REFERENCES:
Agegnehu, G., Bass, A. M., Nelson, P. N., Muirhead, B., Wright, G., & Bird, M. I. (2015). Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agriculture, Ecosystems and Environment , 213 , 72–85. https://doi.org/10.1016/j.agee.2015.07.027
Al-Wabel, M. I., Hussain, Q., Usman, A. R. A., Ahmad, M., Abduljabbar, A., Sallam, A. S., & Ok, Y. S. (2018). Impact of biochar properties on soil conditions and agricultural sustainability: A review. Land Degradation and Development , 29 (7), 2124–2161. https://doi.org/10.1002/ldr.2829
Anderson, T. H., & Domsch, K. H. (1985). Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state. Biology and Fertility of Soils , 1 (2), 81–89. https://doi.org/10.1007/BF00255134
Awad, Y. M., Blagodatskaya, E., Ok, Y. S., & Kuzyakov, Y. (2013). Effects of polyacrylamide, biopolymer and biochar on the decomposition of 14C-labelled maize residues and on their stabilization in soil aggregates. European Journal of Soil Science , 64 (4), 488–499. https://doi.org/10.1111/ejss.12034
Bundy, L.G., & Bremner, J.M. (1972). A Simple Titrimetric Method for Determination of Inorganic Carbon in Soils. Soil Science Society of America Jourcal, 36, 273-275. https://doi.org/10.2136/sssaj1972.03615995003600020021x
Datta, A., Mandal, B., Badole, S., A., K. C., Majumder, S. P., Padhan, D., … Narkhede, W. N. (2018). Interrelationship of biomass yield, carbon input, aggregation, carbon pools and its sequestration in Vertisols under long-term sorghum-wheat cropping system in semi-arid tropics. Soil and Tillage Research , 184 (July), 164–175. https://doi.org/10.1016/j.still.2018.07.004
El-Naggar, A., Awad, Y. M., Tang, X. Y., Liu, C., Niazi, N. K., Jien, S. H., … Lee, S. S. (2018). Biochar influences soil carbon pools and facilitates interactions with soil: A field investigation. Land Degradation and Development , 29 (7), 2162–2171. https://doi.org/10.1002/ldr.2896
Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems and Environment , 206 , 46–59. https://doi.org/10.1016/j.agee.2015.03.015
Hamer, U., Marschner, B., Brodowski, S., & Amelung, W. (2004). Interactive priming of black carbon and glucose mineralisation.Organic Geochemistry , 35 (7), 823–830. https://doi.org/10.1016/j.orggeochem.2004.03.003
Hernandez-Soriano, M. C., Kerré, B., Goos, P., Hardy, B., Dufey, J., & Smolders, E. (2016). Long-term effect of biochar on the stabilization of recent carbon: Soils with historical inputs of charcoal. GCB Bioenergy , 8 (2), 371–381. https://doi.org/10.1111/gcbb.12250
Indoria, A. K., Sharma, K. L., Sammi Reddy, K., Srinivasarao, C., Srinivas, K., Balloli, S. S., … Raju, N. S. (2018). Alternative sources of soil organic amendments for sustaining soil health and crop productivity in India - impacts, potential availability, constraints and future strategies. Current Science , 115 (11), 2052–2062. https://doi.org/10.18520/cs/v115/i11/2052-2062
Jeffery, S., Verheijen, F. G. A., van der Velde, M., & Bastos, A. C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems and Environment , 144 (1), 175–187. https://doi.org/10.1016/j.agee.2011.08.015
Jien, S. H., Wang, C. C., Lee, C. H., & Lee, T. Y. (2015). Stabilization of organic matter by biochar application in compost-amended soils with contrasting pH values and textures.Sustainability (Switzerland) , 7 (10), 13317–13333. https://doi.org/10.3390/su71013317
Kan, Z. R., Ma, S. T., Liu, Q. Y., Liu, B. Y., Virk, A. L., Qi, J. Y., … Zhang, H. L. (2020). Carbon sequestration and mineralization in soil aggregates under long-term conservation tillage in the North China Plain. Catena , 188 (September 2019), 104428. https://doi.org/10.1016/j.catena.2019.104428
Karhu, K., Mattila, T., Bergström, I., & Regina, K. (2011). Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - Results from a short-term pilot field study.Agriculture, Ecosystems and Environment , 140 (1–2), 309–313. https://doi.org/10.1016/j.agee.2010.12.005
Keith, A., Singh, B., & Singh, B. P. (2011). Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil. Environmental Science and Technology , 45 (22), 9611–9618. https://doi.org/10.1021/es202186j
Kim, D.-G., Thomas, A. D., Pelster, D., Rosenstock, T. S., & Sanz-Cobena, A. (2015). Reviews and syntheses: Greenhouse gas emissions in natural and agricultural lands in sub-Saharan Africa: synthesis of available data and suggestions for further studies. Biogeosciences Discussions , 12 (19), 16479–16526. https://doi.org/10.5194/bgd-12-16479-2015
Kundu, S., Singh, M., Saha, J. K., Biswas, A., Tripathi, A. K., & Acharya, C. L. (2001). Relationship between C addition and storage in a Vertisol under soybean-wheat cropping system in sub-tropical central India. Journal of Plant Nutrition and Soil Science ,164 (5), 483–486. https://doi.org/10.1002/1522-2624(200110)164:5<483::AID-JPLN483>3.0.CO;2-Y
La Scala, N., Marques, J., Pereira, G. T., & Corá, J. E. (2000). Carbon dioxide emission related to chemical properties of a tropical bare soil.Soil Biology and Biochemistry , 32 (10), 1469–1473. https://doi.org/10.1016/S0038-0717(00)00053-5
Lai, R., Arca, P., Lagomarsino, A., Cappai, C., Seddaiu, G., Demurtas, C. E., & Roggero, P. P. (2017). Manure fertilization increases soil respiration and creates a negative carbon budget in a Mediterranean maize (Zea mays L.)-based cropping system. Catena , 151 , 202–212. https://doi.org/10.1016/j.catena.2016.12.013
Lal, R. (2004a). Soil carbon sequestration impacts on global climate change and food security. Science , 304 (5677), 1623–1627. https://doi.org/10.1126/science.1097396
Lal, R. (2004b). Soil carbon sequestration in India. Climatic Change , 65 (3), 277–296. https://doi.org/10.1023/B:CLIM.0000038202.46720.37
Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature , 528 (7580), 60–68. https://doi.org/10.1038/nature16069
Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota - A review.Soil Biology and Biochemistry , 43 (9), 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022
Li, Y., Li, Y., Chang, S. X., Yang, Y., Fu, S., Jiang, P., … Zhou, J. (2018). Biochar reduces soil heterotrophic respiration in a subtropical plantation through increasing soil organic carbon recalcitrancy and decreasing carbon-degrading microbial activity.Soil Biology and Biochemistry , 122 (April), 173–185. https://doi.org/10.1016/j.soilbio.2018.04.019
Lian, T., Wang, G., Yu, Z., Li, Y., Liu, X., & Jin, J. (2016). Carbon input from13C-labelled soybean residues in particulate organic carbon fractions in a mollisol. Biology and Fertility of Soils ,52 (3), 331–339. https://doi.org/10.1007/s00374-015-1080-6
Liu, C., Wang, H., Tang, X., Guan, Z., & Reid, B. J. (2016).Biochar increased water holding capacity but accelerated organic carbon leaching from a sloping farmland soil in China . 995–1006. https://doi.org/10.1007/s11356-015-4885-9
Luo, Y., Durenkamp, M., Nobili, M.D., Lin, Q., & Brookes, P.C. (2011). Short term soil priming effects and the mineralization of biochar folllowing its incorporation to soils of different pH. Soil Biology and Biochemistry , 43, 2304-2314. https://doi.org/10.1016/j.soilbio.2011.07.020
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., … Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma , 292 , 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002
Moinet, G. Y. K., Cieraad, E., Hunt, J. E., Fraser, A., Turnbull, M. H., & Whitehead, D. (2016). Soil heterotrophic respiration is insensitive to changes in soil water content but related to microbial access to organic matter. Geoderma , 274 , 68–78. https://doi.org/10.1016/j.geoderma.2016.03.027
Mukherjee, A., & Zimmerman, A. R. (2013). Geoderma Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar – soil mixtures. Geoderma , 193194 , 122–130. https://doi.org/10.1016/j.geoderma.2012.10.002
Powlson, D. S., Stirling, C. M., Thierfelder, C., White, R. P., & Jat, M. L. (2016). Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems? Agriculture, Ecosystems and Environment ,220 , 164–174. https://doi.org/10.1016/j.agee.2016.01.005
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., … Ko, I. (2011). Persistence of soil organic matter as an ecosystem property . https://doi.org/10.1038/nature10386
Seki, M., Sugihara, S., Miyazaki, H., Araki, R., Jegadeesan, M., Ishiyama, S., … Tanaka, H. (2019). Effect of traditional cultivation management on CO<inf>2</inf> flux in the dry tropical cropland of South India. Agronomy , 9 (7). https://doi.org/10.3390/agronomy9070347
Senbayram, M., Saygan, E. P., Chen, R., Aydemir, S., Kaya, C., Wu, D., & Bladogatskaya, E. (2019). Effect of biochar origin and soil type on the greenhouse gas emission and the bacterial community structure in N fertilised acidic sandy and alkaline clay soil. Science of the Total Environment , 660 , 69–79. https://doi.org/10.1016/j.scitotenv.2018.12.300
Shinjo, H., Kato, A., Fujii, K., Mori, K., Funakawa, S., & Kosaki, T. (2006). Carbon dioxide emission derived from soil organic matter decomposition and root respiration in Japanese forests under different ecological conditions . 233–242. https://doi.org/10.1111/j.1747-0765.
Soil Survey Staff. (2014). Keys to Soil Taxonomy, 12thEdition, USDA, Natural Resources Conservation Services, Washington, DC.
Srinivasarao, C., Vittal, K. P. R., Venkateswarlu, B., Wani, S. P., Sahrawat, K. L., Marimuthu, S., & Kundu, S. (2009). Carbon stocks in different soil types under diverse rainfed production systems in tropical India. Communications in Soil Science and Plant Analysis , 40 (15–16), 2338–2356. https://doi.org/10.1080/00103620903111277
Srinivasarao, Ch, Gopinath, K. a, Venkatesh, G., Dubey, a K., Wakudkar, H., Purakayastha, T. J., … Rajkhowa, D. J. (2013). Use of biochar for soil health management and greenhouse gas mitigation in India: Potential and constraints. Central Research Institute for Dryland Agriculture, Hyderabad, Andhra Pradesh. 51p . Retrieved from http://www.crida.in/NICRA pubs/NICRA Bulletin 1.pdf%5Cnpapers2://publication/uuid/E020FDE0-B747-4483-AC6E-74D68674FC9A
Srinivasarao, Ch, Venkateswarlu, B., Lal, R., Singh, A. K., Kundu, S., Vittal, K. P. R., … Patel, M. M. (2014). Long-term manuring and fertilizer effects on depletion of soil organic carbon stocks under pearl millet-cluster bean-castor rotation in Western India. Land Degradation and Development , 25 (2), 173–183. https://doi.org/10.1002/ldr.1158
Steinbeiss, S., Gleixner, G., & Antonietti, M. (2009). Effect of biochar amendment on soil carbon balance and soil microbial activity.Soil Biology and Biochemistry , 41 (6), 1301–1310. https://doi.org/10.1016/j.soilbio.2009.03.016
Sugihara, S., Funakawa, S., Kilasara, M., & Kosaki, T. (2012). Effects of land management on CO 2 flux and soil C stock in two Tanzanian croplands with contrasting soil texture. Soil Biology and Biochemistry , 46 , 1–9. https://doi.org/10.1016/j.soilbio.2011.10.013
Sugihara, S.,Funakawa, S.,Ikazaki, K.,Shinjo, H., & Kosaki, T. (2014). Rewetting of Dry Soil did not Stimulate the Carbon and Nitrogen Mineralization in Croplands with Plant Residue Removed in the Sahel , West Africa. Tropical Agriculture and Development , 58(1), 8–17.
Sugihara, S., Shibata, M., Mvondo, A. D., Araki, S., & Funakawa, S. (2015). Effects of vegetation on soil microbial C , N , and P dynamics in a tropical forest and savanna of Central Africa. Applied Soil Ecology , 87 , 91–98. https://doi.org/10.1016/j.apsoil.2014.11.002
Tavakkoli, E., Rengasamy, P., Smith, E., & Mcdonald, G. K. (2015). The effect of cation-anion interactions on soil pH and solubility of organic carbon. European Journal of Soil Science , 66 (6), 1054–1062. https://doi.org/10.1111/ejss.12294
Thies, J. E., & Rillig, M. C. (2012). Characteristics of biochar: Biological properties. Biochar for Environmental Management: Science and Technology , (March), 85–105. https://doi.org/10.4324/9781849770552
Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry , 19 (6), 703–707. https://doi.org/10.1016/0038-0717(87)90052-6
Wakie, T. T., Hoag, D., Evangelista, P. H., Luizza, M., & Laituri, M. (2016). Is control through utilization a cost effective Prosopis juliflora management strategy? Journal of Environmental Management , 168 , 74–86. https://doi.org/10.1016/j.jenvman.2015.11.054
Zavalloni, C., Alberti, G., Biasiol, S., Vedove, G. D., Fornasier, F., Liu, J., & Peressotti, A. (2011). Microbial mineralization of biochar and wheat straw mixture in soil: A short-term study. Applied Soil Ecology , 50 (1), 45–51. https://doi.org/10.1016/j.apsoil.2011.07.012
Zhou, H., Zhang, D., Wang, P., Liu, X., Cheng, K., Li, L., … Pan, G. (2017). Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: A Meta-analysis.Agriculture, Ecosystems and Environment , 239 , 80–89. https://doi.org/10.1016/j.agee.2017.01.006
Zimmerman, A. R., Gao, B., & Ahn, M. Y. (2011). Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry , 43 (6), 1169–1179. https://doi.org/10.1016/j.soilbio.2011.02.005