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Abstract In this paper, we combine the sinc and self-consistent methods to solve
a class of non-linear eigenvalue differential equations. Some properties of the self-
consistent and sinc methods required for our subsequent development are given and
employed. Numerical examples are included to demonstrate the validity and applica-
bility of the introduced technique and a comparison is made with the existing results.
The method is easy to implement and yields accurate results. We show that the sinc-
self-consistent method can solve the equations on an infinite domain and produces
the smallest eigenvalue with the most accuracy.
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1 Introduction

There are some papers in which non-linear eigenvalue differential equations are stud-
ied (see [5,13]). These types of problems arise in physics, dynamic system, electronic
structure calculations, etc (see [11,14,22]). In this paper, we consider the non-linear
eigenvalue differential equation

cY"(x) +UX)Y'(x) +V(x)Y (x) + Q(x)Y? (x) = EY (x), /ahYz(x)dx =1 (1.1
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on the interval (a,b), with homogeneous boundary conditions Y (a)=Y (b)=0, where
unknown value E and function Y (x) are the eigenvalues and the corresponding eigen-
functions, respectively. Also U (x), V(x) and Q(x) are some functions. For a few well-
known functions V (x), the equation (1.1) has an analytical solution [3,4,6,7, 18]. But
most of the applied potential functions V (x) have not exact solutions and they must
be solved with the numerical methods. So far, different numerical methods have been
used to solve Eq. 1.1 by several authors, such as variational method [1,12], fixed
point method [23], homotopy analysis method [2], NU method [19], etc. However,
the present paper is devoted to the numerical solution of the Eq. 1.1 by using the sinc-
self-consistent (SSCF) method. To show the accuracy and robustness of the proposed
schema, some examples with exact solutions are considered. This paper is organized
as follows: Section 2 contains the preliminary concepts, definitions and notations of
the sinc function. We present a brief overview of the self-consistent method in Section
3. Also, in Sections 4, we present the matrix form of Eq. 1.1 by the SSCF method.
Section 5 is devoted to the numerical solution of some examples by the mentioned
methods and compared with the finite difference self-consistent method (FDSCF).
Finally, a brief conclusion is presented in Section 6.

2 Sinc method

In the last three decades, Sinc numerical methods have been extensively used to solve
differential equations because of their exponential convergence rate, see e.g. [8,9,15,
20], etc. The Sinc method, which introduced and developed by F. Stenger [21], is
based on the Whittaker-Shannon-Kotelnikov sampling theorem for entire functions.
A brief overview of Sinc functions are presented in this section. Sinc function prop-
erties are thoroughly discussed in [17]. The Sinc function is defined on the whole real
line as:

sin(7mx) .
Sinc(x) = { . 70 @.1)
1 x=0
For h > 0, the translated Sinc functions with evenly spaced nodes are given as
—kh
S(k,h)(x) = Sinc (xh) k=0,+1,42, ... 2.2)

The base functions on (a,b) are then taken to be the composite translated Sinc func-
tions as

Se(x) = S(k,h)o¢ (x) = Sinc (‘p(x)h_kh) k=0,+1,£2, ... (2.3)

We also require the derivatives of the composite translated Sinc function evaluated at
the nodes x;. The following results will be useful to obtain the discrete system[17]:

0i#j,
817 = 8;(x;) = 2.4)
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8\ = hS'(xi) = () 2.5)
i=j.

(=)

(=), .

87 = WS (x;) = (2.6)
2 .
3 b=
cY"(x;)+U(x;)Y'(x;) +V(x;)Y (xj) = EY (x;). 2.7
For positive integer N, set h = %.
Z ACRALES Z Yo' (x;)8,) 2.8)

N

Y (x;) Z Y (¢ s/ +¢”S;) (x))

Y (6750 + 0750 ). 2.9)

k=—N

3 Self-consistent field method

Let the non-linear eigenvalue problem:
H(X)X = AX 3.1

where X € R™!, XTX =1, H (X) € R is a matrix that has a special structure
and A € R is a diagonal matrix consisting of the smallest eigenvalues of H(X).
Some researches in [16,24] investigated the convergence of Self-consistent field iter-
ation(SCF) which defined as follow to solve problem (3.1):

Pick any initial guessX®)

1.Fori=1,2,...until convergence

2.Construct HY) = H(X(=1);

3.Compute X such that HOX® = XODA® and AD
contains the smallest eigenvalues of HY;

4.End for

3.2)

Yang et al. in [24] show that for some class of problems, the SCF iteration produces a
sequence of approximate solutions that contains two convergent subsequence. They
used the standard distance measure [10] between two columns X,Y € R™K je., if
XTx =YTy =1,

dist(X,Y) = | XxT —yY7|,
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where for every matrix A € R"™*",

Ax||2
A]l2 = sup 143012
S92 el

They obtained the following theorem:

Theorem 3.1 Ler X(©) € R™* be the initial guess to the solution of the non-linear
eigenvalue problem (3.1) that satisfies X" x0) = Ii.. If columns of X ¢ prxk
contain eigenvectors associated with the smallest k eigenvalues of H(X ("’U), as we
would obtain when applying the SCF iteration to (3.1), and if the gap between the
kth and the k + st eigenvalues of H(X!)) is greater than or equal to 8 > 0 for all i,
then

lim dist* (X2, X") = 0.

i—oo

4 Main results

In this section, we obtain the matrix generated by the sinc method. By using the
collocation method and relations (2.7), (2.8), and (2.9) we have

N 2
Y % (c¢’ 8+ (co” +U9') 5,5;)) () + V()Y +0(x))Y} = EY;. (4.1)
k=—N

Let
pij = (c¢’25,f§) + (c¢"+U¢") 5,5;)) (x}).

Then, we can write system (4.1) as

(X + QZ) Y=FEY 4.2)
where
P-n-ntVv-on ... P—nn
X= Pn,—n Pnpn +v
g-n O 0
0 g 0
0= : U
0 0 qn
Y—n
Y=y



Sinc-Self-consistent method to solve a class of nonlinear eigenvalue differential equation 5

and Z = (DiagY )?. Now, we must solve the non-linear eigenvalue problem H(Y)Y =
EY, where

H(Y) =X + Q(DiagY)*.

For this end, let Z° = 0. We use the following algorithm to solve non-linear eigen-
value problem (4.2).

1. Fori=1,2,... until convergence

2. Construct H) = X + QZ(i_l)

3. Compute F) such that HOF®) = EOF(®) and EW® contains the smallest eigenval-
ues of H(;

4. Construct Y such that Y() = \\Ii(’;)\\
2

5. Construct Z() = (Diagy ())?
6. End for
So, we can obtain the eigenvalues and eigenfunctions of Eq. 1.1.

5 Numerical results

In this section, we consider Eq. 1.1 through various functions V (x). We denote the
eigenvalues of Eq. 1.1 with E;. Moreover, we report the CPU time for our method.
All computations were carried out using Maple software on a personal computer.
The computer processing properties are as follows: Intel(R) Core(TIM) i7-6500U
CPU@GHz 2.59GHz, RAM: 8.00 GB.

Example 5.1 We first consider Eq. 1.1 on (—eo,+e0) with ¢ = —3, U(x) = 0 and
V(x):%xz. In [12], the even eigenvalues are obtained by the variational method as

1 Qa

1
En:—cbz—c(n—i—f)(az——)—i—ﬁn. (5.1)

2 2ca?

Where h, = 2"\/7n!, I, = [©, H*(x)e=>" dx, H,(x) are Hermit polynomials [4], a is
a positive root of

Iy Ol 3
2 T

a2x2 .
and the wave functions are in the form ¥, (x) =  /7-Hy(ax)e” 2". In this example,

wesetQ=1,N=30and h = \/% Let i = 10 be the number of iterations. Table 5.1

represents the even eigenvalues obtained from SSCF and results of reference [12]. In
figure (5.1), we show the convergence of this method through variation of smallest
eigenvalue as a function of the number of iterations for Q = 1,2,3. We observe that
the convergence of our method is better full-filled when the non-linear parameter |Q)|
has smaller values. Also, figure (5.2), shows the variation of the minimum eigenvalue
as a function of Q. This figure shows that the method works better, for smaller values
of the non-linear coefficient |Q|.



Seyed Mohammad Ali Aleomraninejad, Mehdi Solaimani

Table 5.1 Comparison of the eigenvalue of the example 5.1 obtained through SSCF and Ref [12] .

1

Smallest eigenvalue,Q:

Eigenvalues SSCF Ref [12]
Ey 0.8699440500  0.8726179080
E; 2.652621066 2.753164076
Eq4 4.610725009 4.709682021
Eg 6.591042186 6.685128136
CPU time(s) 36.9 -
°-886’:: 1.24—::
0.884 1 :
: 1231
0.882: :
0ss0]: d122
0878 '%1.21—
0.876 - Ec :
: S1.204
0.874 % T
08721 : G119
0870 1 e et 18] ¢
0.868 |
1171
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Fig. 5.1 Panels show the variations of the smallest eigenvalues as a function of the number of iterations
for 0 =1,2,3 (example 5.1).

Example 5.2 Consider Eq. 1.1 on (—1,1) with c=—3, Q(x) = Q < 0 and U(x) =
V(x) = 0. By [7], we obtain the solution of this equation in the form

Y (x) =C.cn(A(x —xo),k)

where, A and x( are arbitrary constants and k and C are determined as follows:

k2

A2
= 0 ©

A2 —2F
20
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Fig. 5.2 Variation of the smallest eigenvalue as a function of Q( example 5.1).

and then

k=

V=0 2_ A*-2E
A7 20
Since for odd functions Y (0) = 0 and for even functions Y’(0) = 0, we have xo = 0 and

xo = 3EllipticK (k), respectively. By using the constants x, even and odd solutions
of equations can be obtained

Ax,k)
oo v — ook
even Ccn(lx,k), vdd =C k dn(lx, k)

Now by using Y (£1) = 0 and f_ll Y? =1, we have

(1 —2k%)(EllipticK (k))*n?

E, = 2

where 7 is the number of eigenvalues and & is the solution of the equation

_ 2EllipticK (k)
0

Let N = 100 be the number of nods and i = 10 be the number of iterations. Ta-
ble (5.2), presents the eigenvalues obtained by SSCF, FDSCF and the exact val-
ues for Q = —1 as well as the absolute errors of SSCF and FDSCF methods with
Ers = |Egxact—Esscr| and Erp = |Egyac:—Erpscr|, respectively. In figure (5.3), we
show the convergence of SSCF and FDSCF methods through variation of the smallest
eigenvalue and error as a function of the number of nodes for Q = —1. Also, figure
(5.4) shows the convergence of SSCF and FDSCF methods through variation of the
error as a function of the number of eigenvalues for Q = —1. This figure shows that
the FDSCF works better for the seven lowest eigenvalues. However, the error is fixed
for all obtained eigenvalues. Therefore, when the few lowest eigenvalues are required,

1
(EllipticE(k) — (1 — K*)EllipticK (k)) = o
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Fig. 5.3 the left figure shows the variation of the smallest eigenvalue as a function of the number of nods
and the right figure shows the variation of the error as a function of the number of nods for Q = —1 (
example 5.2).

both of the presented methods can be used. But if we need the whole eigenvalue spec-
trum or at least a large portion of the eigenvalues, the SSCF is more reliable because
we can more generally know the errors of higher index eigenvalues. Figure (5.5),
also shows the variation of the smallest eigenvalue and the error of SSCF and FD-
SCF as a function of Q. This figure shows that the method works better, for smaller
values of the non-linear coefficient |Q|. We observe that the error of our method is
smaller when the non-linear parameter |Q| has smaller values. However, this is true
for smaller eigenvalues. Also, we see that for larger eigenvalues, we have not a rule
of thumb for larger value of the eigenvalues.

Table 5.2 Comparison of the exact eigenvalues of example 5.2 obtained through SSCF and FDSCEF, for
0=-1

Eigenvalues SSCF FDSCF Exact Erg Erp
Ep 0.4626016170  0.462459047  0.462579418  2.21990e-05  1.20371e-04
E 4.443995283  4.442553417  4.179929550  0.264065733  0.262623867
E> 10.60665214  10.59860958  10.35117007  0.25548207 0.24743951
E3 19.24142796  19.21512218  18.98801387  0.25341409 0.22710831
Ey4 30.34402278  30.28031329 30.091750 0.25227278 0.18856329
Es 4391437108  43.78267728 43.662690 0.25168108 0.11998728
Es 59.95245468  59.70867902  59.70093840  0.25151628 0.00774062
E; 78.45806592  78.04253889  78.20653790  0.25152802 0.16399901

CPU time(s) 161 113 - - -

Example 5.3 ConsiderEq. 1.1 on (—1,1) withc=—1,U(x) =0and V (x) =0.452cos(m(1 —
x)). In [1], the eigenvalues are obtained by using the discretized Euler-Lagrange vari-
ational method. Let N = 100 and i = 10. Table (5.3) represents the smallest eigenvalue
obtained from reference [1] as well as SSCF and FDSCF methods for Q(x) =0.5...2.
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Fig. 5.4 Variation of the error as a function of the number of eigenvalues for Q = —1 ( example 5.2).
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Fig. 5.5 The left figure shows the variation of the smallest eigenvalue as a function of Q and the right
figure shows the variation of the error as a function of Q( example 5.2).

This table shows that both of the methods work well in this situation. However, the
CPU time of the SSCF is greater than the FDSCF method. In figure (5.6), we show
the variation of the smallest eigenvalue as a function of Q. Again, we see that both of
the presented methods excellently work in this example.

6 Conclusion

In this paper, the SSCF method is applied to a class of non-linear eigenvalue dif-
ferential equation with homogeneous boundary conditions. The eigenvalues obtained
through this method are compared with exact values and some other references. To
demonstrate the efficiency and effectiveness of the proposed method, three examples
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Table 5.3 Comparison of the smallest eigenvalue of example 5.3 obtained through SSCF, FDSCF and Ref
[1].

0 SSCF FDSCF Ref [1] CPU timegscr CPU timegpscr
0.5 | 2.616897689  2.616948710 2.616951848 172 108

1 2.990597503  2.990592936 2.99059549 172 106

1.5 | 3.360892363  3.359893114 3.35989571 172 112

2 3.726258011  3.725158240  3.725158948 174 109

3.6

w w
N ES
! "

Smallest eigenvalue

w
=}
.

2.8

T T v
0.5 1 15 2
Q

[ O SSCF_% FDSCF O Refll]]

Fig. 5.6 Variation of the smallest eigenvalue as a function of the number of Q ( example 5.3).

are examined. Based on the numerical experiments, we conclude the method works
better, for smaller values of the non-linear coefficient |Q| in equation 1.1. Also, we
see that the results for the smallest eigenvalue have the best accuracies. But accuracy
is lesser satisfactory for larger eigenvalues. We see, the CPU time of the SSCF is
greater than the FDSCF method but the SSCF is more reliable because we can more
generally know the errors of higher index eigenvalues. However, the difference in the
CPU time is not so large that we are not able to solve realistic physics and engineering
problems.
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