References
Arbuthnott, D. & Rundle, H.D. 2012. Sexual selection is ineffectual or inhibits the purging of deleterious mutations in drosophila melanogaster. Evolution (N. Y). 66 : 2127–2137.
Armitage, S.A.O. & Siva-Jothy, M.T. 2005. Immune function responds to selection for cuticular colour in Tenebrio molitor. Heredity (Edinb). 94 : 650–656. Nature Publishing Group.
Bagchi, B., Corbel, Q., Khan, I., Payne, E., Banerji, D., Liljestrand-Rönn, J., et al. 2021. Sexual conflict drives micro- and macroevolution of sexual dimorphism in immunity. BMC Biol.19 : 114. BioMed Central.
Balenger, S.L. & Zuk, M. 2014. Testing the Hamilton-Zuk hypothesis: Past, present, and future. In: Integrative and Comparative Biology , pp. 601–613. Oxford University Press.
Bates, D., Maechler, M. & Bolker, B. 2011. lme4: Linear mixed-effects models using S4 classestle.
Blount, J.D., Metcalfe, N.B., Birkhead, T.R. & Surai, P.F. 2003. Carotenoid modulation of immune function and sexual attractiveness in zebra finches. Science (80-. ). 300 : 125–127. American Association for the Advancement of Science.
Bonduriansky, R. & Chenoweth, S.F. 2009. Intralocus sexual conflict. Elsevier Current Trends.
Bou Sleiman, M.S., Osman, D., Massouras, A., Hoffmann, A.A., Lemaitre, B. & Deplancke, B. 2015. Genetic, molecular and physiological basis of variation in Drosophila gut immunocompetence. Nat. Commun.6 : 7829. Nature Publishing Group.
Chakrabarti, S., Liehl, P., Buchon, N. & Lemaitre, B. 2012. Infection-induced host translational blockage inhibits immune responses and epithelial renewal in the Drosophila gut. Cell Host Microbe12 : 60–70.
Chapman, T. 2006. Evolutionary Conflicts of Interest between Males and Females. Cell Press.
Chapman, T., Arnqvist, G., Bangham, J. & Rowe, L. 2003. Sexual conflict. Trends Ecol. Evol. 18 : 41–47. Elsevier Current Trends.
Charlesworth, B. & Charlesworth, D. 1985. Genetic variation in recombination in drosophila. I. responses to selection and preliminary genetic analysis. Heredity (Edinb). 54 : 71–83. Nature Publishing Group.
Chippindale, A.K. 2001. Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proc. Natl. Acad. Sci. 98 : 1671–1675.
Collet, J.M., Fuentes, S., Hesketh, J., Hill, M.S., Innocenti, P., Morrow, E.H., et al. 2016. Rapid evolution of the intersexual genetic correlation for fitness in Drosophila melanogaster.Evolution (N. Y). 70 : 781–795. Evolution.
Connallon, T. & Hall, M.D. 2016. Genetic correlations and sex-specific adaptation in changing environments. Evolution (N. Y).70 : 2186–2198. Evolution.
Faria, V.G., Martins, N.E., Paulo, T., Teixeira, L., Sucena, É. & Magalhães, S. 2015. Evolution of Drosophila resistance against different pathogens and infection routes entails no detectable maintenance costs.Evolution (N. Y). 69 : 2799–2809. Society for the Study of Evolution.
Ferro, K., Peuß, R., Yang, W., Rosenstiel, P., Schulenburg, H. & Kurtz, J. 2019. Experimental evolution of immunological specificity.Proc. Natl. Acad. Sci. U. S. A. 116 : 20598–20604. National Academy of Sciences.
Fisher, R.A. 1930. The genetical theory of natural selection. , 2nd ed. Dover, New York, 1958.
Folstad, I. & Karter, A.J. 1992. Parasites, bright males, and the immunocompetence handicap. Am. Nat. 139 : 603–622. University of Chicago Press.
Fricke, C. & Arnqvist, G. 2007. Rapid adaptation to a novel host in a seed beetle (Callosobruchus maculatus): The role of sexual selection.Evolution (N. Y). 61 : 440–454.
Getty, T. 2002. Signaling health versus parasites. Am. Nat.159 : 363–371. Am Nat.
Gibson Vega, A., Kennington, W.J., Tomkins, J.L. & Dugand, R.J. 2020. Experimental evidence for accelerated adaptation to desiccation through sexual selection on males. J. Evol. Biol. 33 : 1060–1067. John Wiley & Sons, Ltd.
Grieshop, K., Stångberg, J., Martinossi-Allibert, I., Arnqvist, G. & Berger, D. 2016. Strong sexual selection in males against a mutation load that reduces offspring production in seed beetles. J. Evol. Biol. 29 : 1201–1210. Blackwell Publishing Ltd.
Gupta, V., Ali, Z.S. & Prasad, N.G. 2013. Sexual activity increases resistance against Pseudomonas entomophila in male Drosophila melanogaster. BMC Evol. Biol. 13 .
Gupta, V., Venkatesan, S., Chatterjee, M., Syed, Z.A., Nivsarkar, V. & Prasad, N.G. 2016. No apparent cost of evolved immune response in Drosophila melanogaster. Evolution (N. Y). 70 : 934–943. Society for the Study of Evolution.
Hamilton, W.D. & Zuk, M. 1982. Heritable true fitness and bright birds: A role for parasites? Science (80-. ). 218 : 384–387.
Hangartner, S., Michalczyk, Ł., Gage, M.J.G. & Martin, O.Y. 2015. Experimental removal of sexual selection leads to decreased investment in an immune component in female Tribolium castaneum. Infect. Genet. Evol. 33 : 212–218. Elsevier.
Hedengren, M., Åsling, B., Dushay, M.S., Ando, I., Ekengren, S., Wihlborg, M., et al. 1999. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol. Cell 4 : 827–837.
Holland, B. 2002. Sexual selection fails to promote adaptation to a new environment. Evolution (N. Y). 56 : 721–730.
Holland, B. & Rice, W.R. 1999a. Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. Proc. Natl. Acad. Sci. U. S. A. 96 : 5083–5088. National Academy of Sciences.
Holland, B. & Rice, W.R. 1999b. Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. Proc. Natl. Acad. Sci. U. S. A. 96 : 5083–5088. National Academy of Sciences.
Hollis, B., Fierst, J.L. & Houle, D. 2009. Sexual selection accelerates the elimination of a deleterious mutant in Drosophila melanogaster.Evolution (N. Y). 63 : 324–333.
Hollis, B. & Houle, D. 2011. Populations with elevated mutation load do not benefit from the operation of sexual selection. J. Evol. Biol. 24 : 1918–1926. NIH Public Access.
Hollis, B., Houle, D., Yan, Z., Kawecki, T.J. & Keller, L. 2014. Evolution under monogamy feminizes gene expression in Drosophila melanogaster. Nat. Commun. 5 : 3482. Nature Publishing Group.
Hollis, B., Koppik, M., Wensing, K.U., Ruhmann, H., Genzoni, E., Erkosar, B., et al. 2019. Sexual conflict drives male manipulation of female postmating responses in Drosophila melanogaster.Proc. Natl. Acad. Sci. U. S. A. 116 : 8437–8444. National Academy of Sciences.
Hosken, D.J. 2001. Sex and death: Microevolutionary trade-offs between reproductive and immune investment in dung flies. Cell Press.
Hosken, D.J., Archer, C.R. & Mank, J.E. 2019. Sexual conflict . Press, Princeton University.
Houle, D. & Kondrashov, A.S. 2002. Coevolution of costly mate choice and condition-dependent display of good genes. Proc. R. Soc. B Biol. Sci. 269 : 97–104. The Royal Society .
Houle, D. & Rowe, L. 2003. Natural selection in a bottle. Am. Nat. 161 : 50–67. Am Nat.
Hund, A.K., Hubbard, J.K., Albrecht, T., Vortman, Y., Munclinger, P., Krausová, S., et al. 2020. Divergent sexual signals reflect costs of local parasites*. Evolution (N. Y). 74 : 2404–2418. John Wiley & Sons, Ltd.
Innocenti, P. & Morrow, E.H. 2010. The sexually antagonistic genes of drosophila melanogaster. PLoS Biol. 8 : e1000335. Public Library of Science.
Iwasa, Y., Pomiankowski, A. & Nee, S. 1991. The evolution of costly mate preferences. II. The “handicap” principle.” Evolution (N. Y). 45 : 1431–1442. John Wiley & Sons, Ltd.
Jacomb, F., Marsh, J. & Holman, L. 2016. Sexual selection expedites the evolution of pesticide resistance. Evolution (N. Y). 70 : 2746–2751. Evolution.
Jarzebowska, M. & Radwan, J. 2010. Sexual selection counteracts extinction of small populations of the bulb mites. Evolution (N. Y). 64 : 1283–1289. John Wiley & Sons, Ltd.
Joop, G., Roth, O., Schmid-Hempel, P. & Kurtz, J. 2014. Experimental evolution of external immune defences in the red flour beetle. J. Evol. Biol. 27 : 1562–1571. Blackwell Publishing Ltd.
Joye, P. & Kawecki, T.J. 2019. Sexual selection favours good or bad genes for pathogen resistance depending on males’ pathogen exposure.Proc. R. Soc. B Biol. Sci. 286 : 20190226. Royal Society Publishing.
Kawecki, T.J., Lenski, R.E., Ebert, D., Hollis, B., Olivieri, I. & Whitlock, M.C. 2012. Experimental evolution. Elsevier.
Liehl, P., Blight, M., Vodovar, N., Boccard, F. & Lemaitre, B. 2006. Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog. 2 : 0551–0561. Public Library of Science.
Long, T.A.F., Agrawal, A.F. & Rowe, L. 2012. The effect of sexual selection on offspring fitness depends on the nature of genetic variation. Curr. Biol. 22 : 204–208.
Long, T.A.F., Pischedda, A., Stewart, A.D. & Rice, W.R. 2009. A cost of sexual attractiveness to high-fitness females. PLoS Biol.7 : e1000254. Public Library of Science.
Lorch, P.D., Proulx, S., Rowe, L. & Day, T. 2003.Condition-dependent sexual selection can accelerate adaptation . Evolutionary Ecology.
Lumley, A.J., Michalczyk, Ł., Kitson, J.J.N., Spurgin, L.G., Morrison, C.A., Godwin, J.L., et al. 2015. Sexual selection protects against extinction. Nature 522 : 470–473. Nature Publishing Group.
Marshall Graves, J.A. 2004. The descent of man. Nature427 : 199.
Martin, C. 1990. Parasites and sexual selection : Current Hamilton and Zuk hypothesis. Behav. Ecol. Sociobiol. 328 : 319–328.
Martins, N.E., Faria, V.G., Teixeira, L., Magalhães, S. & Sucena, É. 2013. Host Adaptation Is Contingent upon the Infection Route Taken by Pathogens. PLoS Pathog. 9 : e1003601. Public Library of Science.
Neyen, C., Bretscher, A.J., Binggeli, O. & Lemaitre, B. 2014. Methods to study Drosophila immunity. Methods 68 : 116–128. Elsevier Inc.
Parker, G.A. 1979. Sexual selection and sexual conflict. In:Sexual selection and reproductive competition in insects . Academic Press Inc., London.
Price, P.W. 1980. Evolutionary biology of parasites. Princeton University Press, New Jersey.
Promislow, D.E.L., Smith, E.A. & Pearse, L. 1998. Adult fitness consequences of sexual selection in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 95 : 10687–10692.
Radwan, J. 2004. Effectiveness of sexual selection in removing mutations induced with ionizing radiation. Ecol. Lett. 7 : 1149–1154.
Rice, W.R. 1996. Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature 381 : 232–234. Moller, A. P.
Rice, W.R., Stewart, A.D., Morrow, E.H., Linder, J.E., Orteiza, N. & Byrne, P.G. 2006. Assessing sexual conflict in the Drosophila melanogaster laboratory model system. Philos. Trans. R. Soc. B Biol. Sci. 361 : 287–299. The Royal Society.
Roberts, M.L., Buchanan, K.L. & Evans, M.R. 2004. Testing the immunocompetence handicap hypothesis: A review of the evidence. Academic Press.
Rundle, H.D., Chenoweth, S.F. & Blows, M.W. 2006. the Roles of Natural and Sexual Selection During Adaptation To a Novel Environment.Evolution (N. Y). 60 : 2218–2225. Wiley.
Schmid-Hempel, P. 2005. Evolutionary ecology of insect immune defenses.Annu. Rev. Entomol. 50 : 529–551.
Singh, A., Agrawal, A.F. & Rundle, H.D. 2017. Environmental complexity and the purging of deleterious alleles. Evolution (N. Y).71 : 2714–2720. Society for the Study of Evolution.
Singmann, H., Bolker, B. & Westfall, B. 2015. afex: Analysis of Factorial Experiments. R package version 0.15-2.
Vallet-Gely, I., Novikov, A., Augusto, L., Liehl, P., Bolbach, G., Péchy-Tarr, M., et al. 2010. Association of hemolytic activity of pseudomonas entomophila, a versatile soil bacterium, with cyclic lipopeptide production. Appl. Environ. Microbiol. 76 : 910–921. American Society for Microbiology.
Van Doorn, G.S. 2009. Intralocus sexual conflict. Ann. N. Y. Acad. Sci. 1168 : 52–71.
Vijendravarma, R.K., Narasimha, S., Chakrabarti, S., Babin, A., Kolly, S., Lemaitre, B., et al. 2015. Gut physiology mediates a trade-off between adaptation to malnutrition and susceptibility to food-borne pathogens. Ecol. Lett. 18 : 1078–1086. Blackwell Publishing Ltd.
Vodovar, N., Vinals, M., Liehl, P., Basset, A., Degrouard, J., Spellman, P., et al. 2005. Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc. Natl. Acad. Sci. U. S. A. 102 : 11414–11419.
Westneat, D.F. & Birkhead, T.R. 1998. Alternative hypotheses linking the immune system and mate choice for good genes. Proc. R. Soc. B Biol. Sci. 265 : 1065–1073. Royal Society.
Whitlock, M.C. & Agrawal, A.F. 2009. Purging the genome with sexual selection: Reducing mutation load through selection on males. John Wiley & Sons, Ltd.
Zahavi, A. 1975. Mate selection-A selection for a handicap. J. Theor. Biol. 53 : 205–214. Academic Press.