References
Arbuthnott, D. & Rundle, H.D. 2012. Sexual selection is ineffectual or
inhibits the purging of deleterious mutations in drosophila
melanogaster. Evolution (N. Y). 66 : 2127–2137.
Armitage, S.A.O. & Siva-Jothy, M.T. 2005. Immune function responds to
selection for cuticular colour in Tenebrio molitor. Heredity
(Edinb). 94 : 650–656. Nature Publishing Group.
Bagchi, B., Corbel, Q., Khan, I., Payne, E., Banerji, D.,
Liljestrand-Rönn, J., et al. 2021. Sexual conflict drives micro-
and macroevolution of sexual dimorphism in immunity. BMC Biol.19 : 114. BioMed Central.
Balenger, S.L. & Zuk, M. 2014. Testing the Hamilton-Zuk hypothesis:
Past, present, and future. In: Integrative and Comparative
Biology , pp. 601–613. Oxford University Press.
Bates, D., Maechler, M. & Bolker, B. 2011. lme4: Linear mixed-effects
models using S4 classestle.
Blount, J.D., Metcalfe, N.B., Birkhead, T.R. & Surai, P.F. 2003.
Carotenoid modulation of immune function and sexual attractiveness in
zebra finches. Science (80-. ). 300 : 125–127. American
Association for the Advancement of Science.
Bonduriansky, R. & Chenoweth, S.F. 2009. Intralocus sexual conflict.
Elsevier Current Trends.
Bou Sleiman, M.S., Osman, D., Massouras, A., Hoffmann, A.A., Lemaitre,
B. & Deplancke, B. 2015. Genetic, molecular and physiological basis of
variation in Drosophila gut immunocompetence. Nat. Commun.6 : 7829. Nature Publishing Group.
Chakrabarti, S., Liehl, P., Buchon, N. & Lemaitre, B. 2012.
Infection-induced host translational blockage inhibits immune responses
and epithelial renewal in the Drosophila gut. Cell Host Microbe12 : 60–70.
Chapman, T. 2006. Evolutionary Conflicts of Interest between Males and
Females. Cell Press.
Chapman, T., Arnqvist, G., Bangham, J. & Rowe, L. 2003. Sexual
conflict. Trends Ecol. Evol. 18 : 41–47. Elsevier
Current Trends.
Charlesworth, B. & Charlesworth, D. 1985. Genetic variation in
recombination in drosophila. I. responses to selection and preliminary
genetic analysis. Heredity (Edinb). 54 : 71–83. Nature
Publishing Group.
Chippindale, A.K. 2001. Negative genetic correlation for adult fitness
between sexes reveals ontogenetic conflict in Drosophila. Proc.
Natl. Acad. Sci. 98 : 1671–1675.
Collet, J.M., Fuentes, S., Hesketh, J., Hill, M.S., Innocenti, P.,
Morrow, E.H., et al. 2016. Rapid evolution of the intersexual
genetic correlation for fitness in Drosophila melanogaster.Evolution (N. Y). 70 : 781–795. Evolution.
Connallon, T. & Hall, M.D. 2016. Genetic correlations and sex-specific
adaptation in changing environments. Evolution (N. Y).70 : 2186–2198. Evolution.
Faria, V.G., Martins, N.E., Paulo, T., Teixeira, L., Sucena, É. &
Magalhães, S. 2015. Evolution of Drosophila resistance against different
pathogens and infection routes entails no detectable maintenance costs.Evolution (N. Y). 69 : 2799–2809. Society for the Study
of Evolution.
Ferro, K., Peuß, R., Yang, W., Rosenstiel, P., Schulenburg, H. & Kurtz,
J. 2019. Experimental evolution of immunological specificity.Proc. Natl. Acad. Sci. U. S. A. 116 : 20598–20604.
National Academy of Sciences.
Fisher, R.A. 1930. The genetical theory of natural selection. ,
2nd ed. Dover, New York, 1958.
Folstad, I. & Karter, A.J. 1992. Parasites, bright males, and the
immunocompetence handicap. Am. Nat. 139 : 603–622.
University of Chicago Press.
Fricke, C. & Arnqvist, G. 2007. Rapid adaptation to a novel host in a
seed beetle (Callosobruchus maculatus): The role of sexual selection.Evolution (N. Y). 61 : 440–454.
Getty, T. 2002. Signaling health versus parasites. Am. Nat.159 : 363–371. Am Nat.
Gibson Vega, A., Kennington, W.J., Tomkins, J.L. & Dugand, R.J. 2020.
Experimental evidence for accelerated adaptation to desiccation through
sexual selection on males. J. Evol. Biol. 33 :
1060–1067. John Wiley & Sons, Ltd.
Grieshop, K., Stångberg, J., Martinossi-Allibert, I., Arnqvist, G. &
Berger, D. 2016. Strong sexual selection in males against a mutation
load that reduces offspring production in seed beetles. J. Evol.
Biol. 29 : 1201–1210. Blackwell Publishing Ltd.
Gupta, V., Ali, Z.S. & Prasad, N.G. 2013. Sexual activity increases
resistance against Pseudomonas entomophila in male Drosophila
melanogaster. BMC Evol. Biol. 13 .
Gupta, V., Venkatesan, S., Chatterjee, M., Syed, Z.A., Nivsarkar, V. &
Prasad, N.G. 2016. No apparent cost of evolved immune response in
Drosophila melanogaster. Evolution (N. Y). 70 : 934–943.
Society for the Study of Evolution.
Hamilton, W.D. & Zuk, M. 1982. Heritable true fitness and bright birds:
A role for parasites? Science (80-. ). 218 : 384–387.
Hangartner, S., Michalczyk, Ł., Gage, M.J.G. & Martin, O.Y. 2015.
Experimental removal of sexual selection leads to decreased investment
in an immune component in female Tribolium castaneum. Infect.
Genet. Evol. 33 : 212–218. Elsevier.
Hedengren, M., Åsling, B., Dushay, M.S., Ando, I., Ekengren, S.,
Wihlborg, M., et al. 1999. Relish, a central factor in the
control of humoral but not cellular immunity in Drosophila. Mol.
Cell 4 : 827–837.
Holland, B. 2002. Sexual selection fails to promote adaptation to a new
environment. Evolution (N. Y). 56 : 721–730.
Holland, B. & Rice, W.R. 1999a. Experimental removal of sexual
selection reverses intersexual antagonistic coevolution and removes a
reproductive load. Proc. Natl. Acad. Sci. U. S. A. 96 :
5083–5088. National Academy of Sciences.
Holland, B. & Rice, W.R. 1999b. Experimental removal of sexual
selection reverses intersexual antagonistic coevolution and removes a
reproductive load. Proc. Natl. Acad. Sci. U. S. A. 96 :
5083–5088. National Academy of Sciences.
Hollis, B., Fierst, J.L. & Houle, D. 2009. Sexual selection accelerates
the elimination of a deleterious mutant in Drosophila melanogaster.Evolution (N. Y). 63 : 324–333.
Hollis, B. & Houle, D. 2011. Populations with elevated mutation load do
not benefit from the operation of sexual selection. J. Evol.
Biol. 24 : 1918–1926. NIH Public Access.
Hollis, B., Houle, D., Yan, Z., Kawecki, T.J. & Keller, L. 2014.
Evolution under monogamy feminizes gene expression in Drosophila
melanogaster. Nat. Commun. 5 : 3482. Nature Publishing
Group.
Hollis, B., Koppik, M., Wensing, K.U., Ruhmann, H., Genzoni, E.,
Erkosar, B., et al. 2019. Sexual conflict drives male
manipulation of female postmating responses in Drosophila melanogaster.Proc. Natl. Acad. Sci. U. S. A. 116 : 8437–8444.
National Academy of Sciences.
Hosken, D.J. 2001. Sex and death: Microevolutionary trade-offs between
reproductive and immune investment in dung flies. Cell Press.
Hosken, D.J., Archer, C.R. & Mank, J.E. 2019. Sexual conflict .
Press, Princeton University.
Houle, D. & Kondrashov, A.S. 2002. Coevolution of costly mate choice
and condition-dependent display of good genes. Proc. R. Soc. B
Biol. Sci. 269 : 97–104. The Royal Society .
Houle, D. & Rowe, L. 2003. Natural selection in a bottle. Am.
Nat. 161 : 50–67. Am Nat.
Hund, A.K., Hubbard, J.K., Albrecht, T., Vortman, Y., Munclinger, P.,
Krausová, S., et al. 2020. Divergent sexual signals reflect costs
of local parasites*. Evolution (N. Y). 74 : 2404–2418.
John Wiley & Sons, Ltd.
Innocenti, P. & Morrow, E.H. 2010. The sexually antagonistic genes of
drosophila melanogaster. PLoS Biol. 8 : e1000335. Public
Library of Science.
Iwasa, Y., Pomiankowski, A. & Nee, S. 1991. The evolution of costly
mate preferences. II. The “handicap” principle.” Evolution (N.
Y). 45 : 1431–1442. John Wiley & Sons, Ltd.
Jacomb, F., Marsh, J. & Holman, L. 2016. Sexual selection expedites the
evolution of pesticide resistance. Evolution (N. Y). 70 :
2746–2751. Evolution.
Jarzebowska, M. & Radwan, J. 2010. Sexual selection counteracts
extinction of small populations of the bulb mites. Evolution (N.
Y). 64 : 1283–1289. John Wiley & Sons, Ltd.
Joop, G., Roth, O., Schmid-Hempel, P. & Kurtz, J. 2014. Experimental
evolution of external immune defences in the red flour beetle. J.
Evol. Biol. 27 : 1562–1571. Blackwell Publishing Ltd.
Joye, P. & Kawecki, T.J. 2019. Sexual selection favours good or bad
genes for pathogen resistance depending on males’ pathogen exposure.Proc. R. Soc. B Biol. Sci. 286 : 20190226. Royal Society
Publishing.
Kawecki, T.J., Lenski, R.E., Ebert, D., Hollis, B., Olivieri, I. &
Whitlock, M.C. 2012. Experimental evolution. Elsevier.
Liehl, P., Blight, M., Vodovar, N., Boccard, F. & Lemaitre, B. 2006.
Prevalence of local immune response against oral infection in a
Drosophila/Pseudomonas infection model. PLoS Pathog. 2 :
0551–0561. Public Library of Science.
Long, T.A.F., Agrawal, A.F. & Rowe, L. 2012. The effect of sexual
selection on offspring fitness depends on the nature of genetic
variation. Curr. Biol. 22 : 204–208.
Long, T.A.F., Pischedda, A., Stewart, A.D. & Rice, W.R. 2009. A cost of
sexual attractiveness to high-fitness females. PLoS Biol.7 : e1000254. Public Library of Science.
Lorch, P.D., Proulx, S., Rowe, L. & Day, T. 2003.Condition-dependent sexual selection can accelerate adaptation .
Evolutionary Ecology.
Lumley, A.J., Michalczyk, Ł., Kitson, J.J.N., Spurgin, L.G., Morrison,
C.A., Godwin, J.L., et al. 2015. Sexual selection protects
against extinction. Nature 522 : 470–473. Nature
Publishing Group.
Marshall Graves, J.A. 2004. The descent of man. Nature427 : 199.
Martin, C. 1990. Parasites and sexual selection : Current Hamilton and
Zuk hypothesis. Behav. Ecol. Sociobiol. 328 : 319–328.
Martins, N.E., Faria, V.G., Teixeira, L., Magalhães, S. & Sucena, É.
2013. Host Adaptation Is Contingent upon the Infection Route Taken by
Pathogens. PLoS Pathog. 9 : e1003601. Public Library of
Science.
Neyen, C., Bretscher, A.J., Binggeli, O. & Lemaitre, B. 2014. Methods
to study Drosophila immunity. Methods 68 : 116–128.
Elsevier Inc.
Parker, G.A. 1979. Sexual selection and sexual conflict. In:Sexual selection and reproductive competition in insects .
Academic Press Inc., London.
Price, P.W. 1980. Evolutionary biology of parasites. Princeton
University Press, New Jersey.
Promislow, D.E.L., Smith, E.A. & Pearse, L. 1998. Adult fitness
consequences of sexual selection in Drosophila melanogaster. Proc.
Natl. Acad. Sci. U. S. A. 95 : 10687–10692.
Radwan, J. 2004. Effectiveness of sexual selection in removing mutations
induced with ionizing radiation. Ecol. Lett. 7 :
1149–1154.
Rice, W.R. 1996. Sexually antagonistic male adaptation triggered by
experimental arrest of female evolution. Nature 381 :
232–234. Moller, A. P.
Rice, W.R., Stewart, A.D., Morrow, E.H., Linder, J.E., Orteiza, N. &
Byrne, P.G. 2006. Assessing sexual conflict in the Drosophila
melanogaster laboratory model system. Philos. Trans. R. Soc. B
Biol. Sci. 361 : 287–299. The Royal Society.
Roberts, M.L., Buchanan, K.L. & Evans, M.R. 2004. Testing the
immunocompetence handicap hypothesis: A review of the evidence. Academic
Press.
Rundle, H.D., Chenoweth, S.F. & Blows, M.W. 2006. the Roles of Natural
and Sexual Selection During Adaptation To a Novel Environment.Evolution (N. Y). 60 : 2218–2225. Wiley.
Schmid-Hempel, P. 2005. Evolutionary ecology of insect immune defenses.Annu. Rev. Entomol. 50 : 529–551.
Singh, A., Agrawal, A.F. & Rundle, H.D. 2017. Environmental complexity
and the purging of deleterious alleles. Evolution (N. Y).71 : 2714–2720. Society for the Study of Evolution.
Singmann, H., Bolker, B. & Westfall, B. 2015. afex: Analysis of
Factorial Experiments. R package version 0.15-2.
Vallet-Gely, I., Novikov, A., Augusto, L., Liehl, P., Bolbach, G.,
Péchy-Tarr, M., et al. 2010. Association of hemolytic activity of
pseudomonas entomophila, a versatile soil bacterium, with cyclic
lipopeptide production. Appl. Environ. Microbiol. 76 :
910–921. American Society for Microbiology.
Van Doorn, G.S. 2009. Intralocus sexual conflict. Ann. N. Y. Acad.
Sci. 1168 : 52–71.
Vijendravarma, R.K., Narasimha, S., Chakrabarti, S., Babin, A., Kolly,
S., Lemaitre, B., et al. 2015. Gut physiology mediates a
trade-off between adaptation to malnutrition and susceptibility to
food-borne pathogens. Ecol. Lett. 18 : 1078–1086.
Blackwell Publishing Ltd.
Vodovar, N., Vinals, M., Liehl, P., Basset, A., Degrouard, J., Spellman,
P., et al. 2005. Drosophila host defense after oral infection by
an entomopathogenic Pseudomonas species. Proc. Natl. Acad. Sci. U.
S. A. 102 : 11414–11419.
Westneat, D.F. & Birkhead, T.R. 1998. Alternative hypotheses linking
the immune system and mate choice for good genes. Proc. R. Soc. B
Biol. Sci. 265 : 1065–1073. Royal Society.
Whitlock, M.C. & Agrawal, A.F. 2009. Purging the genome with sexual
selection: Reducing mutation load through selection on males. John Wiley
& Sons, Ltd.
Zahavi, A. 1975. Mate selection-A selection for a handicap. J.
Theor. Biol. 53 : 205–214. Academic Press.