct constrictions for which ℑm(�) = � ≤ 0 are dissipative. Thus, only the
following boundary value problems are dissipative correct problems

{

iy′(x) = f (x),
(1 + 2� + 2i�)y(0) + (1 − 2� − 2i�)y(1) = 0,

where � ≤ 0 and � is an arbitrary real number.

LetL be amaximal operator in aHilbert spaceH,which has at least one self-adjoint correct restrictionLs.Generally,
the domain of the operator L0 = L∗ is not always dense inH. Therefore, L0 is not a symmetric operator. In this case,
despite the absence of such a minimal operator, all correct dissipative restrictions can be described. For this purpose,
we obtain the following result.

Theorem 5.3. Imaginary part of the operator

L−1k = L−1s +K,

where K is a linear bounded operator acting fromH into KerL, is sign-defined if and only if (KerL)⊥ ⊂ KerK and
ℑm(K) is sign-defined on KerL.

Proof. If we replace the set R(L0) with (KerL)⊥ in the proof of Theorem 5.1, then the same approach completes the
proof. �
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