REFERENCES
Alam, M.M., Mahmud, S., Rahman, M.M., Simpson, J., Aggarwal, S., and
Ahmed, Z. (2020). Clinical Outcomes of Early Treatment With Doxycycline
for 89 High-Risk COVID-19 Patients in Long-Term Care Facilities in New
York. Cureus 12 : e9658.
Bharadwaj, S., Lee, K.E., Dwivedi, V.D., and Kang, S.G. (2020).
Computational insights into tetracyclines as inhibitors against
SARS-CoV-2 Mpro via combinatorial molecular simulation calculations.
Life Sci. 257 : 118080.
Bonjoch, L., Gea-Sorlí, S., Jordan, J., and Closa, D. (2015).
Minocycline inhibits peritoneal macrophages but activates alveolar
macrophages in acute pancreatitis. J. Physiol. Biochem. 71 :
839–846.
Byrne, J., Shakur, R., Collins, J., Becker, S., Young, C., Boyce, H., et
al. (2020). Prophylaxis with tetracyclines in ARDS: Potential therapy
for COVID-19-induced ARDS? | medRxiv.
Cag, Y., Icten, S., Isik-Goren, B., Baysal, N.B., Bektas, B., Selvi, E.,
et al. (2021). A novel approach to managing COVID-19 patients; results
of lopinavir plus doxycycline cohort. Eur. J. Clin. Microbiol. Infect.
Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 40 : 407–411.
Carney David E., Lutz Charles J., Picone Anthony L., Gatto Louis A.,
Ramamurthy N. S., Golub Lorne M., et al. (1999). Matrix
Metalloproteinase Inhibitor Prevents Acute Lung Injury After
Cardiopulmonary Bypass. Circulation 100 : 400–406.
Dutta, K., and Basu, A. (2011). Use of minocycline in viral infections.
Indian J. Med. Res. 133 : 467–470.
Garrido-Mesa, J., Rodríguez-Nogales, A., Algieri, F., Vezza, T.,
Hidalgo-Garcia, L., Garrido-Barros, M., et al. (2018). Immunomodulatory
tetracyclines shape the intestinal inflammatory response inducing
mucosal healing and resolution. Br. J. Pharmacol.
Gendrot, M., Andreani, J., Jardot, P., Hutter, S., Delandre, O.,
Boxberger, M., et al. (2020). In Vitro Antiviral Activity of Doxycycline
against SARS-CoV-2. Mol. Basel Switz. 25 :.
Gironi, L.C., Damiani, G., Zavattaro, E., Pacifico, A., Santus, P.,
Pigatto, P.D.M., et al. (2020). Tetracyclines in COVID-19 patients
quarantined at home: Literature evidence supporting real-world data from
a multicenter observational study targeting inflammatory and infectious
dermatoses. Dermatol. Ther. e14694.
Hashim, H.A., Maulood, M.F., Rasheed, A.M., Fatak, D.F., Kabah, K.K.,
and Abdulamir, A.S. (2020). Controlled randomized clinical trial on
using Ivermectin with Doxycycline for treating COVID-19 patients in
Baghdad, Iraq (Infectious Diseases (except HIV/AIDS)).
He, B., and Garmire, L. (2020). Prediction of repurposed drugs for
treating lung injury in COVID-19. F1000Research 9 : 609.
Hoyt, J.C., Ballering, J., Numanami, H., Hayden, J.M., and Robbins, R.A.
(2006). Doxycycline modulates nitric oxide production in murine lung
epithelial cells. J. Immunol. Baltim. Md 1950 176 : 567–572.
Maisi, P., Kiili, M., Raulo, S.M., Pirilä, E., and Sorsa, T. (1999). MMP
Inhibition by Chemically Modified Tetracycline-3 (CMT-3) in Equine
Pulmonary Epithelial Lining Fluid. Ann. N. Y. Acad. Sci. 878 :
675–677.
Moon, A., Gil, S., Gill, S.E., Chen, P., and Matute-Bello, G. (2012).
Doxycycline impairs neutrophil migration to the airspaces of the lung in
mice exposed to intratracheal lipopolysaccharide. J. Inflamm. Lond.
Engl. 9 : 31.
Raza, M., Ballering, J.G., Hayden, J.M., Robbins, R.A., and Hoyt, J.C.
(2006). Doxycycline decreases monocyte chemoattractant protein-1 in
human lung epithelial cells. Exp. Lung Res. 32 : 15–26.
Roy, S.K., Kubiak, B.D., Albert, S.P., Vieau, C.J., Gatto, L., Golub,
L., et al. (2012). Chemically Modified Tetracycline 3 Prevents Acute
Respiratory Distress Syndrome in a Porcine Model of Sepsis +
Ischemia/Reperfusion–Induced Lung Injury. Shock 37 : 424–432.
Sachdeva, C., Wadhwa, A., Kumari, A., Hussain, F., Jha, P., and Kaushik,
N.K. (2020). In silico Potential of Approved Antimalarial Drugs for
Repurposing Against COVID-19. Omics J. Integr. Biol. 24 :
568–580.
Sadowsky, D., Nieman, G., Barclay, D., Mi, Q., Zamora, R., Constantine,
G., et al. (2015). Impact of chemically-modified tetracycline 3 on
intertwined physiological, biochemical, and inflammatory networks in
porcine sepsis/ARDS. Int. J. Burns Trauma 5 : 22–35.
Sayed, A.M., Khalaf, A.M., Abdelrahim, M.E.A., and Elgendy, M.O. (2020).
Repurposing of some anti-infective drugs for COVID-19 treatment: A
surveillance study supported by an in silico investigation. Int. J.
Clin. Pract. e13877.
Steinberg, J., Halter, J., Schiller, H., Gatto, L., Carney, D., Lee,
H.-M., et al. (2005). Chemically modified tetracycline prevents the
development of septic shock and acute respiratory distress syndrome in a
clinically applicable porcine model. Shock Augusta Ga 24 :
348–356.
Szeto, G.L., Brice, A.K., Yang, H.-C., Barber, S.A., Siliciano, R.F.,
and Clements, J.E. (2010). Minocycline attenuates HIV infection and
reactivation by suppressing cellular activation in human CD4+ T cells.
J. Infect. Dis. 201 : 1132–1140.
Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., et al.
(2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of
potential drugs by computational methods. Acta Pharm. Sin. B 10 :
766–788.
Yates, P.A., Newman, S.A., Oshry, L.J., Glassman, R.H., Leone, A.M., and
Reichel, E. (2020). Doxycycline treatment of high-risk COVID-19-positive
patients with comorbid pulmonary disease. Ther. Adv. Respir. Dis.14 : 1753466620951053.
Zhao, T.Y., and Patankar, N.A. (2021). Tetracycline as an inhibitor to
the coronavirus SARS-CoV-2. J. Cell. Biochem. jcb.29909.