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This paper is devoted to the mathematical modeling of a combined effect of
directional and bulk crystallization in a phase transition layer with allowance for
nucleation and evolution of newly born particles. We consider two models with and
without fluctuations in crystal growth velocities, which are analytically solved using
the saddle-point technique. The particle-size distribution function, solid-phase frac-
tion in a supercooled two-phase layer, its thickness and permeability, solidification
velocity, and desupercooling kinetics are defined. This solution enables us to char-
acterize the mushy layer composition. We show that the region adjacent to the liquid
phase is almost free of crystals and has a constant temperature gradient. Crystals
undergo intense growth leading to fast mushy layer desupercooling in the middle of
a two-phase region. The mushy region adjacent to the solid material is filled with the
growing solid phase structures and is almost desupercooled.
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1 INTRODUCTION

Directional and bulk solidification phenomena are at the basis of many technological processes for obtaining materials with
given properties.1−5 One of the central tasks of phase transformation is to determine the influence of external parameters (tem-
perature gradients, supercooling, heat flow, etc.) on the microstructure and phase composition of the solidified material. Such
a problem can be solved by mathematical modeling of the real process of directional and/or bulk crystallization. Mathemati-
cal models describing such processes began to be developed several decades ago. Since the phase transformation phenomenon
takes place in an extended domain, the mathematical formulation of the problem is more complex than the classical Stefan-
type model.6−7 Here we must consider that the phase transition does not occur at the crystallization front, but in an extended
metastable layer. If the supercooling of the melt is fully compensated by the release of latent heat of the phase transition, such
a model is called a quasi-equilibrium model of the two-phase region (mushy layer).8−11 Methods for solving such a nonlinear
directional solidification model have been developed in many previous studies.12−17 If the latent heat does not fully compen-
sate for the supercooling of the metastable liquid, the phase transformation region is supercooled. As a result, the nucleation
and crystal growth processes (bulk phase transition) can occur there. Approximate methods for solving the nonlinear– problem
describing the bulk phase transformation have been developed in several previous studies.18−24 Note that in practice, directional
and bulk phase transformation often occur simultaneously in the mobile supercooled region of solidification.

The present work is devoted to the mathematical modeling of such a process described by a nonlinear integro-differential
model of the heat and mass transfer equations considering nucleation and crystal growth in the supercooled liquid. In Section
2, an approximate analytical method for solving such a model without fluctuations in the growth rates of individual crystals
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(first-order kinetic equation) is developed. In Section 3, a method for solving such a model with fluctuations in particle growth
rates (second-order kinetic equation) is detailed. In Section 4, the results of the model solution are presented, and conclusions
are formulated in Section 5.

2 ANALYTICAL SOLUTION FOR DIFFUSIONLESS MODEL

In this section, we consider a combined effect of directional and bulk crystallization. In addition, we assume that crystals can
nucleate and evolve in a supercooled layer without fluctuations in their growth rates.

Let’s consider the steady-state crystallization process along the spatial axis 𝑧 with a constant velocity 𝑉 . In this case, the
mushy layer that moving into the liquid divides the purely solid and liquid phases, where 𝑧 = 0 corresponds to the mushy/liquid
interface, and 𝑧 = −ℎ represents a free boundary between the solid/mushy interface, respectively.

The solutal and temperature conductivity equations8,10,12,25,26 take the form

−𝑉 𝑑
𝑑𝑧

(

(1 − 𝜑)𝜎
)

= 𝑑
𝑑𝑧

(

𝐷𝑑𝜎
𝑑𝑧

)

+ 𝑘𝜎𝑉
𝑑𝜑
𝑑𝑧

, (1)

𝑑
𝑑𝑧

(

𝜆𝑑𝜃
𝑑𝑧

)

− 𝑉 𝐿𝑉
𝑑𝜑
𝑑𝑧

= 0, (2)
where 𝜑 is a volume fraction of solid crystals in the mush, 𝜎 represents a composition of the interstitial liquid, 𝐷 is the solutal
diffusivity, 𝑘 is the ratio of the solute concentration in the solid and liquid phases, 𝜆 is a thermal conductivity, 𝜃 is the temperature
distribution, 𝐿𝑉 is the latent heat of crystallization.

Here, the solutal diffusivity 𝐷 and the thermal conductivity 𝜆 in the phase transition layer can be expressed as functions of 𝜑

𝐷(𝜑) = 𝐷𝑙(1 − 𝜑), 𝜆(𝜑) = 𝜆𝑙(1 − 𝜑) + 𝜆𝑠𝜑, (3)

where subscripts 𝑠 and 𝑙 define solid and liquid phases, respectively.12,26−29
The relaxation time of temperature field 𝜏𝑎 = 𝑙2∕𝑎, where 𝑙 is a characteristic length scale, and 𝑎 is the temperature diffusivity

coefficient, is essentially less than the relaxation time of the diffusion field 𝜏𝐷 = 𝑙2∕𝐷𝑙, i.e. 𝜏𝑎∕𝜏𝐷 ∼ 10−3 − 10−4, so we can
neglect the temperature derivative with respect to time (the right hand side of equation (2)). The steady-state crystallization
velocity is defined by the temperature gradients in the solid 𝑔𝑠 and liquid 𝑔𝑙 and takes the form

𝑉 =
𝜆𝑠𝑔𝑠 − 𝜆𝑙𝑔𝑙

𝐿𝑉
. (4)

Integrating equation (2) and keeping in mind that 𝑑𝑇 ∕𝑑𝑥 = 𝑔𝑙 at 𝜑 = 0, we obtain

𝜆(𝜑)𝑑𝜃
𝑑𝑧

− 𝑉 𝐿𝑉 𝜑 = 𝜆𝑙𝑔𝑙. (5)

The concentration field 𝜎 in the phase transition layer can be defined by means of the Scheil equation in the form

𝜎 =
𝜎0

(1 − 𝜑)1−𝑘
, (6)

where 𝜎0 represents the concentration at 𝜑 = 0, and 𝑘 is the segregation coefficient.
The phase transition temperature 𝜃𝑝(𝜎) can be defined from the phase diagram by means of the liquidus equation12,28 in

the form 𝜃𝑝(𝜎) = 𝜃0𝑝 − 𝑚𝜎, where 𝑚 is the liquidus slope and 𝜃0𝑝 is the phase transition temperature of pure substance at
𝜎 = 0, respectively. Substitution of this expression into equations (5) and (6), gives us the following differential equation for the
supercooling Δ𝜃(𝑧) = 𝜃𝑝(𝜎(𝑧)) − 𝜃(𝑧) in a phase transition layer

−𝑏1
𝑑
𝑑𝑧

Δ𝜃 =
𝑏2 + 𝜑
𝑏3 + 𝜑

+ 𝑏4
1

(1 − 𝜑)2−𝑘
𝑑𝜑
𝑑𝑧

, (7)

𝑏1 =
𝜆𝑠 − 𝜆𝑙
𝑉 𝐿𝑉

, 𝑏2 =
𝜆𝑙𝑔𝑙
𝑉 𝐿𝑉

, 𝑏3 =
𝜆𝑙

𝜆𝑠 − 𝜆𝑙
, 𝑏4 = (1 − 𝑘)𝑚𝜎0

𝜆𝑠 − 𝜆𝑙
𝑉 𝐿𝑉

,

where 𝜑 = 𝜑(𝑥), and the boundary conditions Δ𝜃(0) = Δ𝜃(−ℎ) = 0 take place.
For the description of the nucleation and growth processes, we will use the previously developed theory for the motionless

phase transition region. 30,31 The kinetic equation for the distribution function 𝑓 (𝑡, 𝑧, 𝑟) takes the form32

𝜕𝑓
𝜕𝑡

+ 𝜕
𝜕𝑟

(𝑑𝑟
𝑑𝑡

𝑓
)

= 0. (8)
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Here 𝑡 is the process time, 𝑟 is the radial coordinate, 𝑑𝑟∕𝑑𝑡 is the crystal growth velocity
𝑑𝑟
𝑑𝑡

=
𝛽∗Δ𝜃

1 + 𝛽∗(𝐿𝑉 ∕𝜆𝑙)𝑟
, (9)

where 𝛽∗ represents the kinetic coefficient. The boundary condition takes the form
𝑑𝑟
𝑑𝑡

𝑓
|

|

|

|𝑟=0
= 𝐼∗ exp

(

−
𝑝

Δ𝜃2
)

, (10)

where 𝑝 and 𝐼∗ represent positive constants.33,34 The boundary condition (10) describes the flux of crystals crossing the criti-
cal nucleation barrier (here, the critical radius of nucleating particles is supposed to be zero). Moreover, the right side of the
boundary condition (10) takes into account the Weber-Volmer-Frenkel-Zeldovich nucleation kinetics.35 We also assume that the
distribution function 𝑓 = 0 at 𝑧 = 0 (at the boundary between the phase transition layer and the liquid phase).

The volume fraction 𝜑 of the solid phase can be defined in terms of the particle radius distribution function as

𝜑 =

∞

∫
0

4𝜋
3
𝑟3𝑓 (𝑡, 𝑧, 𝑟)𝑑𝑟. (11)

In the moving frame of reference, equations (9)-(10) can be written as

−(1 + 𝑞 𝑟) 𝑑𝑟
𝑑𝑧

=
𝛽∗
𝑉
Δ𝜃 , (12)

−
𝜕𝑓
𝜕𝑧

+
𝛽∗
𝑉
Δ𝜃 𝜕

𝜕𝑟

(

𝑓
1 + 𝑞 𝑟

)

= 0 , (13)

𝑓 |𝑟=0 =
𝐼∗
𝛽∗

1
Δ𝜃

exp
(

−
𝑝

Δ𝜃2
)

, (14)

where 𝑞 = 𝛽∗𝐿𝑉 ∕𝜆𝑙, and 𝑓 = 𝑓 (𝑧, 𝑟) is independent of 𝑡.
Combining equations (13), (14), and 𝑓 |𝑧=0 = 0 gives

𝑓 =
(

1 + 𝛽∗
𝐿𝑉

𝜆𝑙
𝑟
)

𝜂
(

𝑥(𝑧) − 𝑦(𝑟)
)

𝐻
(

𝑥(𝑧) − 𝑦(𝑟)
)

, (15)

where 𝐻 is the Heaviside function denoting that the size of solid particles is limited to a maximum value that corresponds to
the size of nucleating crystals at the liquid/mush interface, and the following designations are entered as

𝑥(𝑧) =
𝛽∗
𝑉

0

∫
𝑧

Δ𝜃(𝜉)𝑑𝜉, 𝑦(𝑟) =

𝑟

∫
0

(

1 + 𝛽∗
𝐿𝑉

𝜆𝑙
𝑟
)

𝑑𝑟,

𝜂(𝑢) =
𝐼∗
𝛽∗

1
Δ𝜃(𝑢)

exp
(

−
𝑝

Δ𝜃(𝑢)2

)

.

Integrating (12) with 𝑟 = 0 at 𝑧 = 𝜁 , we arrive at

𝑟 = (
√

1 + 2𝑞(𝑥(𝑧) − 𝑥(𝜁 )) − 1)∕𝑞 . (16)

Equation (16) determines the radius 𝑟(𝑧) of crystals arising at the point 𝑧 = 𝜁 inside the mushy layer.
For the sake of simplicity, let’s initially develop the theory for the single- component supercooled liquids. Thus, we introduce

a new variable 𝜁 instead of 𝑟 for any constant 𝑧 using the expression 𝑥(𝜁 ) = 𝑥(𝑧) − 𝑦(𝑟). As a consequence of this it follows that
𝛽∗Δ𝜃(𝜁 )𝑑𝜁∕𝑉 = (1 + 𝑞 𝑟)𝑑𝑟 , and limits of integration 𝑟 = 0 and 𝑟 = 𝑟|𝜁=0 transform to corresponding limits 𝜁 = 𝑧 and 𝜁 = 0
in terms of 𝜁 . Replacing now 𝑟 by 𝜁 in (11) and taking into account (15) and (16), we obtain

𝜑(𝑧) = 4𝜋
3

𝐼∗
𝑉

0

∫
𝑧

𝑤(𝑧, 𝜁) exp(𝑝𝑆(𝜁 ))𝑑𝜁, (17)

where
𝑤(𝑧, 𝜁) = 𝑞−3(

√

1 + 2𝑞(𝑥(𝑧) − 𝑥(𝜁 )) − 1)3, 𝑆(𝜁 ) = −1∕Δ𝜃(𝜁 )2.
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The analytical solution can be found using the Laplace transform method. For doing this, we specify the derivative Δ𝜃 ′(𝑧)
in (7) is zero, then solve the differential equation for 𝜑(𝑧) as

𝑏2 + 𝜑
𝑏3 + 𝜑

+ 𝑏4
1

(1 − 𝜑)2−𝑘
𝑑𝜑
𝑑𝑧

= 0 .

Consequently, we arrive at the following condition for point 𝜈, where the constitutional supercooling comes to its maximum

𝜈 = Σ(𝜑) = −
𝑏4

1 − 𝑘
1

(1 − 𝜑)1−𝑘

[

1 +
𝑏3 − 𝑏2
𝑏2 − 1

𝐹
(

𝑘 − 1, 1, 𝑘;
1 − 𝜑
𝑏2 − 1

)]

+

𝑏4
1 − 𝑘

[

1 +
𝑏3 − 𝑏2
𝑏2 − 1

𝐹
(

𝑘 − 1, 1, 𝑘; 1
𝑏2 − 1

)]

, (18)

where 𝐹 is the hypergeometric function36

𝐹 (𝛼, 𝛽, 𝛾; 𝑥) = 1 +
∞
∑

𝑘=1

(𝛼)𝑘(𝛽)𝑘
(𝛾)𝑘

𝑥𝑘

𝑘!
.

Retaining the main term of the integral asymptotic expansion (17), we obtain37,38

𝜑(𝑧) = 𝑎(𝜈) ⋅𝑤(𝑧, 𝜈), 𝑎(𝜈) = 4𝜋
3

𝐼∗
𝑉

√

−𝜋
𝑝
Δ𝜃3(𝜈)
Δ𝜃′′(𝜈)

exp
(

−
𝑝

Δ𝜃2(𝜈)

)

. (19)

Equation (19) demonstrates that 𝜑(𝜈) disappears since 𝑤(𝜈, 𝜈) = 0. As the function 𝜑(𝑧) decreases, 𝜑(𝑧) ≈ 0 at
𝜈 ⩽ 𝑧 ⩽ 0. Considering this, we obtain from (7)

Δ𝜃(𝑧) = −𝑔𝑙𝑧, 𝜈 ⩽ 𝑧 ⩽ 0. (20)

Substituting the linear supercooling as (20) into equation (17) at 𝑧 = 𝜈, we can obtain 𝜑 at 𝜈

𝜑(𝜈) = 4𝜋
3

𝐼∗
𝑉

0

∫
𝜈

⎛

⎜

⎜

⎝

√

1
𝑞2

+
𝑔𝑙
𝑞
𝛽∗
𝑉
(𝜈2 − 𝜁2) − 1

𝑞

⎞

⎟

⎟

⎠

3

exp

(

−
𝑝
𝑔2𝑙

1
𝜁2

)

𝑑𝜁 . (21)

Further, substituting 𝜑(𝜈) into expression (18) yields the following transcendental equation relating to the point 𝜈 of maximum
supercooling as

𝜈 = Σ(𝜑(𝜈)). (22)
The second derivative Δ𝜃′′(𝜈) in the denominator 𝑎(𝜈) of (19) is zero. So, in order to remedy this, we calculate the integral

of (17) again by the Laplace method in the interval −ℎ ≤ 𝑧 ≤ 𝜈 for the maximum boundary point 𝑧 = 𝜈38

𝜑(𝑧) = 𝑏(𝜈) ⋅𝑤(𝑧, 𝜈), 𝑏(𝜈) = −4𝜋
3

𝐼∗
𝑉

𝜈3

2𝑝
𝑔2𝑙 exp

(

−
𝑝

(𝑔𝑙𝜈)2

)

.

Thus, the solid fraction 𝜑(𝑧) within a mushy layer takes the form

𝜑(𝑧) =

{

0 𝜈 ⩽ 𝑧 ⩽ 0
𝑏(𝜈) ⋅𝑤(𝑧, 𝜈) −ℎ ⩽ 𝑧 < 𝜈.

(23)

Now let us rewrite equation (7) in terms of variable 𝑥𝜈

𝑥𝜈 = 𝑥(𝑧) − 𝑥(𝜈) =
𝛽∗
𝑉

𝜈

∫
𝑧

Δ𝜃(𝜉)𝑑𝜉 ,

𝑑
𝑑𝑧

=
𝑑𝑥𝜈
𝑑𝑧

𝑑
𝑑𝑥𝜈

= −
𝛽∗
𝑉
Δ𝜃 𝑑

𝑑𝑥𝜈
. (24)

Consequently, we arrived at the constitutive supercooling inside the part −ℎ ⩽ 𝑧 ⩽ 𝜈 of a mushy layer. This supercooling is
governed by the equation

Δ𝜃(𝑥𝜈) ⋅ Δ𝜃 ′(𝑥𝜈) = −𝑐1
1

(1 − 𝜑)2−𝑘
𝑑𝜑
𝑑𝑥𝜈

Δ𝜃(𝑥𝜈) + 𝑐2
𝑏2 + 𝜑
𝑏3 + 𝜑

, (25)

where
𝑐1 = 𝑏4∕𝑏1, 𝑐2 = 𝑉 ∕(𝛽∗𝑏1), 𝜑 = 𝜑(𝑥𝜈) = 𝑏𝑤(𝑥𝜈),
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𝑤(𝑥𝜈) = (
√

1 + 2𝑞𝑥𝜈 − 1)3∕𝑞3.
It can be easily seen that 𝑥𝜈 changes from 0 to a certain point 𝑥ℎ if we vary 𝑧 from 𝜈 to −ℎ. Substituting 𝑧 = 𝜈 (or 𝑥𝜈 = 0)

into (20), we obtain the boundary condition Δ𝜃(0) = −𝑔𝑙𝜈. Therefore, the moving boundary problem is reduced to a first order
differential equation (25) for constitutional supercooling, augmented by the boundary condition (the standart Cauchy problem
for the Abelian equation). This equation can be solved numerically.

The mushy layer thickness ℎ can be found by equating the liquidus and boundary temperatures that follows Δ𝜃(𝑥ℎ) = 0.
Substituting this condition into equation (25) leads to the expression (𝑏2+𝜑)∕(𝑏3+𝜑) = 0. To overcome the difficulty connected
with thermophysical parameters 𝜑 ⩾ 0, 𝑏2 > 0, 𝑏3 > 0), we take 𝜑 = 1 at 𝑥𝜈 = 𝑥ℎ. In this case, 𝑥ℎ is easily defined by eq.
𝑏𝑤(𝑥ℎ) = 1, from which it follows that

𝑥ℎ = 1
2𝑞

(

(𝑏−3𝑞 + 1)2 − 1
)

.

The spatial coordinate 𝑧 as a function of 𝑥𝜈 can be written as

𝑧 = 𝑧(𝑥𝜈) = 𝜈 − 𝑉
𝛽∗

𝑥𝜈

∫
0

𝑑𝜉
Δ𝜃(𝜉)

. (26)

3 ANALYTICAL SOLUTION FOR DIFFUSIONAL MODEL

In this section, possible fluctuations in crystal growth rates are taken into account using the second-order differential kinetic
equation for the particle-radius distribution function.32 To describe the nucleation and growth processes, we will use the previ-
ously developed approach for the motionless phase transition region.39−41 This approach considers the diffusive mechanism of
the crystal size distribution function in the crystal radius space and the nonstationary growth velocities of individual particles
caused by external fluctuations. In this case, the kinetic equation (8) for the distribution function 𝑓 takes the form32

𝜕𝑓
𝜕𝑡

+ 𝜕
𝜕𝑟

(𝑑𝑟
𝑑𝑡

𝑓
)

= 𝜕
𝜕𝑟

(

𝐷
𝜕𝑓
𝜕𝑟

)

, (27)

where 𝐷 = 𝑑1𝑑𝑟∕𝑑𝑡, 𝑑1 is a pertinent factor.
Combining equations (10), (11) and (27), we arrive at the following boundary-value problem in a moving reference frame

𝜕𝑓
𝜕𝑠

+
𝜕𝑓
𝜕𝑟

= 𝑑1
𝜕2𝑓
𝜕𝑟2

, 𝑟 > 0, 𝑠 > 0, (28)

𝑓 − 𝑑1
𝜕𝑓
𝜕𝑟

=
𝐼∗ exp

[

−𝑝∕ (Δ𝜃)2
]

𝛽∗Δ𝜃
= 𝐽 (𝑠), 𝑟 = 0, (29)

𝑓 → 0, 𝑟 → ∞; 𝑓 = 0, 𝑠 = 0, (30)

where

𝑠 = −
𝛽∗
𝑉

𝑧

∫
0

Δ𝜃(𝑧1)𝑑𝑧1. (31)

The analytical solution of equations (28)-(30) may be obtained by the Laplace transform method and has the form33,42

𝑓 =

𝑠

∫
0

𝐽 (𝑠 − 𝑠1)𝛾(𝑟, 𝑠1)𝑑𝑠1, (32)

𝛾(𝑟, 𝑠1) =
1
2𝑑1

exp
(

2𝑟 − 𝑠1
4𝑑1

)

[

2
√

𝑑1
√

𝜋𝑠1
exp

(

− 𝑟2

4𝑑1𝑠1

)

−exp
(

𝑟
2𝑑1

+
𝑠1
4𝑑1

)

erfc

(

𝑟
2
√

𝑑1𝑠1
+

√

𝑠1

2
√

𝑑1

)]

,

where 𝐽 (𝑠 − 𝑠1) is determined by expression (29).



6 TOROPOVA ET AL

Substituting 𝑓 from (32) into (11) and evaluating the integral over 𝑟, we obtain the solid fraction as

𝜑(𝑠) = 4𝜋
3

𝑠

∫
0

𝐽 (𝑠 − 𝑠1)𝑅(𝑠1)𝑑𝑠1, (33)

𝑅(𝑠1) =
exp

(

−𝑠1∕(4𝑑1)
)

√

𝜋

[

𝑏(𝑠1)
2

− 2𝑑1∕2
1 𝑠5∕21 − 3𝑑3∕2

1 𝑠3∕21

]

−
(

𝑐(𝑠1)
2

+ 3𝑑3
1

)

erfc

(
√

𝑠1

2
√

𝑑1

)

+ 𝑐(𝑠1),

𝑏(𝑠1) = 20𝑑3∕2
1 𝑠3∕21 + 6𝑑1∕2

1 𝑠5∕21 − 12𝑑5∕2
1 𝑠1∕21 ,

𝑐(𝑠1) = 9𝑑1𝑠21 + 𝑠31 + 6𝑑3
1 .

Substituting 𝐽 from (29) into (33) and replacing the integration variable, we obtain

𝜑(𝑠) =
4𝜋𝐼∗
3𝛽∗

𝑠

∫
0

exp
[

𝑝𝑆(𝑠2)
]

Δ𝜃(𝑠2)
𝑅(𝑠 − 𝑠2)𝑑𝑠2, (34)

where 𝑆(𝑠2) = −
[

Δ𝜃(𝑠2)
]−2. This integral can be evaluated using the saddle point method.38 With only the main term of the

asymptotic expansion in mind, we obtain

𝜑(𝑠) ≈
4𝜋𝐼∗
3𝛽∗

exp [𝑝𝑆(𝜈)]
Δ𝜃(𝜈)

𝑅(𝑠 − 𝜈)

√

−
𝜋[Δ𝜃(𝜈)]3
𝑝[Δ𝜃(𝜈)]′′

, (35)

where 𝜈 is the point of extremum of the function 𝑆(𝑠2), which coincides with the maximum point of supercooling Δ𝜃(𝑠2).
Considering this, from equation (7) we have

𝑧𝜈 = −𝑏4

𝜑𝜈

∫
0

(

𝑏3 + 𝜑̃
)

𝑑𝜑̃

(1 − 𝜑̃)2−𝑘
(

𝑏2 + 𝜑̃
)
, (36)

where subscript 𝜈 designates the maximum point.
The analytical solution (35) demonstrates that 𝜑(𝜈) ≈ 0 due to the fact that 𝑅(0) = 0. With this in mind, we obtain from

equation (7)

Δ𝜃 = −𝑔𝑙𝑧, 𝑧𝜈 ≤ 𝑧 ≤ 0. (37)

Combining expressions (31) and (37), we come to

𝜈 =
𝛽∗𝑔𝑙𝑥2𝜈
2𝑉

, 𝑠 =
𝛽∗𝑔𝑙𝑧2

2𝑉
, 𝑧𝜈 ≤ 𝑧 ≤ 0. (38)

Substituting Δ𝜃 from (37) into (35), we can find the solid fraction in the form

𝜑𝜈 =
4𝜋𝐼∗

3
√

2𝑉 𝛽∗𝑔𝑙

𝜈

∫
0

exp
[

−𝑝𝛽∗∕(2𝑉 𝑔𝑙𝑠2)
]

𝑅(𝜈 − 𝑠2)𝑑𝑠2
√

𝑠2
. (39)

Calculating the integral (34) by the saddle point method in the region −ℎ ≤ 𝑧 < 𝑧𝜈 , we now arrive at the final distribution of
the solid phase fraction as

𝜑(𝑠) ≈

⎧

⎪

⎨

⎪

⎩

2𝜋𝐼∗ exp
[

−𝑝∕(𝑔𝑙𝑥𝜈)2
]

𝑔𝑙𝑥2𝜈𝑅(𝑠 − 𝜈)
3𝑝𝛽∗

, −ℎ ≤ 𝑧 < 𝑧𝜈
0, 𝑧𝜈 ≤ 𝑧 ≤ 0

, (40)

where the solid phase fraction becomes zero at 𝑠 = 𝜈 (𝑧 = 𝑧𝜈).
Considering that

𝑑𝑧 = − 𝑉
𝛽∗Δ𝜃

𝑑𝑠, (41)
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FIGURE 1 The mushy layer supercooling Δ𝜃 (scale of values on the left) and the solid-phase fraction 𝜑 (scale of values on
the right) as functions of the spatial coordinate 𝑧. Panels (a) and (b) respectively correspond to the diffusionless and diffusional
models. Parameters used in calculations are 𝑏1 = 0.2 cm (oC)−1, 𝑏2 = 2, 𝑏3 = 2, 𝑏4 = 5.4 cm, 𝑘 = 0.1, 𝑞 = 5 ⋅ 104 cm−1,
𝑝 = 10 (oC)2, 𝛽∗∕𝑉 = 2 ⋅ 104 (oC)−1, 𝐼∗∕𝑉 = 2 ⋅ 104 cm−4.

we obtain from (7) the standard Cauchy problem that defines the supercooling in the region −ℎ ≤ 𝑧 < 𝑧𝜈
𝑑Δ𝜃
𝑑𝑠

= 𝑉
𝑏1𝛽∗Δ𝜃

[

𝑏2 + 𝜑
𝑏3 + 𝜑

−
𝑏4𝛽∗Δ𝜃

𝑉 (1 − 𝜑)2−𝑘
𝑑𝜑
𝑑𝑠

]

Δ𝜃 = −𝑔𝑙𝑧𝜈 , 𝑠 = 𝜈
, (42)

where 𝑑𝜑∕𝑑𝑠 is defined from equation (40). Note that the left boundary 𝑧 = −ℎ of the phase transition layer is determined from
the boundary condition Δ𝜃 = 0 at 𝑧 = −ℎ. In addition, the parametric dependence between 𝑧 and 𝑠 can be obtained from (41)
and takes the form

𝑧 = − 𝑉
𝛽∗

𝑠

∫
𝜈

𝑑𝑠1
Δ𝜃(𝑠1)

+ 𝑧𝜈 . (43)

4 DISCUSSION

In this section, we discuss the analytical solutions obtained in Sections 2 and 3 for the diffusionless and diffusional models. First
of all, figure 1 demonstrates the supercooling and solid-phase fraction profiles within the mushy layer. As is easily seen, the
two-phase region is formally divided into three sublayers. The first layer adjacent to the liquid material contains a small number
of solid particles (𝜑 ≈ 0) and has a linear distribution of the supercooling Δ𝜃. The second intermediate layer (to the left of the
first one) contains a substantial quantity of the solid phase, which grows, releases the latent heat, and partially compensates the
mushy layer supercooling. In the third layer, which is adjacent to the solid material, the melt supercooling is almost zero, and
the solid phase evolves in a quasi-equilibrium manner completely compensating Δ𝜃. An important point is that both models
(diffusionless and diffusional) demonstrate a very similar behavior of Δ𝜃(𝑧) and 𝜑(𝑧).

The known solid-phase profile in the two-phase layer enables us to find the mushy layer permeability Π(𝜑),43−45 which
determines material microstructure

Π(𝜑) = (1 − 𝜑)3 . (44)

Its profile in the mushy region is illustrated in figure 2 for the diffusional model. As is seen, Π(𝜑) ≈ 1 at the mushy layer -
liquid phase boundary where 𝜑 ≈ 0. In addition, Π(𝜑) decreases in a non-linear manner with increasing 𝜑 and decreasing 𝑧
when approaching the mushy layer - solid phase boundary.
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FIGURE 2 The mushy layer permeability as a function of the solid-phase fraction 𝜑 and spatial coordinate 𝑧 in the mushy
region.

The mushy region structure is summarized in figure 3 , where three aforementioned sublayers, 𝐼 , 𝐼𝐼 , and 𝐼𝐼𝐼 , are illustrated
schematically. The analytical theory under consideration shows that the bulk phase transition predominantly occurs in the middle
region 𝐼𝐼 while the directional phase transformation primarily goes in the left sublayer 𝐼𝐼𝐼 .

5 CONCLUSION

In this paper, the problem of synchronous operation of the directional and bulk phase transitions in metastable liquids is analyzed
theoretically. Here we develop two integro-differential models with moving boundaries of the phase transition. One of them
includes the so-called “diffusion” mechanism of particles in the space of their sizes (the second-order kinetic equation) whereas
the second one neglects this mechanism (the first-order kinetic equation). Both models are solved analytically using the saddle-
point technique for the evaluation of Laplace-type integrals. As a result, the temperature field, melt supercooling, solid-phase
distribution, and permeability of the two-phase layer as well as its moving boundaries are analytically defined. Our solution
demonstrates the complex mushy layer structure responsible for its properties and material microstructure. The main conclusion
is that particles nucleate and evolve mainly in the middle sublayer of a mush (bulk phase transformation). In addition, the solid
phase in the form of dendrite-like structures grows primarily in the region adjacent to the solid material (directional phase
transformation). Another sublayer adjacent to the liquid phase is almost free of solid-phase particles and structures. In this region,
the temperature behaves as a linear function of the spatial coordinate 𝑧. Another important circumstance is that the middle
sublayer is mainly responsible for the desupercooling. This is due to the fact of intense nucleation of solid-phase crystals, which
release the latent heat of solidification and thus compensate for the melt supercooling. On the other hand, the region adjacent to
the solid phase is in the quasi-equilibrium state, i.e. its supercooling is almost compensated by the latent heat.

The theory under consideration opens ways for further investigation of the joint realization of bulk and directional phase
transformation. For example, an important task is to analyze the morphological and dynamic stability of the two-phase region,
which can be carried out in the spirit of previous studies.46−48 Another important task is to study unsteady crystallization scenario
of simultaneous bulk and directional crystallization, which can be developed accordingly to the previous solidification theory
with a mushy layer.14−16
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FIGURE 3 Illustaration of the moving phase transition layer, which contains three sublayers: 𝐼 , 𝐼𝐼 , and 𝐼𝐼𝐼 .
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