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Summary

In this paper, a nonlocal inverse boundary value problem for a two-dimensional
hyperbolic equation with overdetermination conditions is studied. To investigate the
solvability of the original problem, we first consider an auxiliary inverse boundary
value problem and prove its equivalence (in a certain sense) to the original problem.
Then using the Fourier method, solving an equivalent problem is reduced to solving
a system of integral equations and by the contraction mappings principle the exis-
tence and uniqueness theorem for auxiliary problem is proved. Further, on the basis
of the equivalency of these problems the uniquely existence theorem for the classi-
cal solution of the considered inverse problem is proved and some considerations on
the numerical solution for this inverse problem are presented with the examples.

KEYWORDS:
Inverse coefficient problem, two-dimensional hyperbolic equation, Fourier method, classical solution,
overdetermination condition

1 INTRODUCTION AND FORMULATION OF INVERSE PROBLEM

Let T > 0 be a fixed time moment and let DT = Q̄xy × {0 ≤ t ≤ T } denotes a closed bounded region in space, where Qxy
defined by the inequalities 0 < x < 1, 0 < y < 1. We further suppose that f (x, y, t), '(x, y),  (x, y), and ℎi(t) (i = 1, 2) are
given functions of x, y ∈ [0, 1] and t ∈ [0, T ]. Consider the two-dimensional inverse boundary value problem of identifying an
unknown triple of functions {u(x, y, t), a(t), b(t)} for the equation

utt(x, y, t) = uxx(x, y, t) + uyy(x, y, t) + a(t)u(x, y, t) + b(t)ut(x, y, t) + f (x, y, t) (x, y, t) ∈ DT , (1)

with the initial conditions
u(x, y, 0) = '(x, y), ut(x, y, 0) =  (x, y), 0 ≤ x, y ≤ 1, (2)

the boundary conditions
ux(0, y, t) = u(1, y, t) = 0, 0 ≤ y ≤ 1, 0 ≤ t ≤ T , (3)

u(x, 0, t) = uy(x, 1, t) = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ T , (4)
and the overdetermination conditions

u(0, 1, t) = ℎ1(t), 0 ≤ t ≤ T , (5)
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1

∫
0

1

∫
0

u(x, y, t)dxdy = ℎ2(t), 0 ≤ t ≤ T . (6)

Definition 1. The triple {u(x, y, t), a(t), b(t)} is said to be a classical solution of the problem (1)-(6), if the functions u(x, y, t) ∈
C2(DT ) and a(t), b(t) ∈ C[0, T ] satisfy the conditions (1)-(6) in the usual (classical) sense.

The primary purpose of the work is to study the problem of determining the coefficients on the right-hand side of the two-
dimensional hyperbolic equation from the additional data. Such problems are a prominent branch of the theory of differential
equations and are called inverse problems. The applied importance of inverse problems is so great (they arise in various fields of
human activity, such as seismology, mineral exploration, biology, medicine, desalination of seawater, movement of liquid in a
porous medium, acoustics, electromagnetics, fluid dynamics, remote sensing, nondestructive evaluation, and many other areas.
etc.) which puts them a series of the most actual problems of modern mathematics. When solving so-called direct problems,
the solution of a given differential equation or a system of equations is obtained using the initial and boundary conditions, but
in inverse problems the equation itself is also unknown. Thus, the definition of both the equation itself and its solution requires
the imposition of some additional conditions in comparison with the corresponding direct problem.
Recently, the inverse and ill-posed problems associated with the one-dimensional hyperbolic/wave equation has drawn the

attention of many authors (see for example,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, and the references therein). Nevertheless, the inverse
problems for two-dimensional partial differential equations associated with the recovery of the coefficient have been studied
scarce (see17,18,19,20,21,22) and need additional consideration.
A distinctive feature of presented article is the investigation of an inverse problem for two-dimensional hyperbolic equation

with additional nonlocal integral conditions. It should be noted that one of the classes of qualitatively new problems is problems
with nonlocal conditions. In the literature, the term “nonlocal boundary value problems” refers to problems that contain condi-
tions relating the values of the solution and/or its derivatives either at different points of the boundary or at boundary points and
some interior points. The term “nonlocal conditions” and their classification were introduced by A.A. Dezin23.
The applied significance of problems with nonlocal conditions is associated with the study of physical processes, the mathe-

matical models of which are such problems. These are processes occurring in the turbulent plasma, the processes of diffusion,
thermal conductivity, moisture transfer in a capillary-porous medium, problems of mathematical biology, as well as some inverse
problems of mathematical physics.
Systematic investigations of nonlocal direct problems for partial differential equations began with an article by A.V. Bitsadze

and A.A. Samarskii24. In the article, considered the problem of finding a solution to an elliptic equation (and a system of
equations) of the second order, whose values at points of some part of the boundary of the considered region are equal to its
values in the images of these points for a given diffeomorphism. The simplest direct problems for one-dimensional hyperbolic
equation with nonlocal conditions have been well studied by many authors using different methods (in particular,25,26,27,28,29, et
al.). Moreover, in30,31 the authors present a regularity result for solutions of partial differential equations in the framework of
mixed Morrey spaces.
The following theorem is valid.

Theorem 1. Assume that '(x, y),  (x, y) ∈ C(Qxy), f (x, y, t) ∈ C(DT ), ℎi(t) ∈ C2[0, T ] (i = 1, 2), ℎ(t) ≡ ℎ1(t)ℎ′2(t) −
ℎ2(t)ℎ′1(t) ≠ 0, 0 ≤ t ≤ T and the compatibility conditions

'(0, 1) = ℎ1(0),  (0, 1) = ℎ′1(0), (7)

1

∫
0

1

∫
0

'(x, y)dxdy = ℎ2(0),

1

∫
0

1

∫
0

 (x, y)dxdy = ℎ′2(0), (8)

hold. Then the problem of finding a classical solution of (1)-(6) is equivalent to the problem of determining the functions
u(x, y, t) ∈ C2(DT ), a(t) ∈ C[0, T ], and b(t) ∈ C[0, T ] satisfying (1)-(4), and the conditions

ℎ′′1 (t) = uxx(0, 1, t) + uyy(0, 1, t) + a(t)ℎ1(t) + b(t)ℎ
′
1(t) + f (0, 1, t), 0 ≤ t ≤ T , (9)
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ℎ′′2 (t) =

1

∫
0

ux(1, y, t)dy −

1

∫
0

uy(x, 0, t)dx + a(t)ℎ2(t) + b(t)ℎ′2(t) +

1

∫
0

1

∫
0

f (x, y, t)dxdy, 0 ≤ t ≤ T . (10)

Proof. Let the triple {u(x, y, t), a(t), b(t)} be a classical solution of problem (1)-(6). Taking into account the condition ℎi(t) ∈
C2[0, T ] (i = 1, 2), and differentiating twice both sides of (5) and (6) with respect to t gives

ut(0, 1, t) = ℎ′1(t), utt(0, 1, t) = ℎ
′′
1 (t), 0 ≤ t ≤ T , (11)

1

∫
0

1

∫
0

ut(x, y, t)dxdy = ℎ′2(t),

1

∫
0

1

∫
0

utt(x, y, t)dxdy = ℎ′′2 (t), 0 ≤ t ≤ T . (12)

Setting x = 0 and y = 1 in Equation (1), the procedure yields

utt(0, 1, t) = uxx(0, 1, t) + uyy(0, 1, t) + a(t)u(0, 1, t) + b(t)ut(0, 1, t) + f (0, 1, t), 0 ≤ t ≤ T . (13)

From (13), taking into account (5) and (11), we conclude that condition (9) is satisfied.
Further, integrating Equation (1) with respect to x and y over the interval [0, 1] gives

d2

dt2

1

∫
0

1

∫
0

u(x, y, t)dxdy =

1

∫
0

(ux(1, y, t) − ux(0, y, t))dy+

1

∫
0

(uy(x, 1, t) − uy(x, 0, t))dx

+a(t)

1

∫
0

1

∫
0

u(x, y, t)dxdy + b(t)

1

∫
0

1

∫
0

ut(x, y, t)dxdy +

1

∫
0

1

∫
0

f (x, y, t)dxdy, 0 ≤ t ≤ T .

From the last relation, taking into account (3) and (4), we obtain

d2

dt2

1

∫
0

1

∫
0

u(x, y, t)dxdy =

1

∫
0

ux(1, y, t)dy−

1

∫
0

uy(x, 0, t)dx

+a(t)

1

∫
0

1

∫
0

u(x, y, t)dxdy + b(t)

1

∫
0

1

∫
0

ut(x, y, t)dxdy +

1

∫
0

1

∫
0

f (x, y, t)dxdy, 0 ≤ t ≤ T . (14)

Hence, from (14), taking into account (6) and (12), we arrive at (10).
Now suppose that the triple {u(x, y, t), a(t), b(t)} is a solution to the problem (1)–(4), (9), (10). Then from (9) and (13), we get

d2

dt2
(u(0, 1, t) − ℎ1(t)) = b(t)

d
dt
(u(0, 1, t) − ℎ1(t)) + a(t)(u(0, 1, t) − ℎ1(t)), 0 ≤ t ≤ T . (15)

Using (2) and the compatibility condition (7), we obtain the following relation

u(0, 1, 0) − ℎ1(0) = '(0, 1) − ℎ1(0) = 0, ut(0, 1, 0) − ℎ′1(0) =  (0, 1) − ℎ
′
1(0) = 0. (16)

Since problem (15), (16) has only a trivial solution, so from u(0, 1, t) − ℎ1(t) = 0, 0 ≤ t ≤ T , we obtain that the condition
(5) is satisfied.
Now, from (10) and (14) we find:

d2

dt2

⎛

⎜

⎜

⎝

1

∫
0

1

∫
0

u(x, y, t)dxdy − ℎ2(t)
⎞

⎟

⎟

⎠

= b(t) d
dt

⎛

⎜

⎜

⎝

1

∫
0

1

∫
0

u(x, y, t)dxdy − ℎ2(t)
⎞

⎟

⎟

⎠

+ a(t)
⎛

⎜

⎜

⎝

1

∫
0

1

∫
0

u(x, y, t)dxdy − ℎ2(t)
⎞

⎟

⎟

⎠

, 0 ≤ t ≤ T . (17)
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By using the initial conditions (2) and the compatibility conditions (8), we may write

1
∫
0

1
∫
0
u(x, y, 0)dxdy − ℎ2(0) =

1
∫
0

1
∫
0
'(x, y)dxdy − ℎ2(0) = 0,

1
∫
0

1
∫
0
ut(x, y, 0)dxdy − ℎ′2(0) =

1
∫
0

1
∫
0
 (x, y)dxdy − ℎ′2(0) = 0.

(18)

Hence relations (14), (18) enable us to conclude that
1

∫
0

1

∫
0

u(x, y, t)dxdy − ℎ2(t) = 0, 0 ≤ t ≤ T ,

i.e., the condition (4) is satisfied. The proof is complete.

2 CLASSICAL SOLVABILITY OF INVERSE BOUNDARY VALUE PROBLEM

We seek the first component of classical solution {u(x, y, t), a(t), b(t)} of the problem (1)–(4), (9), (10) in the form

u(x, y, t) =
∞
∑

n=1

∞
∑

k=1
uk,n(t) cos �kx sin 
ny, (19)

where
�k =

�
2
(2k − 1), k = 1, 2, ..., 
n =

�
2
(2n − 1), n = 1, 2, ...,

uk,n(t) = 4

1

∫
0

1

∫
0

u(x, y, t) cos �kx sin 
nydxdy, k, n = 1, 2, ....

Applying the method of separation of variables to determine the desired coefficients uk,n(t) (k, n = 1, 2, ...) of the function
u(x, y, t) from (1), (2), we obtain:

u′′k,n(t) + �
2
k,nuk,n(t) = Fk,n(t; u, a, b), k, n = 1, 2, ..., 0 ≤ t ≤ T , (20)

uk,n(0) = 'k,n, u′k,n(0) =  k,n, k, n = 1, 2, ..., (21)
where

�2k,n = �
2
k + 


2
n , k, n = 1, 2, ...,

Fk,n(t; u, a, b) = fk,n(t) + a(t)uk,n(t) + b(t)u′k,n(t), k, n = 1, 2, ...,

fk,n(t) = 4

1

∫
0

1

∫
0

f (x, y, t) cos �kx sin 
nydxdy, k, n = 1, 2, ...,

'k,n = 4

1

∫
0

1

∫
0

'(x, y) cos �kx sin 
nydxdy, k, n = 1, 2, ...,

 k,n = 4

1

∫
0

1

∫
0

 (x, y) cos �kx sin 
nydxdy, k, n = 1, 2, ....

Solving the problem (20), (21) gives

uk,n(t) = 'k,n cos�k,nt +
1
�k,n

 k,nsin�k,nt

+ 1
�k,n

t

∫
0

Fk,n(�; u, a, b) sin�k,n(t − �)d�, k, n = 1, 2, ..., 0 ≤ t ≤ T . (22)
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Obviously,
u′k,n(t) = −�k,n'k,n sin�k,nt +  k,n

cos�k,nt

+

t

∫
0

Fk,n(�; u, a, b) cos�k,n(t − �)d�, k, n = 1, 2, ..., 0 ≤ t ≤ T . (23)

Substituting the expression of uk,n(t), k, n = 1, 2, ..., into (19), we find

u(x, y, t) =
∞
∑

k=1

⎧

⎪

⎨

⎪

⎩

'k,n cos�k,nt +
1
�k,n

 k,n sin�k,nt +
1
�k,n

t

∫
0

Fk(�; u, a, b) sin�k,n(t − �)d�

⎫

⎪

⎬

⎪

⎭

cos �kx. (24)

Now from (9) and (10), taking into account (12), respectively, we get:

a(t)ℎ1(t) + b(t)ℎ′1(t) = ℎ
′′
1 (t) − f (0, 1, t) +

∞
∑

k=1

∞
∑

n=1
(−1)n+1�2k,nuk,n(t), 0 ≤ t ≤ T , (25)

a(t)ℎ2(t) + b(t)ℎ′2(t) = ℎ
′′
2 (t) −

1

∫
0

1

∫
0

f (x, y, t)dxdy +
∞
∑

k=1

∞
∑

n=1
(−1)k+1

�2k,n
�k
n

uk,n(t), 0 ≤ t ≤ T . (26)

Let us assume that
ℎ(t) ≡ ℎ1(t)ℎ′2(t) − ℎ2(t)ℎ

′
1(t) ≠ 0, 0 ≤ t ≤ T .

Then from (25) and (26), we find:

a(t) = [ℎ(t)]−1
⎧

⎪

⎨

⎪

⎩

(ℎ′′1 (t) − f (0, 1, t))ℎ
′
2(t) −

⎛

⎜

⎜

⎝

ℎ′′2 (t) −

1

∫
0

1

∫
0

f (x, y, t)dxdy
⎞

⎟

⎟

⎠

ℎ′1(t)

+
∞
∑

k=1

∞
∑

n=1

(

(−1)n+1ℎ′2(t) − (−1)
k+1

ℎ′1(t)
�k
n

)

�2k,nuk,n(t)

}

, 0 ≤ t ≤ T , (27)

b(t) = [ℎ(t)]−1
⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

ℎ′′2 (t) −

1

∫
0

1

∫
0

f (x, y, t)dxdy
⎞

⎟

⎟

⎠

ℎ1(t) − (ℎ′′1 (t) − f (0, 1, t))ℎ2(t)

+
∞
∑

k=1

∞
∑

n=1

(

(−1)k+1
ℎ1(t)
�k
n

− (−1)n+1ℎ2(t)
)

�2k,nuk,n(t)

}

, 0 ≤ t ≤ T . (28)

The following expressions for the second and third components of the solution {u(x, y, t), a(t), b(t)} to problem (1)–(4), (9),
(10)

a(t) = [ℎ(t)]−1
⎧

⎪

⎨

⎪

⎩

(ℎ′′1 (t) − f (0, 1, t))ℎ
′
2(t) −

⎛

⎜

⎜

⎝

ℎ′′2 (t) −

1

∫
0

1

∫
0

f (x, y, t)dxdy
⎞

⎟

⎟

⎠

ℎ′1(t) +
∞
∑

k=1

∞
∑

n=1

(

(−1)n+1ℎ′2(t) − (−1)
k+1

ℎ′1(t)
�k
n

)

×�2k,n
⎡

⎢

⎢

⎣

'k,n cos�k,nt +
1
�k,n

 k,nsin�k,nt +
1
�k,n

t

∫
0

Fk,n(�; u, a, b) sin�k,n(t − �)d�
⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

, (29)

b(t) = [ℎ(t)]−1
⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

ℎ′′2 (t) −

1

∫
0

1

∫
0

f (x, y, t)dxdy
⎞

⎟

⎟

⎠

ℎ1(t) − (ℎ′′1 (t) − f (0, 1, t))ℎ2(t) +
∞
∑

k=1

∞
∑

n=1

(

(−1)k+1
ℎ1(t)
�k
n

− (−1)n+1ℎ2(t)
)

×�2k,n
⎡

⎢

⎢

⎣

'k,n cos�k,nt +
1
�k,n

 k,nsin�k,nt +
1
�k,n

t

∫
0

Fk,n(�; u, a, b) sin�k,n(t − �)d�
⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

, (30)
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respectively, were obtained by substituting (24) into (27) and (28).
Thus the solution of problem (1)–(4), (9), (10) was reduced to the solution of systems (24), (29), (30) with respect to unknown

functions u(x, y, t), a(t), and b(t).
The following lemma plays an important role in studying the uniqueness of the solution to problem (1)–(4), (9), (10).

Lemma 1. If {u(x, y, t), a(t), b(t)} is any solution to problem (1)–(4), (9), (10), then the functions

uk,n(t) = 4

1

∫
0

1

∫
0

u(x, y, t) cos �kx sin 
nydxdy, k, n = 1, 2, ...

satisfy the system (22) on the interval [0, T ].

Proof. Let {u(x, y, t), a(t), b(t)} be any solution of the problem (1)–(4), (9), (10). Multiplying both sides of the Equation (1) by
the special functions 4 cos �kx sin 
ny, k, n = 1, 2, ..., integrating with respect to x and y over the interval [0, T ] and using the
relations

4

1

∫
0

1

∫
0

utt(x, y, t) cos �kx sin 
nydxdy =
d2

dt2

⎛

⎜

⎜

⎝

4

1

∫
0

1

∫
0

u(x, y, t) cos �kx sin 
nydxdy
⎞

⎟

⎟

⎠

= u′′k,n(t), k, n = 1, 2, ...,

4

1

∫
0

1

∫
0

uxx(x, y, t) cos �kx sin 
nydxdy = −�2k
⎛

⎜

⎜

⎝

4

1

∫
0

1

∫
0

u(x, y, t) cos �kx sin 
nydxdy
⎞

⎟

⎟

⎠

= −�2kuk,n(t), k, n = 1, 2, ...,

4

1

∫
0

1

∫
0

uyy(x, y, t) cos �kx sin 
nydxdy = −
2n
⎛

⎜

⎜

⎝

4

1

∫
0

1

∫
0

u(x, y, t) cos �kx sin 
nydxdy
⎞

⎟

⎟

⎠

= −
2kuk,n(t), k, n = 1, 2, ...,

we obtain that the Equation (20) is satisfied.
In like manner, it follows from (2) that condition (21) is also satisfied.
Thus, the system of functions uk,n(t) (k, n = 1, 2, ...) is a solution of problem (20), (21). Hence it follows directly that the

functions uk,n(t) (k, n = 1, 2, ...) are also satisfy the system (22) on [0, T ]. The lemma is proved.

Obviously, if uk,n(t) = 4
1
∫
0

1
∫
0
u(x, y, t) cos �kx sin 
nydxdy (k, n = 1, 2, ...) is a solution to system (22), then the triple

{u(x, y, t), a(t), b(t)} of functions u(x, y, t) =
∞
∑

n=1

∞
∑

k=1
uk,n(t) cos �kx sin 
ny, a(t), and b(t) is also a solution to system (24), (29),

(30).
It follows from the Lemma 1 that

Corollary 1. Assume that the system (24), (29), (30) has a unique solution. Then the problem (1)–(4), (9), (10) has at most one
solution, i.e., if the problem (1)–(4), (9), (10) has a solution, then it is unique.

Let us consider the functional space B3,22,T that is introduced in the study of32, where B3,22,T denotes a set of all functions of the
form

u(x, y, t) =
∞
∑

n=1

∞
∑

k=1
uk,n(t) cos �kx sin 
ny,

considered inDT . Moreover, the functions uk,n(t) (k, n = 1, 2, ...) contained in last sum are continuously differentiable on [0, T ]
and

J (u) ≡

{ ∞
∑

n=1

∞
∑

k=1
(�3k,n ‖‖uk,n(t)‖‖C[0,T ])

2

}
1
2

+

{ ∞
∑

n=1

∞
∑

k=1
(�2k,n

‖

‖

‖

u′k,n(t)
‖

‖

‖C[0,T ]
)2
}

1
2

< +∞.

The norm on the set J (u) is established as follows:

‖u(x, y, t)‖B3,22,T = J (u).

Let E3,2
T denote the space consisting of the topological product B3,22,T × C[0, T ] × C[0, T ], which is the norm of the element

z = {u, a, b} defined by the formula

‖z‖E3,2T = ‖u(x, y, t)‖B3,22,T + ‖a(t)‖C[0,T ] + ‖b(t)‖C[0,T ] .
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It is known that the spaces B3,22,T and E3,2
T are Banach spaces.

Let us now consider the operator

Φ(u, a, b) = {Φ1(u, a, b),Φ2(u, a, b),Φ3(u, a, b)},

in the space E3,2
T , where

Φ1(u, a, b) = ũ(x, y, t) ≡
∞
∑

n=1

∞
∑

k=1
ũk,n(t) cos �kx sin 
ny, Φ2(u, a, b) = ã(t), Φ3(u, a, b) = b̃(t),

and the functions ũk,n(t) (k, n = 1, 2, ...), ã(t), and b̃(t) are equal to the right-hand sides of (24), (29), and (30), respectively.
Obviously, ũ′k,n(t) (k, n = 1, 2, ...) are determined by right-hand side of (23).
It is easy to see that

�3k,n ≤ (�
2
k + 


2
k )(�k + 
n) = �

3
k + �

2
k
n + 


2
k�k + 


3
k .

Taking into account this relation, we obtain
{ ∞

∑

n=1

∞
∑

k=1

(

�3k,n ‖‖ũk,n(t)‖‖C[0,T ]
)2
}

1
2

≤
√

10

( ∞
∑

n=1

∞
∑

k=1

(

�3k ||'k,n||
)2
)

1
2

+
√

10

( ∞
∑

n=1

∞
∑

k=1

(

�2k
n ||'k,n||
)2
)

1
2

+
√

10

( ∞
∑

n=1

∞
∑

k=1

(

�k

2
n
|

|

'k,n||
)2
)

1
2

+
√

10

( ∞
∑

n=1

∞
∑

k=1

(


3n ||'k,n||
)2
)

1
2

+
√

10

( ∞
∑

n=1

∞
∑

k=1

(

�2k || k,n||
)2
)

1
2

+
√

10

( ∞
∑

n=1

∞
∑

k=1

(


2n || k,n||
)2
)

1
2

+
√

10T

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

T

∫
0

∞
∑

n=1

∞
∑

k=1

(

�2k ||fk,n(�)||
)2 d�

⎞

⎟

⎟

⎠

1
2

+
√

10T
⎛

⎜

⎜

⎝

T

∫
0

∞
∑

n=1

∞
∑

k=1

(


2n ||fk,n(�)||
)2 d�

⎞

⎟

⎟

⎠

1
2 ⎞

⎟

⎟

⎟

⎠

+
√

10T ‖a(t)‖C[0,T ]

( ∞
∑

n=1

∞
∑

k=1

(

�3k,n ‖‖uk,n(t)‖‖C[0,T ]
)2
)

1
2

+
√

10T ‖b(t)‖C[0,T ]

( ∞
∑

n=1

∞
∑

k=1

(

�2k,n
‖

‖

‖

u′k,n(t)
‖

‖

‖C[0,T ]

)2
)

1
2

, (31)

{ ∞
∑

n=1

∞
∑

k=1

(

�2k,n
‖

‖

‖

ũ′k,n(t)
‖

‖

‖C[0,T ]

)2
}

1
2

≤
√

10

( ∞
∑

n=1

∞
∑

k=1

(

�3k ||'k,n||
)2
)

1
2

+
√

10

( ∞
∑

n=1

∞
∑

k=1

(

�2k
n ||'k,n||
)2
)

1
2

+
√

10

( ∞
∑

n=1

∞
∑

k=1

(

�k

2
n
|

|

'k,n||
)2
)

1
2

+
√

10

( ∞
∑

n=1

∞
∑

k=1

(


3n ||'k,n||
)2
)

1
2

+
√

10

( ∞
∑

n=1

∞
∑

k=1

(

�2k || k,n||
)2
)

1
2

+
√

10

( ∞
∑

n=1

∞
∑

k=1

(


2n || k,n||
)2
)

1
2

+
√

10T

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

T

∫
0

∞
∑

n=1

∞
∑

k=1

(

�2k ||fk,n(�)||
)2 d�

⎞

⎟

⎟

⎠

1
2

+
√

10T
⎛

⎜

⎜

⎝

T

∫
0

∞
∑

n=1

∞
∑

k=1

(


2n ||fk,n(�)||
)2 d�

⎞

⎟

⎟

⎠

1
2 ⎞

⎟

⎟

⎟

⎠

+
√

10T ‖a(t)‖C[0,T ]

( ∞
∑

n=1

∞
∑

k=1

(

�3k,n ‖‖uk,n(t)‖‖C[0,T ]
)2
)

1
2

+
√

10T ‖b(t)‖C[0,T ]

( ∞
∑

n=1

∞
∑

k=1

(

�2k,n
‖

‖

‖

u′k,n(t)
‖

‖

‖C[0,T ]

)2
)

1
2

, (32)

‖ã(t)‖C[0,T ] ≤
‖

‖

‖

[ℎ(t)]−1‖‖
‖C[0,T ]

⎧

⎪

⎨

⎪

⎩

‖

‖

‖

‖

‖

‖

‖

(ℎ′′1 (t) − f (0, 1, t))ℎ
′
2(t) −

⎛

⎜

⎜

⎝

ℎ′′2 (t) −

1

∫
0

1

∫
0

f (x, y, t)dxdy
⎞

⎟

⎟

⎠

ℎ′1(t)
‖

‖

‖

‖

‖

‖

‖C[0,T ]

+

( ∞
∑

n=1

∞
∑

k=1
�−2k,n

)
1
2

‖

‖

|

|

ℎ′1(t)|| + |

|

ℎ′2(t)||‖‖C[0,T ]
⎡

⎢

⎢

⎣

( ∞
∑

n=1

∞
∑

k=1

(

�3k ||'k,n||
)2
)

1
2

+

( ∞
∑

n=1

∞
∑

k=1

(

�2k
n ||'k,n||
)2
)

1
2

+

( ∞
∑

n=1

∞
∑

k=1

(

�k

2
n
|

|

'k,n||
)2
)

1
2

+

( ∞
∑

n=1

∞
∑

k=1

(


3n ||'k,n||
)2
)

1
2

+

( ∞
∑

n=1

∞
∑

k=1

(

�2k || k,n||
)2
)

1
2

+

( ∞
∑

n=1

∞
∑

k=1

(


2n || k,n||
)2
)

1
2
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+
√

T

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

T

∫
0

∞
∑

n=1

∞
∑

k=1

(

�2k ||fk,n(�)||
)2 d�

⎞

⎟

⎟

⎠

1
2

+
⎛

⎜

⎜

⎝

T

∫
0

∞
∑

n=1

∞
∑

k=1

(


2n ||fk,n(�)||
)2 d�

⎞

⎟

⎟

⎠

1
2 ⎞

⎟

⎟

⎟

⎠

+ T ‖a(t)‖C[0,T ]

( ∞
∑

n=1

∞
∑

k=1

(

�3k,n ‖‖uk,n(t)‖‖C[0,T ]
)2
)

1
2

+T ‖b(t)‖C[0,T ]

( ∞
∑

n=1

∞
∑

k=1

(

�2k,n
‖

‖

‖

u′k,n(t)
‖

‖

‖C[0,T ]

)2
)

1
2 ⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

, (33)

‖

‖

b̃(t)‖
‖C[0,T ] ≤

‖

‖

‖

[ℎ(t)]−1‖‖
‖C[0,T ]

⎧

⎪

⎨

⎪

⎩

‖

‖

‖

‖

‖

‖

‖

⎛

⎜

⎜

⎝

ℎ′′2 (t) −

1

∫
0

1

∫
0

f (x, y, t)dxdy
⎞

⎟

⎟

⎠

ℎ1(t) − (ℎ′′1 (t) − f (0, 1, t))ℎ2(t)
‖

‖

‖

‖

‖

‖

‖C[0,T ]

+

( ∞
∑

n=1

∞
∑

k=1
�−2k

)
1
2

‖

‖

|

|

ℎ1(t)|| + |

|

ℎ2(t)||‖‖C[0,T ]
⎡

⎢

⎢

⎣

( ∞
∑

n=1

∞
∑

k=1

(

�3k ||'k,n||
)2
)

1
2

+

( ∞
∑

n=1

∞
∑

k=1

(

�2k
n ||'k,n||
)2
)

1
2

+

( ∞
∑

n=1

∞
∑

k=1

(

�k

2
n
|

|

'k,n||
)2
)

1
2

+

( ∞
∑

n=1

∞
∑

k=1

(


3n ||'k,n||
)2
)

1
2

+

( ∞
∑

n=1

∞
∑

k=1

(

�2k || k,n||
)2
)

1
2

+

( ∞
∑

n=1

∞
∑

k=1

(


2n || k,n||
)2
)

1
2

+
√

T

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

T

∫
0

∞
∑

n=1

∞
∑

k=1

(

�2k ||fk,n(�)||
)2 d�

⎞

⎟

⎟

⎠

1
2

+
⎛

⎜

⎜

⎝

T

∫
0

∞
∑

n=1

∞
∑

k=1

(


2n ||fk,n(�)||
)2 d�

⎞

⎟

⎟

⎠

1
2 ⎞

⎟

⎟

⎟

⎠

+T ‖a(t)‖C[0,T ]

( ∞
∑

n=1

∞
∑

k=1

(

�3k,n ‖‖uk,n(t)‖‖C[0,T ]
)2
)

1
2

+ T ‖b(t)‖C[0,T ]

( ∞
∑

n=1

∞
∑

k=1

(

�2k,n
‖

‖

‖

u′k,n(t)
‖

‖

‖C[0,T ]

)2
)

1
2 ⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

. (34)

We impose the following conditions on the data of problem (1)–(4), (9), (10):

C1. '(x, y), 'x(x, y), 'xx(x, y), 'y(x, y), 'xy(x, y), 'yy(x, y) ∈ C(Q̄xy),
'xxy(x, y), 'xyy(x, y), 'xxx(x, y), 'yyy(x, y) ∈ L2(Qxy),
'x(0, y) = '(1, y) = 'xx(1, y) = 0, 0 ≤ y ≤ 1,
'(x, 0) = 'y(x, 1) = 'yy(x, 0) = 0, 0 ≤ x ≤ 1.

C2.  (x, y),  x(x, y),  y(x, y) ∈ C(Q̄xy),  xx(x, y),  yy(x, y) ∈ L2(Qxy),
 x(0, y) =  (1, y) = 0, 0 ≤ y ≤ 1,
 (x, 0) =  y(x, 1) = 0, 0 ≤ x ≤ 1.

C3. f (x, y, t) ∈ C(DT ), fx(x, y, t), fy(x, y, t) ∈ L2(DT ),
fx(0, y, t) = f (1, y, t) = 0, 0 ≤ y ≤ 1, 0 ≤ t ≤ T ,
f (x, 0, t) = fy(x, 1, t) = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ T .

C4. ℎi(t) ∈ C2[0, T ] (i = 1, 2), ℎ(t) ≡ ℎ1(t)ℎ′2(t) − ℎ2(t)ℎ
′
1(t) ≠ 0, 0 ≤ t ≤ T .

Then, from (31)–(34), respectively, we obtain

‖u(x, y, t)‖B3,22,T =

{ ∞
∑

n=1

∞
∑

k=1

(

�3k,n ‖‖uk,n(t)‖‖C[0,T ]
)2
}

1
2

+

{ ∞
∑

n=1

∞
∑

k=1

(

�2k,n
‖

‖

‖

u′k,n(t)
‖

‖

‖C[0,T ]

)2
}

1
2

≤ A1(T ) + B1(T )
(

‖a(t)‖C[0,T ] + ‖b(t)‖C[0,T ]
)

‖u(x, y, t)‖B3,22,T , (35)

‖ã(t)‖C[0,T ] ≤ A2(T ) + B2(T )
(

‖a(t)‖C[0,T ] + ‖b(t)‖C[0,T ]
)

‖u(x, y, t)‖B3,22,T , (36)

‖

‖

b̃(t)‖
‖C[0,T ] ≤ A3(T ) + B3(T )

(

‖a(t)‖C[0,T ] + ‖b(t)‖C[0,T ]
)

‖u(x, y, t)‖B3,22,T , (37)
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where

A1(T ) = 2
√

10 ‖
‖

'xxx(x, y)‖‖L2(Qxy)
+ 2

√

10 ‖‖
‖

'xyy(x, y)
‖

‖

‖L2(Qxy)
+ 2

√

10 ‖‖
‖

'xxy(x, y)
‖

‖

‖L2(Qxy)
+ 2

√

10 ‖‖
‖

'yyy(x, y)
‖

‖

‖L2(Qxy)

+2
√

10 ‖‖
‖

 yy(x, y)
‖

‖

‖L2(Qxy)
+ 2

√

10 ‖‖
‖

'yy(x, y)
‖

‖

‖L2(Qxy)
+ 2

√

10T
(

‖

‖

fxx(x, y, t)‖‖L2(DT )
+ ‖

‖

‖

fyy(x, y, t)
‖

‖

‖L2(DT )

)

,

B1(T ) = 2
√

10T ,

A2(T ) =
‖

‖

‖

[ℎ(t)]−1‖‖
‖C[0,T ]

⎧

⎪

⎨

⎪

⎩

‖

‖

‖

‖

‖

‖

‖

(ℎ′′1 (t) − f (0, 1, t))ℎ
′
2(t) −

⎛

⎜

⎜

⎝

ℎ′′2 (t) −

1

∫
0

1

∫
0

f (x, y, t)dxdy
⎞

⎟

⎟

⎠

ℎ′1(t)
‖

‖

‖

‖

‖

‖

‖C[0,T ]

+

( ∞
∑

k=1

∞
∑

n=1
�−2k,n

)
1
2

‖

‖

|

|

ℎ′1(t)|| + |

|

ℎ′2(t)||‖‖C[0,T ]

[

‖

‖

'xxx(x, y)‖‖L2(Qxy)
+ ‖

‖

‖

'xyy(x, y)
‖

‖

‖L2(Qxy)
+ ‖

‖

‖

'xxy(x, y)
‖

‖

‖L2(Qxy)

+ ‖

‖

‖

'yyy(x, y)
‖

‖

‖L2(Qxy)
+ ‖

‖

‖

 yy(x, y)
‖

‖

‖L2(Qxy)
+ ‖

‖

‖

'yy(x, y)
‖

‖

‖L2(Qxy)
+
√

T
(

‖

‖

fxx(x, y, t)‖‖L2(DT )
+ ‖

‖

‖

fyy(x, y, t)
‖

‖

‖L2(DT )

)]}

,

B2(T ) =
‖

‖

‖

[ℎ(t)]−1‖‖
‖C[0,T ]

( ∞
∑

n=1

∞
∑

k=1
�−2k,n

)
1
2

‖

‖

|

|

ℎ′1(t)|| + |

|

ℎ′2(t)||‖‖C[0,T ] T ,

A3(T ) =
‖

‖

‖

[ℎ(t)]−1‖‖
‖C[0,T ]

⎧

⎪

⎨

⎪

⎩

‖

‖

‖

‖

‖

‖

‖

⎛

⎜

⎜

⎝

ℎ′′2 (t) −

1

∫
0

1

∫
0

f (x, y, t)dxdy
⎞

⎟

⎟

⎠

ℎ1(t) − (ℎ′′1 (t) − f (0, 1, t))ℎ2(t)
‖

‖

‖

‖

‖

‖

‖C[0,T ]

+

( ∞
∑

k=1

∞
∑

n=1
�−2k,n

)
1
2

‖

‖

|

|

ℎ1(t)|| + |

|

ℎ2(t)||‖‖C[0,T ]

[

‖

‖

'xxx(x, y)‖‖L2(Qxy)
+ ‖

‖

‖

'xyy(x, y)
‖

‖

‖L2(Qxy)
+ ‖

‖

‖

'xxy(x, y)
‖

‖

‖L2(Qxy)

+ ‖

‖

‖

'yyy(x, y)
‖

‖

‖L2(Qxy)
+ ‖

‖

‖

 yy(x, y)
‖

‖

‖L2(Qxy)
+ ‖

‖

‖

'yy(x, y)
‖

‖

‖L2(Qxy)
+
√

T
⎛

⎜

⎜

⎝

‖

‖

fxx(x, y, t)‖‖L2(DT )
+ ‖

‖

‖

fyy(x, y, t)
‖

‖

‖L2(DT )

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

,

B3(T ) =
‖

‖

‖

[ℎ(t)]−1‖‖
‖C[0,T ]

( ∞
∑

n=1

∞
∑

k=1
�−2k,n

)
1
2

‖

‖

|

|

ℎ1(t)|| + |

|

ℎ2(t)||‖‖C[0,T ] T .

From inequalities (35)–(37), we conclude

‖ũ(x, y, t)‖B3,22,T + ‖ã(t)‖C[0,T ] + ‖

‖

b̃(t)‖
‖C[0,T ] ≤ A(T ) + B(T )

(

‖a(t)‖C[0,T ] + ‖b(t)‖C[0,T ]

)

‖u(x, y, t)‖B3,22,T , (38)

where
A(T ) = A1(T ) + A2(T ) + A3(T ), B(T ) = B1(T ) + B2(T ) + B3(T ).

Theorem 2. Let the conditions C1-C4 and the condition

(A(T ) + 2)2B(T ) < 1, (39)

be fulfilled. Then, problem (1)–(4), (9), (10) has a unique solution in the ballK = KR(‖z‖E3,2T ≤ R = A(T )+2) of the spaceE3,2
T .

Remark 1. Inequality (39) is satisfied for sufficiently small values of T .

Proof. Let us denote z = [u(x, y, t), a(t), b(t)]T and rewrite the system of equations (24),(29),(30) in the following operator
equation

z = Φz, (40)
where Φ = [Φ1,Φ2,Φ3]T , Φ1(z),Φ2(z), and Φ3(z) defined by the right sides of (24),(29), and (30), respectively.
Analogously to (33) we obtain that for any z, z1, z2 ∈ KR the following estimates hold:

‖Φz‖E3,2T ≤ A(T ) + B(T )
(

‖a(t)‖C[0,T ] + ‖b(t)‖C[0,T ]

)

‖u(x, y, t)‖B3,22,T ≤ A(T ) + B(T )(A(T ) + 2)2, (41)
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‖

‖

Φz1 − Φz2‖‖E3,2T ≤ B(T )R(‖
‖

a1(t) − a2(t)‖‖C[0,T ] + ‖

‖

b1(t) − b2(t)‖‖C[0,T ] + ‖

‖

u1(x, y, t) − u2(x, y, t)‖‖B3,22,T ). (42)
Then taking into account (39) in (41) and (42), it follows that the operator Φ acts in the ball K = KR and is contractive.

Therefore, in the ballK = KR the operatorΦ has a unique fixed point {u, a, b} that is a unique solution of (40), i.e. it is a unique
solution of system (24), (29), (30), in the ball K = KR.
Thus, we obtain that the function u(x, y, t) as an element of the space B3,22,T is continuous and has continuous derivatives

ux(x, y, t), uxx(x, y, t), uy(x, y, t), uxy(x, y, t), uyy(x, y, t), ut(x, y, t), utx(x, y, t), and uty(x, y, t) in DT .
Hence Equation (13) enables us to obtain

u′′k,n(t) + �
2
k,nuk,n(t) = Fk,n(t; u, a, b), k, n = 1, 2, ..., 0 ≤ t ≤ T ,

{ ∞
∑

n=1

∞
∑

k=1
(�k,n

‖

‖

‖

u′′k,n(t)
‖

‖

‖C[0,T ]
)2
}

1
2

≤ 2

[

‖u(x, y, t)‖B3,22,T +
‖

‖

‖

‖

‖

‖

‖

fx(x, y, t) + fy(x, y, t)
‖

‖

‖C[0,T ]

‖

‖

‖

‖L2(Qxy)

+
‖

‖

‖

‖

‖

‖

‖

a(t)(ux(x, y, t) + uy(x, y, t))
‖

‖

‖C[0,T ]

‖

‖

‖

‖L2(Qxy)
+
‖

‖

‖

‖

‖

‖

‖

b(t)(utx(x, y, t) + uty(x, y, t))
‖

‖

‖C[0,T ]

‖

‖

‖

‖L2(Qxy)

]

.

Thus it is clear that the derivative utt(x, y, t) is continuous in the region DT .
It is easy to verify that Equation (1) and conditions (2)–(4), (9), and (10) are satisfied in the ordinary sense. Consequently,

{u(x, y, t), a(t), b(t)} is a solution of problem (1)–(4), (9), (10) and by Lemma 1 this solution is unique in the ball K = KR. The
theorem is proved.

Finally, from Theorem 1 and Theorem 2 immediately implies that the original problem (1)–(6) has a unique classical solution.

Theorem 3. Assume that all the conditions of Theorem 2 are satisfied and

'(0, 1) = ℎ1(0),  (0, 1) = ℎ′1(0),
1

∫
0

1

∫
0

'(x, y)dxdy = ℎ2(0),

1

∫
0

1

∫
0

 (x, y)dxdy = ℎ′2(0).

Then problem (1)–(6) has a unique classical solution in the ball K = KR of the space E3,2
T .

3 NUMERICAL EXPERIMENTS

In this section, we discuss the numerical methods and results for the inverse problem (1)-(6). According to equation (19) in

Section2, the exact solution u(x, t) can be expressed as u(x, y, t) =
∞
∑

n=1

∞
∑

k=1
uk,n(t) cos �kx sin 
ny, where uk,n(t) for k, n = 1, 2,…

are the unknown coefficients, and �k and 
n are constants given by �k =
�
2
(2k − 1) and 
n =

�
2
(2n − 1). Here we denote the

numerical solution by U (x, y, t), and let it be in the following form

U (x, y, t) =
M
∑

i=1

N
∑

j=1
Ui,j(t) cos �ix sin 
jy. (43)

Here Ui,j(t) is the unknown coefficient satisfying

Ui,j(t) = 4

1

∫
0

1

∫
0

U (x, y, t) cos �ix sin 
jydxdy.

Let U (x, y, t) defined in (43) satisfy equations (1)-(2), we can show that

U ′′
i,j(t) + �

2
i,jUi,j(t) = fi,j(t) + a(t)Ui,j(t) + b(t)U

′
i,j(t), 1 ≤ i ≤M, 1 ≤ j ≤ N, 0 ≤ t ≤ T , (44)

Ui,j(0) = 'i,j , U ′
i,j(0) =  i,j , 1 ≤ i ≤M, 1 ≤ j ≤ N, (45)

where
�2i,j = �

2
i + 


2
j ,
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fi,j(t) = 4

1

∫
0

1

∫
0

f (x, y, t) cos �ix sin 
jydxdy,

'i,j = 4

1

∫
0

1

∫
0

'(x, y) cos �ix sin 
jydxdy,

 i,j = 4

1

∫
0

1

∫
0

 (x, y) cos �ix sin 
jydxdy.

Next, we take integral of both sides of equation (1) with respect to x and y, and apply (6) to the resulting formulation to get

ℎ′′2 (t) =

1

∫
0

1

∫
0

(uxx + uyy)dxdy + a(t)ℎ2(t) + b(t)ℎ′2(t) +

1

∫
0

1

∫
0

f (x, y, t)dxdy.

We then substitute u(x, y, t) = U (x, y, t) (whereU (x, y, t) is defined in (43)) into the equation above, and we can get the following
equation

a(t)ℎ2(t) + b(t)ℎ′2(t) = ℎ
′′
2 (t) −

1

∫
0

1

∫
0

f (x, y, t)dxdy +
M
∑

i=1

N
∑

j=1
(−1)i+1

�2i,j
�i
j

Ui,j(t), 0 ≤ t ≤ T . (46)

Note that equation (46) can be regarded as an approximation of (26) using truncated series. Since both a(t) and b(t) are unknown
functions, we need another equation to solve a(t) and b(t). We apply the overdetermination condition (5) to (1), and get

ℎ′′1 (t) = uxx(0, 1, t) + uyy(0, 1, t) + a(t)ℎ1(t) + b(t)ℎ
′
1(t) + f (0, 1, t).

Substituting u(x, y, t) = U (x, y, t) into the equation above leads to the following equation

a(t)ℎ1(t) + b(t)ℎ′1(t) = ℎ
′′
1 (t) − f (0, 1, t) +

M
∑

i=1

N
∑

j=1
(−1)j+1�2i,jUi,j(t), 0 ≤ t ≤ T . (47)

We now need to further discretize the ODE systems (44)-(46) to solve for a(t), b(t) and Ui,j(t) with 1 ≤ i ≤M and 1 ≤ j ≤ N .
We partition the temporal interval [0, T ] into NT subintervals: [0, t1], [t1, t2],… , [tNT−1, tNT

] where tn = nΔt and Δt = T ∕NT
for n = 1, 2,… , NT . We also let U n

i,j , a
n and bn be the numerical approximation of Ui,j(tn), a(tn) and b(tn), respectively. Then

we can apply the central difference finite difference method to approximate equation (44). That is,
U n+1
i,j − 2U n

i,j + U
n−1
i,j

(Δt)2
+ �2i,jU

n
i,j = fi,j(tn) + a

nU n
i,j + b

n
U n+1
i,j − U n−1

i,j

2Δt
, 1 ≤ i ≤M, 1 ≤ j ≤ N. (48)

Equation (48) shows that the computation of U n+1
i,j depends on U n

i,j , a
n and bn. Let t = tn in (46) and (47), we can get

anℎ1(tn) + bnℎ′1(tn) = ℎ
′′
1 (tn) − f (0, 1, tn) +

M
∑

i=1

N
∑

j=1
(−1)j+1�2i,jU

n
i,j , (49)

and

anℎ2(tn) + bnℎ′2(tn) = ℎ
′′
2 (tn) −

1

∫
0

1

∫
0

f (x, y, tn)dxdy +
M
∑

i=1

N
∑

j=1
(−1)i+1

�2i,j
�i
j

U n
i,j . (50)

Equations (49) and (50) indicate that an and bn can be updated using U n
i,j .

The numerical method for the inverse problem (1)-(6) is as follows. We first compute a0 and b0 by solving the following
equations

a0ℎ1(0) + b0ℎ′1(0) = ℎ′′1 (0) − 'xx(0, 1) − 'yy(0, 1) − f (0, 1, 0),

a0ℎ2(0) + b0ℎ′2(0) = ℎ′′2 (0) −

1

∫
0

1

∫
0

f (x, y, 0)dxdy −

1

∫
0

'x(1, y)dy +

1

∫
0

'y(x, 0)dx.

With the condition that ℎ1(t)ℎ′2(t) − ℎ2(t)ℎ′1(t) ≠ 0, the system above is always solvable. Then we compute U 0
i,j for 1 ≤

i ≤ M and 1 ≤ j ≤ N using the Fourier transformation of '(x, y), and compute U 1
i,j using the Fourier transformation of
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'(x, y)+Δt  (x, y)+(Δt)2∕2
(

'xx + 'yy + a0' + b0 + f (x, y, 0)
)

. Next, for n = 1, 2,… , NT , we compute an, bn andU n+1
i,j in

alternating order. In particular, we first update an and bn by solving the linear system (49)-(50), and then we update U n+1
i,j using

the following equation
(

1 − bnΔt
2

)

U n+1
i,j =

[

2 − (Δt)2�2i,j + (Δt)
2an

]

U n
i,j −

(

1 + bnΔt
2

)

U n−1
i,j + (Δt)2fi,j(tn), 1 ≤ i ≤M, 1 ≤ j ≤ N. (51)

Example 1
In this example, we consider the inverse problem (1)-(6) with the following functions

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

'(x, y) = cos(�x
2
) sin(

�y
2
) + cos(�x

2
) sin(

3�y
2
),

 (x, y) = − cos(�x
2
) sin(

3�y
2
),

ℎ1(t) = 1 − e−t, ℎ2(t) =
4
�2
+ 4
3�2

e−t,

f (x, y, t) = −e−t cos(�x
2
) sin(

�y
2
) + (1 + 2�2) cos(�x

2
) sin(

3�y
2
)e−t + (t − 1) cos(�x

2
) sin(

3�y
2
)e−2t.

(52)

Due to the condition that ℎ1(t)ℎ′2(t) − ℎ2(t)ℎ
′
1(t) ≠ 0, we can derive that the final time T for this example must satisfy that

T < ln(7∕3). In particular, we can calculate that ℎ1(t)ℎ′2(t) − ℎ2(t)ℎ′1(t) = 4∕�2(1 − 7∕3e−t), and it is easy to show that
ℎ1ℎ′2 − ℎ2ℎ

′
1 < 0 for t ∈ (0, ln(7∕3)). We thus choose T = 0.5 to make sure the solvability of this example. The exact solution

of the problem is a(t) = �2∕2 + e−t, b(t) = te−t and u(x, y, t) = cos(�x∕2) sin(�y∕2) + cos(�x∕2) sin(3�y∕2)e−t. We choose
the time step size Δt = 10−3 in the simulation. The numerical solution and the absolute error of a(t) for this example are given
in Figure 1 . We can observe from Figure 1 (b) that the absolute error of a(t) increases as t increases. The absolute maximum
error of a(t) for t ∈ [0, 0.5] is 1.3013× 10−10. The results for the other unknown coefficient b(t) are shown in Figure 2 . We can
see that the absolute error of b follows the same trend as a. Numerical simulation shows that the absolute maximum error of
b(t) is 3.8839 × 10−6. The numerical solution of u(x, y, T ) with T = 0.5 is given in Figure 3 (a). Since we have used the basis
{cos(�ix) sin(
jy)}i,j in our numerical method, the numerical solution of u should satisfy the boundary conditions exactly. As
we can observe from Figure 3 (a), the numerical solution of u is equal to zero at two boundaries y = 0 and x = 1, which is
consistent with the Dirichlet boundary conditions in (3) and (4). To better visualize the performance of our numerical method,
we further compute the pointwise absolute error of u at T = 0.5 (see Figure 3 (b)). We find that the absolute maximum error
of u(⋅, ⋅, T ) occurs at x = 0, y = 1, and its value is 9.5497 × 10−8. This example indicates that our numerical method can lead
to accurate recovery of the unknown coefficients as well as the unknown function u(x, y, t) for the inverse problem (1)-(6).

Example 2
In this numerical test, we consider the inverse problem (1)-(6) with the following functions

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

'(x, y) = 2(1 − x2)(2y − y2) + cos(3�x
2
) sin(

�y
2
),

 (x, y) = −(1 − x2)(2y − y2),

ℎ1(t) = 1 + e−t + cos(t), ℎ2(t) =
4
9
(1 + e−t) − 4

3�2
cos(t),

f (x, y, t) = 2(2y − y2 + 1 − x2)(1 + e−t) + (5�
2

2
− 1) cos(3�x

2
) sin(

�y
2
) cos(t)

+ (1 − x2)(2y − y2)
(

e−t + e−t cos(t) − e−t sin(t) − sin(t)
)

.

(53)

Unlike the previous example where the exact solution can be expressed using finite Fourier modes, the exact solution of u in this
example is an infinite series of the Fourier modes. In particular, the exact solution to the problem with the given data in (53) is
a(t) = sin(t), b(t) = cos(t) and u(x, y, t) = (1−x2)(2y−y2)(1+e−t)+cos( 3�x

2
) sin( �y

2
) cos(t). In order to determine the time interval

such that the solution of the inverse problem exists, we first show that ℎ′1(t)ℎ2(t)−ℎ1(t)ℎ
′
2(t) = (4∕9+4∕(3�

2))(cos(t) exp(−t)−
sin(t) exp(−t) − sin(t)). To ensure ℎ′1(t)ℎ2(t) −ℎ1(t)ℎ

′
2(t) ≠ 0 for certain interval of t, we further calculate its derivative which is

equal to −(4∕9+4∕(3�2)) cos(t)(1+2 exp(−t)). Therefore, the function ℎ′1(t)ℎ2(t) −ℎ1(t)ℎ
′
2(t) is decreasing when t ∈ [0, �∕2].

Since ℎ′1(0)ℎ2(0) − ℎ1(0)ℎ
′
2(0) = 4∕9 + 4∕(3�2) > 0 and ℎ′1(t)ℎ2(t) − ℎ1(t)ℎ

′
2(t) = 7.223 × 10−8 when t = 0.3847861, we
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0 0.1 0.2 0.3 0.4
T

5.4

5.6

5.8

6

(a) Numerical solution of a(t)

0 0.1 0.2 0.3 0.4
T

0

0.5

1

1.5
10-10

(b) Absolute error of a(t)

FIGURE 1 Numerical solution and the absolute error of a(t) for t ∈ [0, T ] in example 1. T = 0.5 and Δt = 10−3 are used for
the simulation.

0 0.1 0.2 0.3 0.4
T

0

0.1

0.2

0.3

(a) Numerical solution of b(t)

0 0.1 0.2 0.3 0.4
T

0

2

4
10-6

(b) Absolute error of b(t)

FIGURE 2 Numerical solution and the absolute error of b(t) for t ∈ [0, T ] in example 1. T = 0.5 and Δt = 10−3 are used for
the simulation.

can draw the conclusion that ℎ′1(t)ℎ2(t) − ℎ1(t)ℎ
′
2(t) > 0 for t ∈ [0, 0.3847861]. For the numerical test, we take the T = 0.1,

Δt = 10−4,M = 30 andN = 30. The numerical solution of u(x, y, T ) and its pointwise absolute error are shown in Figure 4 .
The absolute maximum error of u(⋅, ⋅, T ) occurs at x = 0, y = 1, and its value is 4.3590 × 10−4. This example also shows that
our numerical method can be used to solve the inverse problem and get accurate solutions.

4 CONCLUSIONS

In the work, the classical solvability of a nonlinear inverse boundary value problem for a two-dimensional hyperbolic equation
with nonlocal conditions was studied. First, the considered problem was reduced to an auxiliary inverse boundary value problem
in a certain sense and its equivalence to the original problem is shown. Then using the Fourier method and contraction mappings
principle, the existence and uniqueness theorem for auxiliary problem is proved. Further, on the basis of the equivalency of
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(a) Numerical solution of u(x, y, T ) (b) Absolute error of u(x, y, T )

FIGURE 3 Numerical solution and the absolute error of u(x, y, T ) in example 1. T = 0.5 and Δt = 10−3 are used for the
simulation.

(a) Numerical solution of u(x, y, T ) (b) Absolute error of u(x, y, T )

FIGURE 4 Numerical solution and the absolute error of u(x, y, T ) in example 2. T = 0.1 and Δt = 10−4 are used for the
simulation.

these problems, the existence and uniqueness theorem for the classical solution of the original inverse coefficient problem is
established for the smaller value of time. In addition, the numerical method for solving the inverse problem is proposed, and
two numerical tests are performed to demonstrate the effectiveness of the numerical method.
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