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Abstract1

Studies of populations oscillating through time have a long history in ecology as these dynamics2

can help provide insights into the causes of population regulation. A particularly difficult challenge3

is determining the relative role of deterministic versus stochastic forces in producing this oscillatory4

behavior. Another classic ecological study area is the study of spatial synchrony which also has helped5

unravel underlying population dynamic principles. One possible approach to understanding the causes of6

population cycles is based on the idea that a focus on spatiotemporal behavior, oscillations in coupled7

populations, can provide much further insight into the relative role of deterministic versus stochastic8

forces. Using ideas based on concepts from statistical physics, we develop results showing that in a system9

with coupling between adjacent populations, a study of spatial synchrony provides much information10

about the underlying causes of oscillations. Novel, to ecology, measures of spatial synchrony are a key11

step.12
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1 Introduction13

Cyclic or oscillatory dynamics are prevalent in nature and are observed in a variety of fields. Well-known14

examples are fluctuations of different species’ population numbers (Benincà et al., 2015; Turchin and Ellner,15

2000; Elton, 1924), predator-prey dynamics (Gurney and Nisbet, 1978), insect outbreaks (Blackwood et al.,16

2018), oscillatory behavior in plant seed production (Noble et al., 2018; Lyles et al., 2015; Shalom et al., 2012),17

the circadian pacemaker cells (Gonze et al., 2018), oscillating chemical reactions (Simokov and Pérez-Mercader,18

2013), neural systems (Tchumatchenko and Clopath, 2014; Galán et al., 2006), and epidemiological systems19

(Chaffee and Kuske, 2011; Rohani et al., 1999).20

Among ecologists, the mechanisms behind these fluctuations are of great interest and have been the topic of21

many studies drawing on short-term experiments and observations, statistical analysis of long time series, and22

mathematical modeling (Berryman, 2002; Krebs et al., 2001; Kendall et al., 1999; Nisbet and Gurney, 1976;23

Elton, 1924). Four major mechanisms have been identified for these fluctuations: environmental stochasticity24

(Lugo and McKane, 2008; Nisbet and Gurney, 1982, 1976), periodic extrinsic conditions (e.g. weather patterns25

and seasonality) (Hunter and Price, 1998; Sinclair et al., 1993; Elton, 1924), intrinsic ecological interactions26

and internal dynamics, like density dependence and consumer-resource interactions (Esmaeili et al., 2021;27

Kendall et al., 1999; Isagi et al., 1997; May, 1972), and physiological and demographic evolution (Barraquand28

et al., 2017). Given the stochastic nature of the ecological systems, discerning between different mechanisms29

producing oscillatory behavior has been challenging. In some cases, the oscillatory dynamics resulting from30

different processes appear to be similar. External noise can make qualitative changes to the limit cycles and31

create fluctuations in an otherwise stable focus by repeated random excitation (Barraquand et al., 2017). A32

deterministic limit cycle (or a two-cycle behavior) is called an intrinsic oscillator, but when the deterministic33

skeleton is a stable focus, the observed fluctuations are noise-induced. Under the effect of a strong noise, an34

intrinsic oscillator (i.e. deterministic limit cycle) can have similar distribution to a noise-induced oscillator35

(i.e. stable focus) (Lin and Kahn, 1977; Nisbet and Gurney, 1976). Since the majority of ecological dynamics36

data are time series, different ways have been proposed to distinguish between oscillatory behaviors prompted37

by different mechanisms, all using time series analysis of a single oscillator. These methods include using38

the response of the system to a random perturbation (Louca and Doebeli, 2014), combined analysis of39

autocorrelation and marginal distributions in a predator-prey system (Pineda-Krch et al., 2007), and replacing40

the white noise with a generalized noise with temporal correlation as a point of reference to compare against41

the oscillatory behavior observed in the time series (Louca and Doebeli, 2015). However, as Hunter and Price42

(1998) suggested, using time series analysis can be insufficient to gain information regarding the cause of the43

oscillatory behavior and can lead to spurious results.44

Beyond time series analysis, one of the intriguing features of oscillatory ecological systems is the ubiquitous45

spatial synchronization and the formation of spatial patterns which can provide more information about46

underlying mechanisms. Population sizes, reproductive behavior (mast seeding in plants), mortality, and47

other characteristics of populations are observed to be spatially correlated (Liebhold et al., 2004). Dispersal48
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(Wall et al., 2013; Goldwyn and Hastings, 2008; Stone et al., 2002; Blasius and Stone, 2000), direct or indirect49

trophic interactions (Selås, 1997; Satake et al., 2004), shared moving predator (Ims and Andreassen, 2000;50

Small and Willebrand, 1993), and synchronous stochastic external (weather) effects (Koenig, 2002; Moran,51

1953) can each cause synchronization and formation of long-range correlation. While each of these mechanisms52

is considered as a candidate to promote synchrony, in some cases the nontrivial interaction between two53

or more of these factors is necessary to explain observed synchrony (Kendall et al., 2000). Traditionally,54

assessing synchrony has been done by measuring the correlation coefficients between pairs of population time55

series (Liebhold et al., 2004; Greenman and Benton, 2001), the residual from a fitted model (Buonaccorsi56

et al., 2001), or the covariance function between population time series (Bjørnstad and Falck, 2001). In some57

studies the coincidence of peaks or the proportion of times when the time series go up and down together is58

used as the measure of synchrony (Buonaccorsi et al., 2001). All these measurements are pairwise. When59

the system includes more than two time series, the measures are averaged over all the existing pairs in the60

system. However, inspired by statistical physics models, Noble et al. (2015), took a different approach and61

used the concept of the order parameter (Newman and Barkema, 2001; Goldenfeld, 1992) to measure the62

global degree of synchrony for discrete-time two-state systems.63

In this paper, we approach the question of distinguishing between noise-induced and intrinsic oscillators64

through the lens of collective dynamics and synchronization and ask whether the collective dynamics offer65

indirect information into the mechanism behind ecological cycles. We use an ecological model that shows66

period-doubling bifurcations and models the fluctuating yield in alternate bearing plants (Esmaeili et al.,67

2021). Alternate-year masting is one example of an ecological two-cycle that has been used previously68

to understand the interplay between stochasticity and nonlinearity and their effect on synchronization in69

population dynamics (Lyles et al., 2015, 2009). We compare the behavior of the model in the stable fixed70

point regime (noise-induced oscillations) with its dynamics in the two-cycle regime (intrinsic oscillations) at71

different spatial scales of observation (figure 1). We start by analysing the time series for a single oscillator72

in an isolated setting (figure 1a) or inside a population or metapopulation (lattice) where the individuals73

interact with each other via root-grafting or pollen coupling (figure 1b). We expand our scale by looking74

at a two-oscillator system (figure 1c, d, & e) as well as the collective behavior of the entire lattice (figure75

1f). When the scale of observation is larger than one oscillator, we use two measures of synchrony, Degree76

of Agreement (Buonaccorsi et al., 2001) and Synchronization Order Parameter (Noble et al., 2015), to77

compare the dynamics of noise-induced and intrinsic oscillators. The Degree of Agreement is a pairwise78

measurement, which measures the global synchrony by averaging over all the pairs, while the Synchronization79

Order Parameter measures the global synchrony directly. Lattice models with a two-cycle, and the ecological80

systems represented by them, have been shown to go through a transition from synchrony to disorder as the81

level of stochasticity changes (Noble et al., 2015), a second order phase transition (Solé, 2011; Goldenfeld,82

1992). For given values of the model’s parameters there is a critical noise intensity below which the system’s83

asymptotic state is synchrony and beyond which the system is spatially disordered. On a parameter phase84
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diagram, the critical noise value as a function of the model’s parameter forms a boundary between the ordered85

and disordered phases (i.e. a critical line). Our results show that noise intensity plays an important role86

and can become the dominant driver of the oscillations even if the deterministic skeleton is in the two-cycle87

regime. Our results suggest that the critical line separating the two phases on the parameter phase diagram88

(which includes the effect of stochasticity) is a better guide to determine the driving force of the oscillations89

than the deterministic bifurcation point.90

2 Model and Simulation91

We use stochastic, discrete-time ecological models to investigate the characteristics of noise-induced versus92

noisy intrinsic oscillators. We study the individual oscillators as well as the collective behavior on a coupled93

map lattice. A coupled map lattice under the effect of noise can be written as,94

si,t+1 = (1− κ)f(si,t, ξi,t) +
κ

Ni

∑
j

f(sj,t, ξj,t), (1)

where si,t is the state at the location i at time t, κ is a measure of the coupling strength between the adjacent95

sites on a lattice with Lx × Ly oscillators, and Ni is the number of nearest neighbors (Ni = 4 on a square96

lattice).97

The function f(st) is a deterministic overcompensatory density-dependent map that models the internal98

dynamics at each location. Maps such as Ricker (Ricker, 1954) and logistic, as well as the Density Dependent99

Resource Budget Model (DDRBM) (Esmaeili et al., 2021), describe many ecological systems. Their bifurcation100

diagrams show a period-doubling route to chaos as the function of the models’ growth parameter (r). The101

term ξt represents Gaussian noise with mean zero and variance σ2 to model environmental stochasticity. In102

this paper, the standard deviation, σ, is referred to as the noise intensity.103

We consider an oscillation to be noise-induced if the fluctuations are only noise driven. This happens104

when the parameter of the deterministic map is in the fixed point regime and the system approaches the105

fixed point with damped oscillations. However, noisy intrinsic oscillators are ones for which the deterministic106

skeleton shows an oscillatory behavior and the presence of the noise impacts the phase and amplitude of the107

already existing oscillation. In this case, the parameter is in the two-cycle regime.108

The results presented in this paper are ensemble averages obtained from 100 realizations of the DDRBM109

described in Esmaeili et al. (2021) and Appendix A. However, the general approach can be applied to other110

overcompensatory density-dependent ecological maps, as we illustrate with the Ricker map (Appendix B).111

We compare the dynamics in the stable regime with those in the two-cycle regime for different spatial scales112

of observation (a single tree, a two-tree system, and an orchard). The orchard simulations are done on a113

N = 32× 32 lattice with nearest neighbor coupling (κ = 0.15) and free boundary conditions (trees located114

at the edges share their resources with only three neighbors). Further simulation details can be found in115

Appendix A.116
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2.1 Synchronization and Phase Transition117

At the collective level, ecological models, in their two-cycle regime go through a critical phase transition from118

synchrony to disorder as the noise intensity increases (Noble et al., 2015). The critical noise value where the119

transition happens is a function of the model’s parameter and the coupling strength. The r−σ phase diagram120

of the DDRBM for κ = 0.15 is shown in figure 1f. The line that separates the two phases is the critical line.121

When the parameters are in the vicinity of the critical line, large fluctuations which are correlated over the122

long distances are observed in the system. The phase transition phenomenon is observed in a variety of123

systems in different fields (e.g. magnetic systems, liquid gas, etc.) (Goldenfeld, 1992; Cardy, 1996; Solé, 2011).124

To detect the phase transition, we need to measure the degree of synchrony in the system. In this paper we125

use two measures of synchrony: the Synchronization Order Parameter (a global measurement) (Noble et al.,126

2015) and the Degree of Agreement (a pairwise measurement) (Buonaccorsi et al., 2001).127

Synchronization Order Parameter128

We use the synchronization order parameter as defined in Noble et al. (2015) and inspired by its use in129

statistical physics. A magnetic system, modeled with Ising model (Goldenfeld, 1992), is composed of N130

magnetic dipole moments (spins) that can be in either an "up" (+1) or "down" (−1) state. The order131

parameter or magnetization of such systems is defined by the average over all the spins. A magnetization of132

either +1 or −1 indicates perfect order in the system where all the spins are aligned and the magnetization133

near zero shows complete disorder.134

In the context of two-cycle ecological oscillators, each oscillator is assigned a two-cycle variable,135

mi,t = (−1)t+1(si,t+1 − si,t)/2. (2)

Here mi,t has information about the amplitude and the phase of the oscillator. The phase of the oscillator136

refers to whether the maximum happens in odd or even time steps (arbitrarily called positive or negative137

phase, respectively) and is equivalent to the +1 or −1 spin in a magnetic system. Oscillators i and j are in138

synchrony if mi,tmj,t > 0. The spatial average of equation 2, over the entire lattice, gives us the Instantaneous139

Order Parameter,140

Instantaneous Order Parameter =
1

N

N∑
i=1

mi,t, (3)

where N = Lx × Ly is the total number of the oscillators on the lattice. To measure the Synchronization141

Order Parameter, we take a time average of the absolute value of equation 3,142

Synchronization Order Parameter =
1

T − Tb − 1

T−1∑
t=Tb

∣∣∣∣∣ 1N
N∑
i=1

mi,t

∣∣∣∣∣ , (4)

where Tb is the waiting time to allow the system to reach the stationary state and T is the total observation143

time.144

5



Degree of Agreement145

Buonaccorsi et al. (2001) defined the Degree of Agreement for two fluctuating time series to measure the146

average number of time steps where the two oscillators change in the same direction, which reflects the degree147

of synchrony between them. Two time series change in the same direction from time t to time t+ 1 if the148

product of their first difference is positive (di,tdj,t > 0, where di,t = si,t+1 − si,t). We define,149

Aij,t =


1, di,tdj,t > 0

0 otherwise.

(5)

Therefore, in the context of this study, the Degree of Agreement for two oscillators can be written as150

Aij =
1

T − Tb − 1

t=T−1∑
t=Tb

Aij,t. (6)

The Degree of Agreement for a lattice is the pairwise average,151

Degree of Agreement =
1

N(N − 1)/2

∑
i

∑
j<i

Aij , (7)

which is expected to have a minimum around 0.5, since independent oscillators will be in-phase by chance152

50% of the time.153

3 Results154

3.1 Individual Oscillator155

Isolated Oscillator156

We start with the simplest case of an isolated tree, as it provides information regarding the internal dynamics157

in different regimes under the effect of noise. The time series obtained from an individual oscillator in the158

fixed point (noise-induced oscillations, r < 6.8) and two-cycle (noisy intrinsic oscillations, r > 6.8) regimes159

increasingly resemble each other as stochasticity increases (figure 2, top panel in each box).160

When environmental stochasticity is small, the deterministic skeleton of the tree’s internal dynamics161

can be detected by looking at its power spectrum (third panels, figure 2a-f) and autocorrelation function162

(fourth panels). However, for the larger noise intensities, the transient two-cycles in the stable regime163

are continually re-excited, and intrinsic two-cycles in the cyclic regime are masked by the environmental164

fluctuations. Therefore, the distinction between the noise-induced and noisy intrinsic oscillation becomes165

more obscure and difficult to detect (figure 2c & f).166

The autocorrelation (AC) of the resource level of the tree in the two-cycle regime (r = 7.1), with weak167

noise, shows a steady oscillation. However, as the environmental noise becomes stronger, noise becomes168

the dominant driver in the dynamics of the tree’s resource levels, resulting in damped oscillations with a169

characteristic time that decreases with increasing noise intensity (figure 2d-f, fourth panels). For a tree in170
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the fixed point regime (r = 6.5), environmental noise is the cause of the observed oscillations and therefore,171

its autocorrelation decays with the characteristic time inversely related to the noise intensity (figure 2).172

The relationship between the characteristic time and the noise intensity of noise-induced and noisy intrinsic173

oscillators are shown in Appendix E.174

Lastly, a change in the sign of the two-cycle variable, mi,t, represents the change in the phase of the175

oscillation (color coded in figure 2, top two panels). The distribution of the two-cycle variable clearly distin-176

guishes noise-induced and intrinsic oscillations. For the noise-induced oscillator, mi,t shows an approximately177

Gaussian distribution centered on zero whose width increases with noise intensity. For the noisy intrinsic178

oscillator, there are two distinct phases of oscillations and the noise causes the oscillator to switch between179

the two phases, therefore, the distribution is bi-modal. When the noise is weak, the bi-modality is hidden180

because the switching time between the phases exceeds the observation time but is nonetheless implied by181

the displacement of the single peak from the origin together with the required symmetry of the distribution.182

As noise becomes more dominant, large fluctuations are reflected in the form of a bi-modal distribution with183

two connected peaks (figure 2e). Under the effect of strong noise, the distribution approaches Gaussian with184

fat tales. A more detailed study of the evolution of this distribution under the effect of noise can be found in185

Noble et al. (1990).186

Individual Oscillator on a Lattice187

To make our analysis more relevant to real-world systems, we now study an individual tree that is part of188

an orchard (figure 1b). The chosen tree is far from the boundary of the lattice and is coupled to its four189

nearest neighbors. For parameter values (r and σ) that fall above the critical line (figure 3 center plot, solid190

line), the entire orchard is synchronized and all the trees are collectively in either the positive or negative191

phase of oscillation; otherwise, the orchard is spatially disordered. Notice that this critical line is distinct192

from the deterministic bifurcation point (dashed line) that determines whether oscillations are noise-induced193

or intrinsic, though the two lines are expected to meet at zero noise.194

At the first glance, the power spectrum and autocorrelation of a tree in a lattice (figure 3) appear similar195

to that of an isolated tree. The internal dynamics of the oscillator under the weak stochastic effects is evident196

from its power spectrum and autocorrelation function (figure 3 left two panels). As the noise increases197

and becomes dominant, the internal dynamics are masked and undetectable (figure 3 right two panels).198

In the transition from weak to strong noise, the power spectrum becomes noisier and the characteristic199

autocorrelation time decreases. The deterministic bifurcation line divides noise-induced from intrinsic cycles,200

but when noise dominates the dynamics, the difference may not be detectable. In contrast, the critical line201

divides these noise dominant dynamics from dynamics ordered by internal processes. As such, it is the critical202

line rather than the bifurcation point that corresponds to a significant change. While in the case of the203

isolated oscillator, any amount of noise will eventually change the phase of the oscillator and therefore lead204

to the decay of the autocorrelation function, but an oscillator inside the lattice in the synchronized regime205

is protected from noise and any occasional switching of the phase due to noise is restored by the collective206
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dynamics of the entire lattice. As we increase the noise while r is still in the two-cycle regime, the entire207

orchard goes through a phase transition and the competition between the coupling, internal dynamics, and208

the environmental noise becomes more fierce. As we increase the noise further into the disordered regime,209

while the environmental noise is not the driver of the oscillations (as it is in the fixed point regime), it is210

dominating the internal dynamics. Therefore the characteristics of the oscillations (power spectrum and211

autocorrelation) resembles the ones where r is below the bifurcation point. The power spectrum shows212

concentrated fluctuations close to the two-cycle frequency and the autocorrelation shows decaying oscillations.213

The distribution of the two-cycle variable, mi,t, in the fixed point regime (green dots in figure 4a) is214

Gaussian with kurtosis equals zero and the width of the distribution increasing with the noise intensity. (See215

Appendix C for a detailed explanation of the relationship between the kurtosis and the Binder Cumulant,216

another well-known quantity from statistical physics.) On the other hand, following the path of the blue217

stars, the kurtosis starts from zero when r = 6.5 and becomes more and more negative as we increase r and218

move toward the critical line reaching its lowest value when the parameter falls on the critical line (figure 4c).219

As r increases and crosses the deterministic bifurcation line the distribution changes from normal to a wide220

distribution with narrow tails (platykurtic) and finally becoming bi-modal as we approach the critical line.221

As we cross the critical line into the synchronized phase, the kurtosis suddenly becomes positive and the222

distribution shows a skewed long-tailed distribution with an off-zero mean. In the ordered phase, where all223

the oscillators are synchronized, an individual oscillator maintains its phase and the change of sign of the224

two-cycle variable happens with a very small probability.225

Analyzing an individual oscillator as part of the collective and in the context of the phase transition offers226

some new insights into the categorization of "Noise-Induced" and "Noisy Intrinsic" oscillator. What we see227

from both figures 3 and 4 is that the behavior of the system is very similar as long as the parameters are in228

the disordered phase. While continuous changes can be detected as we cross the deterministic bifurcation229

line, the sharp, hard-to-miss transition happens when the parameter cross the critical line and the system230

transitions into the ordered regime.231

3.2 Two-Oscillator System232

In the previous sections, we used time series analysis to study the oscillatory behavior of an individual tree.233

However, the spatiotemporal patterns (like synchrony) that are observed in the collective dynamics of the234

communities can provide indirect information about the main driver of the observed fluctuations. In this235

section, we start with the smallest size of community, a system consisting of two coupled trees (figure 1c).236

Then, we consider the behavior of two nearest neighbor (figure 1d) and non-nearest neighbor trees (figure 1e)237

in an orchard.238

Isolated Coupled Pair of Oscillators239

Figure 5a and b show the Synchronization Order Parameter (figure 5a) and the Degree of Agreement (figure240

5b) as functions of r (the growth rate) and σ (the noise intensity). The green shaded area in both figures241
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shows the fixed point regime where the noise-induced oscillation happens. The blue shaded area illustrates242

the two-cycle regime where the intrinsic oscillations exist. We can see a noticeable change in the degree of243

synchronization, observed in both measures of synchrony, around the deterministic bifurcation point when244

the noise is weak. Synchrony is only achieved when the internal dynamics of oscillators are in the two-cycle245

regime and not masked by strong stochastic effects. Purely noise-induced oscillators with this degree of246

coupling do not synchronize regardless of the level of stochasticity. However, this distinction is obscured as247

stochasticity weakens synchrony in the two-cycle regime.248

The increase of the Synchronization Order Parameter with the noise intensity (σ), when r < 6.8, is an249

artifact related to the definition of the Synchronization Order Parameter and the two-cycle variable and250

is not an indication of increased synchronization. As the noise gets stronger, it causes oscillations with251

larger amplitudes and therefore larger mi,t associated with each tree. This results in larger values of the252

Synchronization Order Parameter. This effect is not present in figure 5b, since the Degree of Agreement is253

independent of the amplitude of the oscillations.254

Two-Oscillator Dynamics on a Lattice255

In an orchard, the dynamics of neighboring trees (figures 5c and 5d) are close to the dynamics of the isolated256

pair discussed in the previous section. For non-neighboring trees, there is a sharper transition from in-phase257

to out-of-phase for all values of the noise (figures 5e and 5f). As the noise increases the transition happens at258

a larger r inside the two-cycle regime. The transition from synchrony to disorder observed in the measure of259

synchrony of the two non-neighboring trees matches the critical line on the parameter phase diagram. The260

smoother and more gradual transition from synchronization to disorder in the neighboring trees, under strong261

noise, is due to the direct coupling between the two trees. The two neighboring trees become correlated before262

the long-range correlation is formed in the entire lattice (as we will discuss in the next section). Also, because263

the Degree of Agreement, by definition, is independent of the amplitude of the oscillations, the transition264

from the in-phase state to out-of-phase state appear to be sharper compared to the Synchronization Order265

Parameter.266

3.3 Collective Dynamics of Coupled Oscillators on a Lattice267

The phase transition from synchrony to disorder in the two cycle regime is most clearly observed when268

the entire lattice is taken into account (figure 6), which show the behavior of the Synchronization Order269

Parameter and the Degree of Agreement in the entire lattice. In the ordered (synchronized) regime, the270

internal dynamic of the trees (two-cycle behavior) and the nearest-neighbor coupling overcome the effect of271

the stochasticity. As a result, long-range correlation is formed across the lattice and the orchard becomes272

synchronized. This feature gives us information about the deterministic skeleton of the system. If an entire273

system is synchronized, the individual units are intrinsic oscillators. However, the converse is not necessarily274

true. In the disordered phase, noise becomes the dominant driver of the dynamics and overcomes the coupling275

and any internal two-cycle behavior of each unit and the synchronization cannot be achieved. Both measures276
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of synchrony rise sharply at the transition from disordered to synchrony. These results tell us that, at the277

collective level, the measures of synchrony cannot distinguish between the noise-induced and noise dominated278

dynamics.279

4 Discussion280

In this paper, we reframed the problem of distinguishing between noise-induced and intrinsic oscillators and281

asked whether noise is the driver of the observed dynamics. This question can be discussed in terms of the282

competition between the internal dynamics and the coupling (in the case of spatially extended systems) on one283

hand and stochasticity on the other hand. At all scales of observation, once the external noise becomes the284

dominant driver of the dynamics, distinguishing between different deterministic skeletons becomes challenging.285

At the collective level, synchronization and the formation of spatial patterns can provide indirect information286

about the driver of the observed fluctuations. Spatially extended intrinsic oscillators (unlike noise-induced287

oscillators), can readily synchronize due to local coupling under the effect of weak noise. As the level of288

stochasticity increases, the system goes through a phase transition. Beyond the critical value of the noise, the289

synchronization collapses into complete disorder. However, if the noise is the source of the fluctuations, the290

system cannot synchronize and remains in the state of disorder independent of the noise intensity (i.e., there291

is no phase transition).292

Ecologists use oscillatory behavior observed in ecological systems to learn about the forces behind these293

oscillations (Hunter and Price, 1998; Elton, 1924). Many studies have analyzed the time series obtained from294

the real systems (or ecological models) to match the stochastic behavior to their deterministic mechanisms.295

However, due to inherent stochasticity of the ecological systems, many of the identified mechanisms behind296

the oscillatory behavior result in very similar dynamics and therefore, the time series analysis approach can297

be insufficient. We used a spatially extended discrete time noisy ecological model with a period-doubling298

bifurcation and compared the dynamics of the system in the stable fixed point regime versus its dynamics299

in the two-cycle regime. At the level of an individual oscillator, the distribution of the two-cycle variable300

can provide the most insights into the mechanisms behind the observed fluctuations. While the distribution301

is Gaussian if the noise is the only cause of fluctuations, in the two-cycle regime the distribution becomes302

bimodal as long as the noise has not overcome the internal two-cycle dynamics. At the collective level, we303

used two measurements of synchrony: the Degree of Agreement which is a pairwise measurement of synchrony,304

and the Synchronization Order Parameter which measures the global degree of synchronization across the305

lattice. We showed that if the system consists of coupled intrinsic oscillators synchronization can be achieved306

if the noise is not overpowering the internal dynamics. This feature is not observed in a system made of307

coupled noise-driven oscillators.308

Applying what we learn from ecological models to real systems is always accompanied with limitations309

and compromises. To analyze the spatiotemporal characteristics of the system, the Synchronization Order310

Parameter and the Degree of Agreement are measured asymptotically. The time that it takes for the system311
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to reach the asymptotic state (equilibrium) is a function of the system’s size and the initial conditions. The312

closer the system is to its equilibrium state the shorter the time to reach equilibrium. In this paper, our choice313

of the initial conditions in the vicinity of the disordered regime has inevitably lengthened the relaxation time314

to reach the ordered steady state. In many ecological systems, an initial state closer to the ordered state315

might be considered more realistic since a sudden perturbation can have synchronizing effect and reset the316

clock of the individual oscillators. However, since all our measurements are done in equilibrium, the final317

results are independent of the initial conditions and our results can be applied to different initial conditions318

(Appendix C). Depending on the specific ecological system under investigation, the system size used in this319

paper can be considered too large, or too small. The relationship between the system size and the time to320

reach equilibrium is well-studied in the statistical physics (Lin and Wang, 2016; Walter and Barkema, 2015;321

Oerding, 1995) . At the critical regime the time that it takes for the system to reach equilibrium increases as322

a power of the system size (Lin and Wang, 2016; Family, 1990). Smaller systems require shorter times to323

reach equilibrium, however, the smaller the system, the larger the statistical error will be. While working324

with models, averaging over many realization is used to minimize the statistical error, however, while working325

in real systems, this is not a practical approach. We showed in Appendix D that even without ensemble326

averaging, the results remain qualitatively unchanged.327

The models studied in this paper are part of larger categories of systems. They are unimodal maps with328

period-doubling route to chaos. They go through a phase transition from synchrony to disorder. In their329

critical regime, the scaling behavior of their statistical quantities is similar to the Ising model of magnetic330

moments. Therefore, they belong to the Ising universality class (Noble et al., 2015; Solé, 2011; Cardy,331

1996; Goldenfeld, 1992). These features allow us to generalize our results beyond the two models studied332

in this paper and expand our discussion to all the systems that can be described by models with a period333

doubling bifurcation (e.g logistic map, host-parasitoid model, etc). Synchronization and phase transition are334

observed in systems with different geometrical structures (Morita and Suzuki, 2016). While we performed our335

simulations on a square lattice, we believe the results are independent of the geometry of the system and can336

be applied to any oscillatory system that goes through a phase transition. The question of the mechanisms337

behind oscillatory behaviors observed in nature is an active question in a variety of fields. We believe our338

results can provide insight into this question for oscillatory systems where a transition from synchrony to339

disorder is observed.340
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Figure 1: The scales of behavior studies in the paper. We analyse the time series of an individual oscillator

(tree) in an isolated setting (the bifurcation diagram describes the deterministic dynamics of an isolated

individual tree. The first bifurcation happens at r = 6.8) (a) and in the community (orchard) (b). Then

we expand our view to include two-units, isolated (c) and in the orchard (d and e). Finally we study the

collective dynamics of the entire orchard. The parameter phase diagram shows the collective dynamics of the

system (f).
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Figure 2: Dynamics of st for an isolated tree with r = 6.5 in the fixed point regime (left column) and r = 7.1

in the two-cycle regime under the effect of weak, medium, and strong noise (from top to bottom). Each box

shows the time series, the distribution of the two cycle variable, the power spectrum, and the autocorrelation

(AC) of the time series. The oscillator changes its phase under the effect of the noise (maximum happening

in odd years versus even years). The change in phase is associated with the change in sign of the two-cycle

variable. Different phases are color coded with different shades on the time series and the distributions of the

two-cycle variable. In the fixed point regime, when the noise is too weak, the oscillator can stay close to its

stable fixed point. Therefore the two cycle variable will be close to zero and it will be difficult to detect its

phase. The time regions when this happens are left white in the time series graphs in figure 2. The time series

in the left and right columns become increasingly similar as the noise intensity increases (first panels in all

the boxes). The characteristic time for the decay of the amplitude of the autocorrelation (AC) decreases as

the noise intensity increases. The characteristic times shown in this figure are measured from one simulation

and are subject to statistical error (fourth panels in all the boxes).
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Figure 3: The power spectrum (note the different scales on the y-axis in each panel) and the autocorrelation

for different noise values for r = 6.5 and r = 7.1 presented in the context of the phase transition. The

plot at the center shows the r − σ phase diagram. The black solid curve is the critical line separating the

synchronized phase from the disordered phase.
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(a)

(b)

(c)

Figure 4: Panel (a) shows the parameters associated with panels (b) (green circles) and (c) (blue stars) in the

context of the phase space. (b) The kurtosis of the distribution of the two-cycle variable is shown for different

values of σ when r = 6.5. (c) The kurtosis for different values of r when σ = 0.46. The insets in both (b) and

(c) show four samples of the distribution of the two-cycle variable for values of σ and r indicated with larger

symbols on all the panels.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Measures of synchrony for two trees: (a) the synchronization Order Parameter as a function of r

(the model’s rate) and σ (noise intensity) for a pair of isolated coupled trees, (b) the Degree of Agreement as

a function of r and σ fora pair of isolated coupled trees. (c) and (e) the synchronization Order Parameter

as a function of r and σ for two nearest neighboring and non nearest neighboring trees inside an orchard

respectively. (d) and (f) The Degree of Agreement as a function of r and σ for two nearest neighboring and

non nearest neighboring trees inside an orchard respectively. The green shaded area in the r − σ plane shows

the fixed point regime while the blue shaded area shows the two-cycle regime. κ = 0.15 and l = 7 for all six

panels.
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(a)
(b)

(c)
(d)

Figure 6: Measure of synchrony for the entire lattice: (a) and (b) the synchronization Order Parameter of

the entire orchard as a function of r (the model’s rate) and σ (noise intensity) (a) and as a function of σ for

different r values (b). (c) and (d) the Degree of Agreement for the entire orchard as a function of r (the

model’s rate) and σ (noise intensity) (c) and and as a function of σ for different r values (d). The green

shaded area in the r − σ plane shows the fixed point regime while the blue shaded area shows the two-cycle

regime. κ = 0.15 and l = 7 for all panels.
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