References
Bachmann, M., Kuhnitzsch, C., Martens, S. D., Steinhöfel, O., & Zeyner, A. (2020). Control of bean seed beetle reproduction through cultivar selection and harvesting time. Agriculture, Ecosystems & Environment , 300 , 107005. https://doi.org/10.1016/j.agee.2020.107005
Barrett, G. W., van Dyne, G. M., & Odum, E. P. (1976). Stress Ecology.BioScience , 26 (3), 192–194. https://doi.org/10.2307/1297248
Bartomeus, I., Gagic, V., & Bommarco, R. (2015). Pollinators, pests and soil properties interactively shape oilseed rape yield. Basic and Applied Ecology , 16 (8), 737–745. https://doi.org/10.1016/j.baae.2015.07.004
Bartomeus, I., Potts, S. G., Steffan-Dewenter, I., Vaissière, B. E., Woyciechowski, M., Krewenka, K. M., Tscheulin, T., Roberts, S. P. M., Szentgyörgyi, H., Westphal, C., & Bommarco, R. (2014). Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ , 2 (e328). https://doi.org/10.7717/peerj.328
Bates, D., Maechler, M., Bolker [aut, B., Walker, S., Christensen, R. H. B., Singmann, H., Dai, B., Scheipl, F., Grothendieck, G., Green, P., Fox, J., & Bauer, A. (2020). lme4: Linear Mixed-Effects Models(1.1-26) [Computer software]. https://CRAN.R-project.org/package=lme4
Bishop, J., Garratt, M. P. D., & Breeze, T. D. (2020). Yield benefits of additional pollination to faba bean vary with cultivar, scale, yield parameter and experimental method. Scientific Reports ,10 (1), 2102. https://doi.org/10.1038/s41598-020-58518-1
Bishop, J., & Nakagawa, S. (2021). Quantifying crop pollinator dependence and its heterogeneity using multi-level meta-analysis.Journal of Applied Ecology , in press . https://doi.org/10.1111/1365-2664.13830
Cote, I. M., Darling, E. S., & Brown, C. J. (2016). Interactions among ecosystem stressors and their importance in conservation.Proceedings of the Royal Society B-Biological Sciences ,283 (1824), 20152592. https://doi.org/10.1098/rspb.2015.2592
Cunningham, S. A., & Le Feuvre, D. (2013). Significant yield benefits from honeybee pollination of faba bean (Vicia faba) assessed at field scale. Field Crops Research , 149 , 269–275. https://doi.org/10.1016/j.fcr.2013.05.019
Cuny, M. A. C., Gendry, J., Hernández-Cumplido, J., & Benrey, B. (2018). Changes in plant growth and seed production in wild lima bean in response to herbivory are attenuated by parasitoids. Oecologia ,187 (2), 447–457. https://doi.org/10.1007/s00442-018-4119-1
Epperlein, K. (1992). Investigation of the damage of broad bean weevil Bruchus rufimanus Bohem. (Col., Bruchidae) on broad bean seed (Vicia faba L.). Anzeiger für Schaedlingskunde, Pflanzenschutz, Umweltschutz , 65 (8), 147–150.
Fisher, A., DeGrandi-Hoffman, G., Smith, B. H., Johnson, M., Kaftanoglu, O., Cogley, T., Fewell, J. H., & Harrison, J. F. (2021). Colony field test reveals dramatically higher toxicity of a widely-used mito-toxic fungicide on honey bees (Apis mellifera). Environmental Pollution , 269 , 115964. https://doi.org/10.1016/j.envpol.2020.115964
Free, J. B., & Williams, I. H. (1976). Pollination as a factor limiting the yield of field beans (Vicia faba L.). The Journal of Agricultural Science , 87 (2), 395–399. https://doi.org/10.1017/S0021859600027714
Gagic, V., Marcora, A., & Howie, L. (2019). Additive and interactive effects of pollination and biological pest control on crop yield.Journal of Applied Ecology , 56 (11), 2528–2535. https://doi.org/10.1111/1365-2664.13482
Gagic, V., Riggi, L. G., Ekbom, B., Malsher, G., Rusch, A., & Bommarco, R. (2016). Interactive effects of pests increase seed yield.Ecology and Evolution , 6 (7), 2149–2157. https://doi.org/10.1002/ece3.2003
Garcia, L. C., & Eubanks, M. D. (2019). Overcompensation for insect herbivory: A review and meta-analysis of the evidence. Ecology ,100 (3), e02585. https://doi.org/10.1002/ecy.2585
Garibaldi, L. A., Andersson, G. K. S., Requier, F., Fijen, T. P. M., Hipólito, J., Kleijn, D., Pérez-Méndez, N., & Rollin, O. (2018). Complementarity and synergisms among ecosystem services supporting crop yield. Global Food Security , 17 , 38–47. https://doi.org/10.1016/j.gfs.2018.03.006
Hartig, F., & Lohse, L. (2020). DHARMa: Residual Diagnostics for Hierarchical Regression Models (0.3.3.0) [Computer software]. https://CRAN.R-project.org/package=DHARMa
Heinze, J. (2020). Herbivory by aboveground insects impacts plant root morphological traits. Plant Ecology , 221 (8), 725–732. https://doi.org/10.1007/s11258-020-01045-w
Jaquiery, R., & Keller, E. R. (1978). La chute des fruits chez la feverole (vicia faba l.) En relation avec la disponibilite en assimilats marques au 14c. Revue Suisse d’Agriculture , 10 (4), 123–127. 5893.
Järemo, J., Tuomi, J., Nilsson, P., & Lennartsson, T. (1999). Plant adaptations to herbivory: Mutualistic versus antagonistic coevolution.Oikos , 84 (2), 313–320. https://doi.org/10.2307/3546728
Jensen, E. S., Peoples, M. B., & Hauggaard-Nielsen, H. (2010). Faba bean in cropping systems. Field Crops Research , 115 (3), 203–216. https://doi.org/10.1016/j.fcr.2009.10.008
Karkanis, A., Ntatsi, G., Lepse, L., Fernández, J. A., Vågen, I. M., Rewald, B., Alsiņa, I., Kronberga, A., Balliu, A., Olle, M., Bodner, G., Dubova, L., Rosa, E., & Savvas, D. (2018). Faba Bean Cultivation – Revealing Novel Managing Practices for More Sustainable and Competitive European Cropping Systems. Frontiers in Plant Science , 9 , 1115. https://doi.org/10.3389/fpls.2018.01115
Kendall, D. A., & Smith, B. D. (1975). The Pollinating Efficiency of Honeybee and Bumblebee Visits to Field Bean Flowers (Vicia faba L.).Journal of Applied Ecology , 12 (3), 709–717. https://doi.org/10.2307/2402083
Krupnick, G. A., & Weis, A. E. (1999). The Effect of Floral Herbivory on Male and Female Reproductive Success in Isomeris Arborea.Ecology , 80 (1), 135–149. https://doi.org/10.1890/0012-9658(1999)080[0135:TEOFHO]2.0.CO;2
Lenth, R. V., Buerkner, P., Herve, M., Love, J., Riebl, H., & Singmann, H. (2021). Emmeans (1.5.5-1) [Computer software]. https://CRAN.R-project.org/package=emmeans
López-Bellido, F. J., López-Bellido, L., & López-Bellido, R. J. (2005). Competition, growth and yield of faba bean (Vicia faba L.).European Journal of Agronomy , 23 (4), 359–378. https://doi.org/10.1016/j.eja.2005.02.002
Lundin, O., & Raderschall, C. A. (2021). Landscape complexity benefits bumble bee visitation in faba bean (Vicia faba minor L.) but crop productivity is not pollinator-dependent. Agriculture, Ecosystems & Environment , 314 , 107417. https://doi.org/10.1016/j.agee.2021.107417
Lundin, O., Smith, H. G., Rundlöf, M., & Bommarco, R. (2013). When ecosystem services interact: Crop pollination benefits depend on the level of pest control. Proceedings of the Royal Society B: Biological Sciences , 280 (1753). https://doi.org/10.1098/rspb.2012.2243
Marzinzig, B., Brünjes, L., Biagioni, S., Behling, H., Link, W., & Westphal, C. (2018). Bee pollinators of faba bean (Vicia faba L.) differ in their foraging behaviour and pollination efficiency.Agriculture, Ecosystems & Environment , 264 , 24–33. https://doi.org/10.1016/j.agee.2018.05.003
McCall, A. C., & Irwin, R. E. (2006). Florivory: The intersection of pollination and herbivory. Ecology Letters , 9 (12), 1351–1365. https://doi.org/10.1111/j.1461-0248.2006.00975.x
Munguía-Rosas, M. A., Arias, L. M., Jurado-Dzib, S. G., Mezeta-Cob, C. R., & Parra-Tabla, V. (2015). Effects of herbivores and pollinators on fruit yield and survival in a cleistogamous herb. Plant Ecology ,216 (4), 517–525.
Patrick, J. W., & Stoddard, F. L. (2010). Physiology of flowering and grain filling in faba bean. Field Crops Research , 115 (3), 234–242. https://doi.org/10.1016/j.fcr.2009.06.005
Penet, L., & Collin, C. L. (2009). Florivory increases selfing: An experimental study in the wild strawberry, Fragaria virginiana.Plant Biology , 11 (1), 38–45.
Peschiutta, M. L., Scholz, F. G., Goldstein, G., & Bucci, S. J. (2020). Lagged effects of sawfly leaf herbivory on reproductive organs in cherry trees: Overcompensation in flower production reduces quality of fruits and seeds. Basic and Applied Ecology , 45 , 22–30. https://doi.org/10.1016/j.baae.2020.03.006
Peterson, R. K. D., & Higley, L. G. (2000). Biotic Stress and Yield Loss . CRC Press.
Piggott, J. J., Townsend, C. R., & Matthaei, C. D. (2015). Reconceptualizing synergism and antagonism among multiple stressors.Ecology and Evolution , 5 (7), 1538–1547. https://doi.org/10.1002/ece3.1465
Pinheiro, J., & Bates, D. (2020). nlme: Linear and Nonlinear Mixed Effects Models (3.1-151) [Computer software]. https://CRAN.R-project.org/package=nlme
Poveda, K., Díaz, M. F., & Ramirez, A. (2018). Can overcompensation increase crop production? Ecology , 99 (2), 270–280. https://doi.org/10.1002/ecy.2088
Poveda, K., Jiménez, M. I. G., & Kessler, A. (2010). The enemy as ally: Herbivore-induced increase in crop yield. Ecological Applications , 20 (7), 1787–1793. https://doi.org/10.1890/09-1726.1
Raderschall, C. A., Vico, G., Lundin, O., Taylor, A. R., & Bommarco, R. (2021). Water stress and insect herbivory interactively reduce crop yield while the insect pollination benefit is conserved. Global Change Biology , 27 (1), 71–83. https://doi.org/10.1111/gcb.15386
Ramos, S. E., & Schiestl, F. P. (2019). Rapid plant evolution driven by the interaction of pollination and herbivory. Science ,364 (6436), 193–196. https://doi.org/10.1126/science.aav6962
Riedel, I. B. M., & Wort, D. A. (1960). The Pollination Requirement of the Field Bean (vicia Faba). Annals of Applied Biology ,48 (1), 121–124. https://doi.org/10.1111/j.1744-7348.1960.tb03510.x
Roubinet, E. (2016). Management of the broad bean weevil (Bruchus rufimanus Boh.) in faba bean (Vicia faba L.) [Report]. https://pub.epsilon.slu.se/13631/
Rusman, Q., Lucas‐Barbosa, D., & Poelman, E. H. (2018). Dealing with mutualists and antagonists: Specificity of plant-mediated interactions between herbivores and flower visitors, and consequences for plant fitness. Functional Ecology , 32 (4), 1022–1035. https://doi.org/10.1111/1365-2435.13035
Sáez, A., Morales, C. L., Ramos, L. Y., & Aizen, M. A. (2014). Extremely frequent bee visits increase pollen deposition but reduce drupelet set in raspberry. Journal of Applied Ecology ,51 (6), 1603–1612. https://doi.org/10.1111/1365-2664.12325
Sánchez, J. A., & Lacasa, A. (2008). Impact of the Zoophytophagous Plant Bug Nesidiocoris tenuis (Heteroptera: Miridae) on Tomato Yield.Journal of Economic Entomology , 101 (6), 1864–1870. https://doi.org/10.1603/0022-0493-101.6.1864
Saunders, M. E., Peisley, R. K., Rader, R., & Luck, G. W. (2016). Pollinators, pests, and predators: Recognizing ecological trade-offs in agroecosystems. Ambio , 45 (1), 4–14. https://doi.org/10.1007/s13280-015-0696-y
Segers, A., Caparros Megido, R., Lognay, G., & Francis, F. (2021). Overview of Bruchus rufimanus Boheman 1833 (Coleoptera: Chrysomelidae): Biology, chemical ecology and semiochemical opportunities in integrated pest management programs. Crop Protection , 140 , 105411. https://doi.org/10.1016/j.cropro.2020.105411
Smith, M. (1982). Factors affecting flower abscission in field beans (Vicia Faba L. Minor) [Doctoral, Durham University]. http://etheses.dur.ac.uk/7698/
Suso, M. J., & del Río, R. (2015). A crop–pollinator inter-play approach to assessing seed production patterns in faba bean under two pollination environments. Euphytica , 201 (2), 231–251. https://doi.org/10.1007/s10681-014-1200-7
Suso, M. J., & Maalouf, F. (2010). Direct and correlated responses to upward and downward selection for outcrossing in Vicia faba. Field Crops Research , 116 (1), 116–126. https://doi.org/10.1016/j.fcr.2009.12.001
Suso, M. J., Moreno, M. T., Mondragao-Rodrigues, F., & Cubero, J. I. (1996). Reproductive biology of Vicia faba: Role of pollination conditions. Field Crops Research , 46 (1), 81–91. https://doi.org/10.1016/0378-4290(95)00089-5
Sutter, L., & Albrecht, M. (2016). Synergistic interactions of ecosystem services: Florivorous pest control boosts crop yield increase through insect pollination. Proceedings of the Royal Society B-Biological Sciences , 283 (1824), 20152529. https://doi.org/10.1098/rspb.2015.2529
Tamburini, G., Bommarco, R., Kleijn, D., Putten, W. H. van der, & Marini, L. (2019). Pollination contribution to crop yield is often context-dependent: A review of experimental evidence. Agriculture, Ecosystems and Environment , 280 , 16–23. https://doi.org/10.1016/j.agee.2019.04.022
Tasei, J. N. (1976). Les insectes pollinisateurs de la féverole d’hiver (Vicia faba equina l.) Et la pollinisation des plantes mâle-stérile en production de semence hybride. Apidologie , 7 (1), 1–28. https://doi.org/10.1051/apido:19760101
Vinebrooke, R. D., Cottingham, K. L., Norberg, J., Scheffer, M., Dodson, S. I., Maberly, S. C., & Sommer, U. (2004). Impacts of multiple stressors on biodiversity and ecosystem functioning: The role of species co-tolerance. Oikos , 104 (3), 451–457.
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., Woo, K., Yutani, H., & Dunnington, D. (2020). Ggplot2(3.3.3) [Computer software]. https://CRAN.R-project.org/package=ggplot2
Ye, Z.-M., Jin, X.-F., Wang, Q.-F., Yang, C.-F., & Inouye, D. W. (2017). Pollinators shift to nectar robbers when florivory occurs, with effects on reproductive success in Iris bulleyana (Iridaceae).Plant Biology , 19 (5), 760–766. https://doi.org/10.1111/plb.12581