References
[1] Lee DH, Yoon TM, Lee JK, Lim SC. Predictive factors of
recurrence and malignant transformation in vocal cord leukoplakia. Eur
Arch Otorhinolaryngol. 2015; 272(7): 1719-1724.
doi:10.1007/s00405-015-3587-8.
[2] Isenberg JS, Crozier DL, Dailey SH. Institutional and
comprehensive review of laryngeal leukoplakia. Ann OtolRhinolLaryngol.
2008; 117(1): 74-79. doi:10.1177/000348940811700114.
[3] Karatayli-Ozgursoy S, Pacheco-Lopez P, Hillel AT, Best SR,
Bishop JA, Akst LM. Laryngeal dysplasia, demographics, and treatment: a
single-institution, 20-year review. JAMA Otolaryngol Head Neck Surg.
2015; 141(4): 313-318. doi:10.1001/jamaoto.2014.3736.
[4] Weller MD, Nankivell PC, McConkey C, Paleri V, Mehanna HM. The
risk and interval to malignancy of patients with laryngeal dysplasia; a
systematic review of case series and meta-analysis. Clin Otolaryngol.
2010; 35(5): 364-372. doi:10.1111/j.1749-4486.2010.02181.x.
[5] Gale N, Poljak M, Zidar N. Update from the 4th Edition of the
World Health Organization Classification of Head and Neck Tumours: What
is New in the 2017 WHO Blue Book for Tumours of the Hypopharynx, Larynx,
Trachea and Parapharyngeal Space. Head Neck Pathol. 2017; 11(1): 23-32.
doi:10.1007/s12105-017-0788-z.
[6] Gale N, Cardesa A, Hernandez-Prera JC, Slootweg PJ, Wenig BM,
Zidar N. Laryngeal Dysplasia: Persisting Dilemmas, Disagreements and
Unsolved Problems-A Short Review. Head Neck Pathol. 2020; Dec;144(4) .
doi:10.1007/s12105-020-01149-9.
[7] Ferlito A, Devaney KO, Woolgar JA, et al. Squamous epithelial
changes of the larynx: diagnosis and therapy. Head Neck. 2012; 34(12):
1810-1816. doi:10.1002/hed.21862.
[8] Cui W, Xu W, Yang Q, Hu R. Clinicopathological parameters
associated with histological background and recurrence after surgical
intervention of vocal cord leukoplakia. Medicine (Baltimore). 2017;
96(22): e7033. doi:10.1097/MD.0000000000007033.
[9] Paleri V, Sawant R, Mehanna H, Ainsworth H, Stocken D. Laryngeal
dysplasia and narrow band imaging: Secondary analysis of published data
supports the role in patient follow-up. Clin Otolaryngol. 2018; 43(6):
1439-1442. doi:10.1111/coa.13182.
[10] Davaris N, Lux A, Esmaeili N, et al. Evaluation of Vascular
Patterns Using Contact Endoscopy and Narrow-Band Imaging (CE-NBI) for
the Diagnosis of Vocal Fold Malignancy. Cancers (Basel). 2020; 12(1).
doi:10.3390/cancers12010248.
[11] de Groof AJ, Struyvenberg MR, van der Putten J, et al.
Deep-Learning System Detects Neoplasia in Patients With Barrett’s
Esophagus With Higher Accuracy Than Endoscopists in a Multistep Training
and Validation Study With Benchmarking. Gastroenterology. 2020; 158(4):
915-929.e4. doi:10.1053/j.gastro.2019.11.030.
[12] Wang P, Liu X, Berzin TM, et al. Effect of a deep-learning
computer-aided detection system on adenoma detection during colonoscopy
(CADe-DB trial): a double-blind randomised study. Lancet Gastroenterol
Hepatol. 2020; 5(4): 343-351. doi:10.1016/S2468-1253(19)30411-X.
[13] Hashimoto R, Requa J, Dao T, et al. Artificial intelligence
using convolutional neural networks for real-time detection of early
esophageal neoplasia in Barrett’s esophagus (with video).
GastrointestEndosc. 2020; 91(6): 1264-1271.e1.
doi:10.1016/j.gie.2019.12.049.
[14] Kono M, Ishihara R, Kato Y, et al. Diagnosis of pharyngeal
cancer on endoscopic video images by Mask region-based convolutional
neural network. Dig Endosc. 2020; Jul 26. doi:10.1111/den.13800.
[15] Mehlum CS, Larsen SR, Kiss K, et al. Laryngeal precursor
lesions: Interrater and intrarater reliability of histopathological
assessment. Laryngoscope. 2018; 128(10): 2375-2379.
doi:10.1002/lary.27228.
[16] He K, Gkioxari G, Dollár P, et al. Mask r-cnn (Proceedings of
the IEEE international conference on computer vision). 2017: 2961-2969.
[17] Long J, Shelhamer E, Darrell T. Fully convolutional networks
for semantic segmentation (Proceedings of the IEEE conference on
computer vision and pattern recognition). 2015: 3431-3440.
[18] He K, Zhang X, Ren S, et al. Deep residual learning for image
recognition (Proceedings of the IEEE conference on computer vision and
pattern recognition). 2016: 770-778.
[19] Irem Turkmen H, ElifKarsligil M, Kocak I. Classification of
laryngeal disorders based on shape and vascular defects of vocal folds.
Comput Biol Med. 2015. 62: 76-85. doi:10.1016/j.compbiomed.2015.02.001.
[20] Girshick R, Donahue J, Darrell T, et al. Rich feature
hierarchies for accurate object detection and semantic segmentation
(Proceedings of the IEEE conference on computer vision and pattern
recognition). 2014: 580-587.
[21] Gamage H, Wijesinghe W, Perera I. Instance-based segmentation
for boundary detection of neuropathic ulcers through Mask-RCNN
(International Conference on Artificial Neural Networks). Springer,
Cham, 2019: 511-522.
[22] Sharma P, Pante A, Gross SA. Artificial intelligence in
endoscopy. GastrointestEndosc. 2020; 91(4): 925-931.
doi:10.1016/j.gie.2019.12.018.
[23] Irem Turkmen H, ElifKarsligil M, Kocak I. Classification of
laryngeal disorders based on shape and vascular defects of vocal folds.
Comput Biol Med. 2015; 62: 76-85. doi:10.1016/j.compbiomed.2015.02.001.
[24] BinJi, JianjunRen, XiujuanZheng, CongTan, RongJi, YuZhao,
KaiLiu. A multi-scale recurrent fully convolution neural network for
laryngeal leukoplakia segmentation. Biomed Signal Process Control. 2019;
59. doi:10.1016/j.bspc.2020.101913.