REFERENCES:
Agegnehu, G., Bass, A. M., Nelson, P. N., Muirhead, B., Wright, G., &
Bird, M. I. (2015). Biochar and biochar-compost as soil amendments:
Effects on peanut yield, soil properties and greenhouse gas emissions in
tropical North Queensland, Australia. Agriculture, Ecosystems and
Environment , 213 , 72–85.
https://doi.org/10.1016/j.agee.2015.07.027
Al-Wabel, M. I., Hussain, Q., Usman, A. R. A., Ahmad, M., Abduljabbar,
A., Sallam, A. S., & Ok, Y. S. (2018). Impact of biochar properties on
soil conditions and agricultural sustainability: A review. Land
Degradation and Development , 29 (7), 2124–2161.
https://doi.org/10.1002/ldr.2829
Anderson, T. H., & Domsch, K. H. (1985). Determination of
ecophysiological maintenance carbon requirements of soil microorganisms
in a dormant state. Biology and Fertility of Soils , 1 (2),
81–89. https://doi.org/10.1007/BF00255134
Awad, Y. M., Blagodatskaya, E., Ok, Y. S., & Kuzyakov, Y. (2013).
Effects of polyacrylamide, biopolymer and biochar on the decomposition
of 14C-labelled maize residues and on their stabilization in soil
aggregates. European Journal of Soil Science , 64 (4),
488–499. https://doi.org/10.1111/ejss.12034
Bundy, L.G., & Bremner, J.M. (1972). A Simple Titrimetric Method for
Determination of Inorganic Carbon in Soils. Soil Science Society
of America Jourcal, 36, 273-275.
https://doi.org/10.2136/sssaj1972.03615995003600020021x
Datta, A., Mandal, B., Badole, S., A., K. C., Majumder, S. P., Padhan,
D., … Narkhede, W. N. (2018). Interrelationship of biomass yield,
carbon input, aggregation, carbon pools and its sequestration in
Vertisols under long-term sorghum-wheat cropping system in semi-arid
tropics. Soil and Tillage Research , 184 (July), 164–175.
https://doi.org/10.1016/j.still.2018.07.004
El-Naggar, A., Awad, Y. M., Tang, X. Y., Liu, C., Niazi, N. K., Jien, S.
H., … Lee, S. S. (2018). Biochar influences soil carbon pools and
facilitates interactions with soil: A field investigation. Land
Degradation and Development , 29 (7), 2162–2171.
https://doi.org/10.1002/ldr.2896
Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015).
Physico-chemical properties and microbial responses in biochar-amended
soils: Mechanisms and future directions. Agriculture, Ecosystems
and Environment , 206 , 46–59.
https://doi.org/10.1016/j.agee.2015.03.015
Hamer, U., Marschner, B., Brodowski, S., & Amelung, W. (2004).
Interactive priming of black carbon and glucose mineralisation.Organic Geochemistry , 35 (7), 823–830.
https://doi.org/10.1016/j.orggeochem.2004.03.003
Hernandez-Soriano, M. C., Kerré, B., Goos, P., Hardy, B., Dufey, J., &
Smolders, E. (2016). Long-term effect of biochar on the stabilization of
recent carbon: Soils with historical inputs of charcoal. GCB
Bioenergy , 8 (2), 371–381. https://doi.org/10.1111/gcbb.12250
Indoria, A. K., Sharma, K. L., Sammi Reddy, K., Srinivasarao, C.,
Srinivas, K., Balloli, S. S., … Raju, N. S. (2018). Alternative
sources of soil organic amendments for sustaining soil health and crop
productivity in India - impacts, potential availability, constraints and
future strategies. Current Science , 115 (11), 2052–2062.
https://doi.org/10.18520/cs/v115/i11/2052-2062
Jeffery, S., Verheijen, F. G. A., van der Velde, M., & Bastos, A. C.
(2011). A quantitative review of the effects of biochar application to
soils on crop productivity using meta-analysis. Agriculture,
Ecosystems and Environment , 144 (1), 175–187.
https://doi.org/10.1016/j.agee.2011.08.015
Jien, S. H., Wang, C. C., Lee, C. H., & Lee, T. Y. (2015).
Stabilization of organic matter by biochar application in
compost-amended soils with contrasting pH values and textures.Sustainability (Switzerland) , 7 (10), 13317–13333.
https://doi.org/10.3390/su71013317
Kan, Z. R., Ma, S. T., Liu, Q. Y., Liu, B. Y., Virk, A. L., Qi, J. Y.,
… Zhang, H. L. (2020). Carbon sequestration and mineralization in
soil aggregates under long-term conservation tillage in the North China
Plain. Catena , 188 (September 2019), 104428.
https://doi.org/10.1016/j.catena.2019.104428
Karhu, K., Mattila, T., Bergström, I., & Regina, K. (2011). Biochar
addition to agricultural soil increased CH4 uptake and water holding
capacity - Results from a short-term pilot field study.Agriculture, Ecosystems and Environment , 140 (1–2),
309–313. https://doi.org/10.1016/j.agee.2010.12.005
Keith, A., Singh, B., & Singh, B. P. (2011). Interactive priming of
biochar and labile organic matter mineralization in a smectite-rich
soil. Environmental Science and Technology , 45 (22),
9611–9618. https://doi.org/10.1021/es202186j
Kim, D.-G., Thomas, A. D., Pelster, D., Rosenstock, T. S., &
Sanz-Cobena, A. (2015). Reviews and syntheses: Greenhouse gas emissions
in natural and agricultural lands in sub-Saharan Africa: synthesis of
available data and suggestions for further studies. Biogeosciences
Discussions , 12 (19), 16479–16526.
https://doi.org/10.5194/bgd-12-16479-2015
Kundu, S., Singh, M., Saha, J. K., Biswas, A., Tripathi, A. K., &
Acharya, C. L. (2001). Relationship between C addition and storage in a
Vertisol under soybean-wheat cropping system in sub-tropical central
India. Journal of Plant Nutrition and Soil Science ,164 (5), 483–486.
https://doi.org/10.1002/1522-2624(200110)164:5<483::AID-JPLN483>3.0.CO;2-Y
La Scala, N., Marques, J., Pereira, G. T., & Corá, J. E. (2000). Carbon
dioxide emission related to chemical properties of a tropical bare soil.Soil Biology and Biochemistry , 32 (10), 1469–1473.
https://doi.org/10.1016/S0038-0717(00)00053-5
Lai, R., Arca, P., Lagomarsino, A., Cappai, C., Seddaiu, G., Demurtas,
C. E., & Roggero, P. P. (2017). Manure fertilization increases soil
respiration and creates a negative carbon budget in a Mediterranean
maize (Zea mays L.)-based cropping system. Catena , 151 ,
202–212. https://doi.org/10.1016/j.catena.2016.12.013
Lal, R. (2004a). Soil carbon sequestration impacts on global climate
change and food security. Science , 304 (5677), 1623–1627.
https://doi.org/10.1126/science.1097396
Lal, R. (2004b). Soil carbon sequestration in India. Climatic
Change , 65 (3), 277–296.
https://doi.org/10.1023/B:CLIM.0000038202.46720.37
Lehmann, J., & Kleber, M. (2015). The contentious nature of soil
organic matter. Nature , 528 (7580), 60–68.
https://doi.org/10.1038/nature16069
Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C.,
& Crowley, D. (2011). Biochar effects on soil biota - A review.Soil Biology and Biochemistry , 43 (9), 1812–1836.
https://doi.org/10.1016/j.soilbio.2011.04.022
Li, Y., Li, Y., Chang, S. X., Yang, Y., Fu, S., Jiang, P., …
Zhou, J. (2018). Biochar reduces soil heterotrophic respiration in a
subtropical plantation through increasing soil organic carbon
recalcitrancy and decreasing carbon-degrading microbial activity.Soil Biology and Biochemistry , 122 (April), 173–185.
https://doi.org/10.1016/j.soilbio.2018.04.019
Lian, T., Wang, G., Yu, Z., Li, Y., Liu, X., & Jin, J. (2016). Carbon
input from13C-labelled soybean residues in particulate organic carbon
fractions in a mollisol. Biology and Fertility of Soils ,52 (3), 331–339. https://doi.org/10.1007/s00374-015-1080-6
Liu, C., Wang, H., Tang, X., Guan, Z., & Reid, B. J. (2016).Biochar increased water holding capacity but accelerated organic
carbon leaching from a sloping farmland soil in China . 995–1006.
https://doi.org/10.1007/s11356-015-4885-9
Luo, Y., Durenkamp, M., Nobili, M.D., Lin, Q., & Brookes, P.C. (2011).
Short term soil priming effects and the mineralization of biochar
folllowing its incorporation to soils of different pH. Soil
Biology and Biochemistry , 43, 2304-2314.
https://doi.org/10.1016/j.soilbio.2011.07.020
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays,
D., Chambers, A., … Winowiecki, L. (2017). Soil carbon 4 per
mille. Geoderma , 292 , 59–86.
https://doi.org/10.1016/j.geoderma.2017.01.002
Moinet, G. Y. K., Cieraad, E., Hunt, J. E., Fraser, A., Turnbull, M. H.,
& Whitehead, D. (2016). Soil heterotrophic respiration is insensitive
to changes in soil water content but related to microbial access to
organic matter. Geoderma , 274 , 68–78.
https://doi.org/10.1016/j.geoderma.2016.03.027
Mukherjee, A., & Zimmerman, A. R. (2013). Geoderma Organic carbon and
nutrient release from a range of laboratory-produced biochars and
biochar – soil mixtures. Geoderma , 193 –194 ,
122–130. https://doi.org/10.1016/j.geoderma.2012.10.002
Powlson, D. S., Stirling, C. M., Thierfelder, C., White, R. P., & Jat,
M. L. (2016). Does conservation agriculture deliver climate change
mitigation through soil carbon sequestration in tropical
agro-ecosystems? Agriculture, Ecosystems and Environment ,220 , 164–174. https://doi.org/10.1016/j.agee.2016.01.005
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger,
G., Janssens, I. A., … Ko, I. (2011). Persistence of soil
organic matter as an ecosystem property .
https://doi.org/10.1038/nature10386
Seki, M., Sugihara, S., Miyazaki, H., Araki, R., Jegadeesan, M.,
Ishiyama, S., … Tanaka, H. (2019). Effect of traditional
cultivation management on
CO<inf>2</inf> flux in the
dry tropical cropland of South India. Agronomy , 9 (7).
https://doi.org/10.3390/agronomy9070347
Senbayram, M., Saygan, E. P., Chen, R., Aydemir, S., Kaya, C., Wu, D.,
& Bladogatskaya, E. (2019). Effect of biochar origin and soil type on
the greenhouse gas emission and the bacterial community structure in N
fertilised acidic sandy and alkaline clay soil. Science of the
Total Environment , 660 , 69–79.
https://doi.org/10.1016/j.scitotenv.2018.12.300
Shinjo, H., Kato, A., Fujii, K., Mori, K., Funakawa, S., & Kosaki, T.
(2006). Carbon dioxide emission derived from soil organic matter
decomposition and root respiration in Japanese forests under different
ecological conditions . 233–242. https://doi.org/10.1111/j.1747-0765.
Soil Survey Staff. (2014). Keys to Soil Taxonomy, 12thEdition, USDA, Natural Resources Conservation Services, Washington, DC.
Srinivasarao, C., Vittal, K. P. R., Venkateswarlu, B., Wani, S. P.,
Sahrawat, K. L., Marimuthu, S., & Kundu, S. (2009). Carbon stocks in
different soil types under diverse rainfed production systems in
tropical India. Communications in Soil Science and Plant
Analysis , 40 (15–16), 2338–2356.
https://doi.org/10.1080/00103620903111277
Srinivasarao, Ch, Gopinath, K. a, Venkatesh, G., Dubey, a K., Wakudkar,
H., Purakayastha, T. J., … Rajkhowa, D. J. (2013). Use of biochar
for soil health management and greenhouse gas mitigation in India:
Potential and constraints. Central Research Institute for Dryland
Agriculture, Hyderabad, Andhra Pradesh. 51p . Retrieved from
http://www.crida.in/NICRA pubs/NICRA Bulletin
1.pdf%5Cnpapers2://publication/uuid/E020FDE0-B747-4483-AC6E-74D68674FC9A
Srinivasarao, Ch, Venkateswarlu, B., Lal, R., Singh, A. K., Kundu, S.,
Vittal, K. P. R., … Patel, M. M. (2014). Long-term manuring and
fertilizer effects on depletion of soil organic carbon stocks under
pearl millet-cluster bean-castor rotation in Western India. Land
Degradation and Development , 25 (2), 173–183.
https://doi.org/10.1002/ldr.1158
Steinbeiss, S., Gleixner, G., & Antonietti, M. (2009). Effect of
biochar amendment on soil carbon balance and soil microbial activity.Soil Biology and Biochemistry , 41 (6), 1301–1310.
https://doi.org/10.1016/j.soilbio.2009.03.016
Sugihara, S., Funakawa, S., Kilasara, M., & Kosaki, T. (2012). Effects
of land management on CO 2 flux and soil C stock in two Tanzanian
croplands with contrasting soil texture. Soil Biology and
Biochemistry , 46 , 1–9.
https://doi.org/10.1016/j.soilbio.2011.10.013
Sugihara, S.,Funakawa, S.,Ikazaki, K.,Shinjo, H., & Kosaki, T. (2014).
Rewetting of Dry Soil did not Stimulate the Carbon and Nitrogen
Mineralization in Croplands with Plant Residue Removed in the Sahel ,
West Africa. Tropical Agriculture and Development , 58(1), 8–17.
Sugihara, S., Shibata, M., Mvondo, A. D., Araki, S., & Funakawa, S.
(2015). Effects of vegetation on soil microbial C , N , and P dynamics
in a tropical forest and savanna of Central Africa. Applied Soil
Ecology , 87 , 91–98.
https://doi.org/10.1016/j.apsoil.2014.11.002
Tavakkoli, E., Rengasamy, P., Smith, E., & Mcdonald, G. K. (2015). The
effect of cation-anion interactions on soil pH and solubility of organic
carbon. European Journal of Soil Science , 66 (6),
1054–1062. https://doi.org/10.1111/ejss.12294
Thies, J. E., & Rillig, M. C. (2012). Characteristics of biochar:
Biological properties. Biochar for Environmental Management:
Science and Technology , (March), 85–105.
https://doi.org/10.4324/9781849770552
Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction
method for measuring soil microbial biomass C. Soil Biology and
Biochemistry , 19 (6), 703–707.
https://doi.org/10.1016/0038-0717(87)90052-6
Wakie, T. T., Hoag, D., Evangelista, P. H., Luizza, M., & Laituri, M.
(2016). Is control through utilization a cost effective Prosopis
juliflora management strategy? Journal of Environmental
Management , 168 , 74–86.
https://doi.org/10.1016/j.jenvman.2015.11.054
Zavalloni, C., Alberti, G., Biasiol, S., Vedove, G. D., Fornasier, F.,
Liu, J., & Peressotti, A. (2011). Microbial mineralization of biochar
and wheat straw mixture in soil: A short-term study. Applied Soil
Ecology , 50 (1), 45–51.
https://doi.org/10.1016/j.apsoil.2011.07.012
Zhou, H., Zhang, D., Wang, P., Liu, X., Cheng, K., Li, L., … Pan,
G. (2017). Changes in microbial biomass and the metabolic quotient with
biochar addition to agricultural soils: A Meta-analysis.Agriculture, Ecosystems and Environment , 239 , 80–89.
https://doi.org/10.1016/j.agee.2017.01.006
Zimmerman, A. R., Gao, B., & Ahn, M. Y. (2011). Positive and negative
carbon mineralization priming effects among a variety of biochar-amended
soils. Soil Biology and Biochemistry , 43 (6), 1169–1179.
https://doi.org/10.1016/j.soilbio.2011.02.005