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Abstract

Although Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coron-

avirus 2 (SARS-CoV-2) has been controlled and prevented, mathematical modeling and analysis of transmission

dynamics of COVID-19 still plays an essential role not only in the post COVID-19 era but also in the study of

infectious diseases. This is an important foundation to propose effective strategies and measures for controlling

diseases and projecting public health. This work is devoted to proposing and analyzing a new mathematical

study for transmission dynamics of COVID-19. We first introduce a generalized SEIR epidemic model that

use general nonlinear incidence rates to describe the ”psychological” effect. After that, a rigorous mathematical

analysis for the proposed COVID-19 model is performed. We establish the positivity and boundedness, calculate

the basic reproduction number, determine possible (disease-free and endemic-disease) equilibrium points and in-

vestigate their asymptotic stability properties of the SEIR model. The obtained results improve and extend an

SEIR model constructed in a recent work. For the purpose of numerical simulation, the Mickens’ methodology

is applied to construct a dynamically consistent nonstandard finite difference (NSFD) model for the proposed

SEIR epidemic model. The constructed NSFD scheme has the ability to provide reliable approximations that

not only preserve the dynamical properties of the SEIR model for all the values of the step size but also are easy

to be implemented. Finally, a set of illustrative numerical experiments is conducted to support the theoretical

findings and to confirm advantages of the NSFD scheme over some well-known standard ones.
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1. Introduction

Mathematical modeling and analysis of infectious diseases has become a fundamental and essential approach

for discovering characteristics and mechanisms of epidemics as well as for predicting possible scenarios in reality

[3, 11, 12, 24, 41]. Studying mathematical models of infectious diseases can provide us with appropriate strategies

for controlling and preventing diseases. This is very useful for public health and preventive healthcare. For this5

reason, in efforts to prevent the COVID-19 epidemic, many mathematicians and epidemiologists have proposed
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and analyzed a great number of mathematical models describing transmission dynamics of the COVID-19 (see,

for example, [6, 22, 33, 34, 39, 40, 49, 50, 51, 54, 59, 60] and references therein). As an important consequence,

mitigation and prevention measures of COVID-19 outbreaks were suggested. Recently, we have performed a

mathematical study for transmission dynamics of SARS-CoV-2 with waning immunity [30].10

We now revisit a recognized mathematical model of the COVID-19 proposed by Rohith and Devika in [50].

The model is represented by a system of nonlinear differential equations:

Ṡ = µ− β0SI

1 + αI2
− µS,

Ė =
β0SI

1 + αI2
− (σ + µ)E,

İ = σE − (γ + µ)I,

Ṙ = γI − µR.

(1)

In this model, the total population is divided four classes depending the status of individuals with respect to

the COVID-19, that are susceptible (S), exposed (E), infected (I), and removed (R) classes; the birth/death

rate is represented by µ; γ is the the recovery rate and σ is the measure of rate at which the exposed individuals15

become infected. We refer the readers to [50] for more details of the model (1). In [50], bifurcation analysis and

control problem for the model (1) have been studied rigorously.

If in the nonlinear incidence rate
β0SI

1 + αI2
we set ψ(I) = 1 +αI2, then ψ(I) satisfies the following properties

(H1): ψ(0) = 1;

(H2): ψ(I) > 0 for I > 0;20

(H3): ψ′(I) ≥ 0 for I ≥ 0.

The family of nonlinear incidence rates satisfying the conditions (H1)-(H3) was proposed in [35]. These

functions are not only biologically motivated, can be used to interpret the ”psychological” effect but also include

many famous incidence functions [23, 35, 37].

Motivated and inspired by the recognized works considering nonlinear incidence rates [23, 35, 37] as well as25

the importance of mathematical models of the COVID-19, in this work we consider a generalized version of the

model (1) by replacing the function 1 + αI2 by general ones satisfying (H1)-(H3). More precisely, we propose

the following model

Ṡ = µ− β0SI

ψ(I)
− µS,

Ė =
β0SI

ψ(I)
− (σ + µ)E,

İ = σE − (γ + µ)I,

Ṙ = γI − µR,

(2)

where ψ(I) is any function satisfying (H1)-(H3). Note that if setting f(I) =
I

ψ(I)
, then

(i) f(0) = 0, f(I) > 0 for I > 0;30

(ii) f(I)/I is continuous and monotonely non-increasing for I > 0, and limI→0+ f(I)/I exists, denoted by
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β(0 < β <∞);

(iii)
∫ 1

0+(1/f(u))du ≤
∫ 1

0+(1/u)du =∞.

So, the function f(I) also satisfies properties given in [37]. This means that the model (2) is not only a

generalization of the model (1) but also can provide with us more epidemic scenarios. This is very useful in both35

theory and practice. This is why we consider the model (1) the context of the general incidence rates.

In the first part of this work, positivity, boundedness, the basic reproduction number, possible equilibria

and asymptotic stability properties of the model (2) are analyzed rigorously. It is proved, by the Lyapunov

stability theory, that a unique disease-free equilibrium (DFE) point is globally asymptotically stable if the basic

reproduction number R0 satisfies R0 < 1; and the disease-endemic equilibrium (DEE) point exists and is locally40

asymptotically stable if R0 > 1. Consequently, qualitative dynamical properties of the model (2) are determined

fully and mitigation and prevention measures of COVID-19 outbreaks are suggested. Also, the obtained results

improve and extend the ones presented in the benchmark work [50]

In the second part, we construct a reliable numerical scheme for the purpose of numerical simulation as well

as construction of scientific computation programs for predicting COVID-19 epidemic. To achieve this objective,45

we utilize the Mickens’ methodology [42, 43, 44, 45, 46] to formulate a dynamically consistent nonstandard finite

difference (NSFD) scheme for the model (2). It is well-known that the main advantage of the NSFD schemes

over standard one is that they can preserve essential mathematical features of differential equations regardless of

the values of the step size [42, 43, 44, 45, 46]. Therefore, they are efficient and appropriate to simulate behaviour

of dynamical differential equation models over long time periods. Nowadays, NSFD schemes have become an50

efficient approach for numerically solving real-world problems (see, for example, [1, 2, 4, 5, 10, 13, 14, 15, 31,

32, 47, 48, 57, 58]). Recently, we have developed the Mickens’ methodology to construct NSFD schemes for

mathematical models of phenomena and processes coming from sciences and technology like biology, ecology, or

other natural sciences [16, 17, 18, 19, 20, 21, 25, 26, 27, 28, 29].

In the third part, a set of illustrative numerical experiments is conducted to support the theoretical results55

and to demonstrate advantages of the constructed NSFD scheme over some standard ones. The numerical

examples provide strong evidence that confirms the validity of the main results of this work. It is proved that

the standard Euler and second-order Runge-Kutta (RK2) schemes can generate numerical approximations which

are negative and unstable for some given step sizes. This means that the dynamics of the model (2) cannot be

preserved. However, the NSFD scheme correctly preserve the dynamics of (2) for the same step sizes.60

The plan of this work is as follows:

Dynamics of the model (2) is studied in Section 2. The NSFD scheme is formulated and analyzed in Section 3.

Some numerical experiments are conducted in Section 4. Some conclusions and open problems are discussed in

the last section.

2. Dynamics of the generalized SEIR model65

We first establish the positivity and boundedness of the model (2).
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Lemma 1. The set Ω =
{

(S,E, I,R) ∈ R4|S,E, I,R ≥ 0, S + E + I + R = 1
}
is a positively invariant set of

the model (2), that is,
(
S(t), E(t), I(t), R(t)

)
∈ Ω for t > 0 if

(
S(0), E(0), I(0), R(0)

)
∈ Ω.

Proof. First, it follows from the system (2) that

Ṡ
∣∣
S=0

= µ,

Ė
∣∣
E=0

=
β0SI

ψ(I)
,

İ
∣∣
I=0

= σE,

Ṙ
∣∣
R=0

= γI.

Therefore, from Theorem [55, Theorem B.7] we conclude that S(t), E(t), I(t), R(t) ≥ 0 for t > 0 whenever

S(0), E(0), I(0), R(0) ≥ 0.70

Next, setting N(t) = S(t) + E(t) + I(t) +R(t) for t ≥ 0. Then, from (2) we obtain

Ṅ = µ− µN, N(0) = 1,

which follows that N(t) = 1 for t ≥ 0. This is the desired conclusion. The proof is complete. �

As a direct consequence of Lemma 2, it is sufficient to consider the following sub-model of (2)

Ṡ = µ− β0SI

ψ(I)
− µS,

Ė =
β0SI

ψ(I)
− (σ + µ)E,

İ = σE − (γ + µ)I

(3)

on its feasible set given by

Ω∗ =
{

(S, I, E) ∈ R3|S,E, I ≥ 0, S + E + I ≤ 1
}
. (4)

We now determine possible equilibrium points and compute the basic reproduction number of the model (3).

Theorem 1 (Equilibria and basic reproduction number). (i) The model (3) always possesses a disease-free

equilibrium (DFE) point Pf = (Sf , Ef , If ) = (1, 0, 0) for all the values of the parameters.

(ii) The basic reproduction number of the model (3) can be computed as

R0 =
β0σ

(σ + µ)(γ + µ)
.

(iii) The model (3) has a unique disease-endemic equilibrium (DEE) point Pe = (Se, Ee, Ie) if and only if R0 > 1.

Moreover, if existing Pe it is given by

Ee =
γ + µ

σ
Ie,

Se =
(σ + µ)(γ + µ)ψ(Ie)

σβ0
,

where Ie is the unique positive solution of the equation

F (I) = µ− µ (σ + µ)(γ + µ)ψ(I)

σ
− (σ + µ)(γ + µ)

σ
I = 0.
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Proof. Proof of Part (i). To determine equilibrium points, we consider the following system of algebraic75

equations

µ− β0SI

ψ(I)
− µS = 0,

β0SI

ψ(I)
− (σ + µ)E = 0,

σE − (γ + µ)I = 0.

(5)

It follows from the third equation of (5) that

E =
γ + µ

σ
I.

Combining this with the second equation we obtain

I

[
β0S

ψ(I)
− (σ + µ)(γ + µ)

σ

]
= 0. (6)

Hence, the system (5) always possesses a trivial solution (S,E, I) = (1, 0, 0), which corresponds to a disease-free

equilibrium point of the model (3).

Proof of Part (ii). We apply the method in [56] to compute the basic reproduction number. If reordering the

variables in (3) as x = (E, I, S), then the DFE point is transformed to xf = (Ef , If , Sf ) and (3) can be written

in the matrix form

ẋ = F(x)− V(x),

where

F(x) =



β0SI

ψ(I)

0

µ


, V(x) =



(σ + µ)E,

−σE + (γ + µ)I,

β0SI

ψ(I)
+ µS


.

Consequently,

DF(xf ) =



0 β0 0

0 0 0

0 0 0


, DV(xf ) =



σ + µ 0 0

−σ γ + µ 0

0 0 µ


.

Hence,

R0 = ρ(FV −1) =
β0σ

(σ + µ)(γ + µ)
.

Proof of Part (iii). Note that a DEE point is a trivial solution of (5). From the 1st and 2nd equations of (5),

we obtain
β0SI

ψ(I)
= (σ + µ)E =

(σ + µ)(γ + µ)

σ
I. (7)
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On the other hand, it follows from (6) that80

S =
(σ + µ)(γ + µ)ψ(I)

σβ0
. (8)

Combining (7) and (8) with the first equation (5) leads to an equation for I

F (I) = µ− µ (σ + µ)(γ + µ)ψ(I)

σ
− (σ + µ)(γ + µ)

σ
I = 0.

It is easy to verify that

F (0) = µ

(
1− 1

R0

)
,

F (1) < 0,

F ′(I) < 0.

Therefore, if R0 > 1 then (2) has a unique positive solution Ie ∈ (0, 1), which corresponds to a unique DEE

point. The proof is complete. �

We now analyze local and global asymptotic stability of the model (3).

Theorem 2 (Local asymptotic stability). (i) The DFE point Pf is locally asymptotically stable if R0 < 1 and

unstable if R0 > 1.85

(ii) The DEE point Pe is locally asymptotically stable if it exists (R0 > 1).

Proof. Proof of Part (i). The Jacobian matrix of the system (3) evaluating at Pf is given by

J(Pf ) =



−µ 0 −β0

0 −(σ + µ) β0

0 σ −(γ + µ)


.

Hence, one of the three eigenvalues of J(Pf ) is λ1 = −µ < 0 and the two remaining eigenvalues are the ones of

the sub-matrix

J0(Pf ) =


−(σ + µ) β0

σ −(γ + µ)

 .

It is clear that

Trace(J0) < 0, det(J0) = (σ + µ)(γ + µ)− β0σ = (σ + µ)(γ + µ)(1−R0) > 0.

By Routh-Hurwitz criteria (see [7, Theorem 4.4]), we conclude that all of the eigenvalues of J(Pf ) are negative

or have negative real part. Hence, the local asymptotic stability of Pf is confirmed. Otherwise, if R0 > 1 then

det(J0) < 0, and hence, Pf is unstable.
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Proof of Part (ii). Note that Pf exists if and only if R0 > 1. For the sake of convenience, we denote

f(I) = β0I/ψ(I). Then, the Jacobian matrix of the system (3) evaluating at Pe is

J(Pe) =



−(µ+ f(Ie)) 0 −Sef ′(Ie)

f(Ie) −(σ + µ) Sef
′(Ie)

0 σ −(γ + µ)


.

Consequently, the characteristic polynomial of J(Pe) is given by

PJ(λ) = λ3 + a2λ
2 + a1λ+ a0,

where

a1 = f(Ie) + γ + 3µ+ σ,

a2 = (γ + µ)(f(Ie) + 2µ+ σ) + (f(Ie) + µ)(µ+ σ)− Sef ′(Ie)σ,

a3 = (f(Ie) + µ)(γ + µ)(µ+ σ)− Sf ′(Ie)µσ.

It follows from f(Ie) > 0 and f ′(Ie) < 0 that

a1 > 0, a2 > 0,

a1a2 − a3 = f2(Ie)γ + 2f2(Ie)µ+ f2(Ie)σ + f(Ie)γ
2 + 6f(Ie)γµ+ 2f(Ie)γσ

+ 8f(Ie)µ
2 + 6f(Ie)µσ + f(Ie)σ

2 − Sef ′(Ie)f(Ie)σ + 2γ2µ+ γ2σ + 8γµ2

+ 6γµσ + γσ2 − Sef ′(Ie)γσ + 8µ3 + 8µ2σ + 2µσ2 − 2Sef
′(Ie)µσ − Sef ′(Ie)σ2 > 0.

Therefore, we infer from Routh-Hurwitz criteria ([7, Theorem 4.4]) that Pf is locally asymptotically stable. The

proof is completed. �

Theorem 3 (Global asymptotic stability of the DFE point). The DFE point Pf is not only locally asymptotically

stable but also globally asymptotically stable with respect to Ω∗ when R0 < 1.90

Proof. Consider a candidate Lyapunov function V : Ω∗ → R+ given by

V (S,E, I) =

(
S − Sf − Sf ln

S

Sf

)
+ E +

µ+ σ

σ
I.

The derivative of V along with solutions of the system (3) is

dV

dt
=
dV

dS

dS

dt
+
dV

dE

dE

dt
+
dV

dI

dI

dt

=

(
µ− β0SI

ψ(I)
− µS

)
S − Sf
S

+

[
β0SI

ψ(I)
− (σ + µ)E

]
+
σ + µ

σ

[
σE − (γ + µ)I]

= −µ
S

(S − Sf )2 + I

[
β0

ψ(I)
− (σ + µ)(γ + µ)

σ

]
≤ −µ

S
(S − Sf )2 + I

[
β0 −

(σ + µ)(γ + µ)

σ

]
≤ −µ

S
(S − Sf )2 +

(σ + µ)(γ + µ)

σ
(R0 − 1)I.
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Since R0 < 1, dV/dt ≤ 0 for all S,E, I ≥ 0 and dV/dt = 0 if and only if S = Sf and I = If . Consequently,

it follows from the LaSalle’s invariant principle [36] that Pe is globally asymptotically stable. The proof is

completed. �

In [38], Li and Muldowney proposed a general criterion for the orbital stability of periodic orbits associated

with higher-dimensional nonlinear autonomous systems as well as the theory of competitive systems of differential95

equations to study the global stability of an SEIR model that is similar to the model (3). So, by applying the

approach in [38], we can obtain the global asymptotic stability of Pe.

Proposition 1. The DEE point Pe is not only locally asymptotically stable but also globally asymptotically stable

with respect to the interior of Ω∗ whenever R0 > 1.

Remark 1. In [50], only the local asymptotic stability of the DFE point of the model (1) was investigated.100

Therefore, the stability analysis of the model (2) presented in this section provides an important improvement

for the results constructed in [50]. On the other hand, the global stability of the DFE points of the models (1)

and (2) is very important because it means that the COVID-19 epidemic can be extinguished (when R0 < 1),

and hence, some mitigation and prevention measures of COVID-19 outbreaks can be suggested (see [30]).

3. Construction of dynamically consistent NSFD model105

Our main objective in this section is to formulate an NSFD model which is dynamically consistent with the

model (2). For this purpose, we first consider the model (2) on a time interval [0, T ] and partition this interval

by a uniform mesh

0 = t0 < t1 < . . . < tN−1 < TN = T,

where tn−tn−1 = ∆t for n ≥ 1. Let us denote by
(
Sn, En, In, Rn

)
the intended approximation for

(
S(tn), E(tn), I(tn), R(tn)

)
,

respectively. By using the Mickens’ methodology [42, 43, 44, 45, 46], we replace the differential equation model

(2) by a difference equation one as follows:

Ṡ(tn) ≈ Sn+1 − Sn
φ(∆t)

,

Ė(tn) ≈ En+1 − En
φ(∆t)

,

İ(tn) ≈ In+1 − In
φ(∆t)

,

Ṙ(tn) ≈ Rn+1 −Rn
φ(∆t)

,

(9)

and

µ− β0S(tn)I(tn)

ψ(In)
− µS(tn) ≈ µ− β0Sn+1In

ψ(In)
− µSn+1,

β0S(tn)I(tn)

ψ(In)
− (σ + µ)E(tn) ≈ β0Sn+1In

ψ(In)
− (σ + µ)En+1,

σE(tn)− (γ + µ)I(tn) ≈ σEn+1 − (γ + µ)In+1,

γI − µR ≈ γIn+1 − µRn+1,

(10)
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where φ(∆t) = ∆t+O(∆t2) as ∆t→ 0, which is called a nonstandard denominator function. The approximations110

(9) and (10) lead to the following NSFD scheme

Sn+1 − Sn
φ(∆t)

= µ− β0Sn+1In
ψ(In)

− µSn+1,

En+1 − En
φ(∆t)

=
β0Sn+1In
ψ(In)

− (σ + µ)En+1,

In+1 − In
φ(∆t)

= σEn+1 − (γ + µ)In+1,

Rn+1 −Rn
φ(∆t)

= γIn+1 − µRn+1.

(11)

Our task is to analyze dynamics of the NSFD model (11).

Lemma 2. The set Ω =
{

(S,E, I,R) ∈ R4|S,E, I,R ≥ 0, S + E + I + R = 1
}
is a positively invariant set of

the NSFD model (11), that is,
(
Sn, En, In, Rn

)
∈ Ω for n ≥ 1 if

(
S(0), E(0), I(0), R(0)

)
∈ Ω.

Proof. The lemma is proved by mathematical induction. First, it is easy to transform the NSFD scheme (11)

to explicit form as follows:

Sn+1 =
Sn + φµ

1 + φ
β0In
ψ(In)

+ φµ

,

En+1 =

En + φ
β0InSn+1

ψ(In)

1 + φ(σ + µ)
,

In+1 =
In + φσEn+1

1 + φ(γ + µ)
,

Rn+1 =
Rn + φγIn+1

1 + φµ
,

which implies that Sn+1, En+1, In+1, Rn+1 ≥ 0 if Sn, En, In, Rn ≥ 0.115

Next, setting Pn = Sn + EN + In +Rn for n ≥ 0. From (11) we obtain

Pn+1 − Pn
φ

= µ− µPn+1, P0 = 1.

or equivalently

Pn+1 =
Pn + φµ

1 + φµ
, P0 = 1.

It is easy to verify that {Pn} with Pn = 1 is the unique solution of this difference equation. The proof is

complete. �

As a direct consequence of Lemma 2, it suffices to consider the following sub-model of (11)

Sn+1 − Sn
φ(∆t)

= µ− β0Sn+1In
ψ(In)

− µSn+1,

En+1 − En
φ(∆t)

=
β0Sn+1In
ψ(In)

− (σ + µ)En+1,

In+1 − In
φ(∆t)

= σEn+1 − (γ + µ)In+1

(12)
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on the set Ω∗ given by (4).

We now compute the basic reproduction number for the discrete model (12) by the next generation matrix

approach [8]. It is easy to verify that (12) always has a unique DFE point P ∗f = (S∗f , E
∗
f , I
∗
f ) = (1, 0, 0) for all the

values of the parameters. If reordering the variables in (12) as (En, In, Sn), then the DFE point is transformed

to (0, 0, 1). The Jacobian matrix of (12) at P ∗f is given by

J(P ∗f ) =



1

1 + φ(σ + µ)

φβ0

1 + φ(σ + µ)
0

φσ

[1 + φ(γ + µ)][1 + φ(σ + µ)]

1

1 + φ(γ + µ)
+

φσ

1 + φ(γ + µ)
0

0
φβ0

1 + φµ

1

1 + φµ


.

Following the method in [4], we write J(P ∗f ) in the form

J(P ∗f ) =


F + T 0

A C

 ,

where

F =


0 0

φσ

[1 + φ(γ + µ)][1 + φ(σ + µ)]

φσ

1 + φ(γ + µ)

 ,

T =


1

1 + φ(σ + µ)

φβ0

1 + φ(σ + µ)

0
1

1 + φ(γ + µ)

 ,

A = 0,

C =
1

1 + φµ
.

It is easy to verify that F and T are non-negative, F + T is irreducible, and the matrix C and T satisfy

ρ(C) < 1, ρ(T ) < 1.

Therefore, the basic reproduction number of the discrete model (12) can be computed as

R0 = ρ
(
F (I − T )−1

)
=

β0σ

(σ + µ)(γ + µ)
.

This means that the basic reproduction numbers of (12) and (3) are identical. The following assertion is a direct120

consequence of Theorem 2.1 in [4].
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Corollary 1. The DFE point P ∗f of the NSFD scheme (12) is locally asymptotically stable if R0 < 1 and

unstable if R0 > 1.

Similarly to Theorem 2, it is easy to verify that the NSFD model (12) has a unique DEE point P ∗e =

(S∗e , E
∗
e , I
∗
e ) if and only if R0 > 1, where P ∗e = Pe. By using the approach proposed in [27], the local asymptotic125

stability of P ∗e is established as follows.

Proposition 2. Suppose that R0 > 1. Then, there exists a positive number φ∗ > 0 that plays as a stability

threshold for the NSFD model (12), that is, P ∗e locally asymptotically stable whenever

φ(∆t) < φ∗ for all ∆t > 0.

Remark 2. Similarly to Theorem 3 in [27], we can verify that the NSFD scheme (12) is convergent of order 1.

The results constructed in this section lead to the following theorem.

Theorem 4. The NSFD scheme (11) is dynamically consistent with respect to the positivity, boundedness and

asymptotic stability of the SEIR model (2) if

φ(∆t) < τ∗ for all ∆t > 0,

where

τ∗ =


∞ if R0 < 1,

φ∗ if R0 > 1.

Remark 3. In numerical experiments performed in the next section, we will use the following denominator

function for the NSFD scheme (12)

φ(∆t) =


∆t if R0 < 1,

1− e−(1/φ∗)∆t

(1/φ∗)
if R0 > 1.

4. Numerical experiments

In this section, we report some numerical examples to support the theoretical findings. In all numerical130

examples, the function ψ(I) = 1 + αI2 (see [50]) and the following data will be used.

Table 1: The parameters used in numerical simulations

Case µ γ σ β0 α Source R0 GAS equilibrium point

1 0.2 0.8 0.8 0.25 0.75 Assumed 0.4 Pf = (1, 0, 0)

2 0.1 1/7 1/5 0.2 0.75 [50] 0.5490 Pf = (1, 0, 0)

3 0.1 1/7 1/5 0.75 0.5 [50] 2.0588 Pe = (0.4904, 0.1699, 0.1399)
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First, we compare the NSFD scheme (12) with two well-known standard Runge-Kutta schemes, namely, the

Euler scheme and the second-order Runge-Kutta (RK2) scheme (see [9]). The numerical solutions obtained by

these schemes are depicted in Figures 1-3. From these figures, we observe that the Euler and RK2 schemes

generate the approximations that are not only negative but also unstable for the step size ∆t = 1.5. Hence, the135

dynamical properties of the SEIR model are destroyed. Conversely, the NSFD scheme correctly preserve the

dynamics of the SEIR model for the same step size. Even when using a larger step size, namely, ∆t = 2.0, the

dynamics of the SEIR model is still preserved by the NSFD scheme (see Figure 3). This is evidence supporting

the claim that the NSFD scheme preserves the dynamics of the SEIR model for all finite step sizes.

We now confirm the global asymptotic stability of the SEIR model by numerical solutions. Figures 4 and140

5 sketch numerical solutions obtained by the NSFD scheme over the time interval [0, 150] with the step size

∆t = 10−5. It is clear that the DFE point is globally asymptotically stable when R0 < 1 and the DEE point is

globally stable when R0 > 1. This result support the ones constructed in Section 2.
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Figure 1: The phase space generated by the Euler scheme in Case 1.
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Figure 2: The phase spaces generated by the RK2 and NSFD schemes in Case 1.
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Figure 3: The phase spaces generated by the NSFD scheme in Case 1 with ∆t = 2.0.
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Figure 4: The phase spaces generated by the NSFD scheme in Case 2 with φ(∆t) = ∆t.
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5. Discussions and conclusions

As the main conclusion of this work, we have provided a new mathematical study for transmission dynamics145

of COVID-19 model. The obtained results improved and extended the ones presented in the benchmark work

[50]. On the other hand, we have constructed and analyzed an nonstandard numerical scheme that has the ability

to generate reliable approximations preserving the dynamical properties of the COVID-19 model regardless of

the chosen step sizes. Finally, a set of illustrate numerical experiments has been also conducted to support and

illustrate the theoretical findings. The numerical results provided evidence that confirms not only the validity150

of the theoretical findings but also the advantages of the NSFD scheme over some well-known standard ones.

In the near future, we will consider the SEIR model with vaccination to discover effects of vaccines. Fractional-

order versions and the parameter estimation problem with applications will be also studied. On the other hand,

the construction of high-order dynamically consistent NSFD schemes for the SEIR model will be paid attention

to.155
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and nonlinear Lévy jumps, Nonlinear Dynamics 107(2022) 2975-2993.

19



[60] H. M. Youssef, N. Alghamdi, M. A. Ezzat, A. A.El-Baryd, A. M. Shawky, A proposed modified SEIQR

epidemic model to analyze the COVID-19 spreading in Saudi Arabia, Alexandria Engineering Journal

61(2022) 2456-2470.280

20


	Introduction
	Dynamics of the generalized SEIR model
	Construction of dynamically consistent NSFD model
	Numerical experiments
	Discussions and conclusions

