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Abstract 
 

Much of the work on the normalization of RNA-seq data has been performed on human, notably cancer 
tissue. Little work has been done in plants, particularly polyploids and those species with incomplete or no 
genomes. We present a novel implementation of GeTMM (Gene Length Corrected TMM) that accounts for 
GC bias and works at the transcript level. The algorithm also employs transcript length as a factor, allowing 
for incomplete transcripts and alternate transcripts. This significantly improves overall normalization. The 
GCGeTMM methodology also allows for simultaneous determination of differentially expressed transcripts 
(and by extension genes) and stably expressed genes to act as references for qRT-PCR and microarray 
analyses. 
 
 
Introduction 
 

As RNA-seq analysis has come to dominate transcriptomic analyses (a switch from the previous front-runner 
of microarrays) due to its massively sequencing of cDNA (Mortazavi et al. 2008). RNA-seq also allows for  
the study of novel transcripts along with a better range of detection and lower technical variability (Zhao et 
al 2014) and provides a high degree of agreement with the currently accepted ‘gold standard’ in 
transcriptomic expression, qRT-PCR at both the absolute and relative expression analysis levels (Su and 
Mason 2014). A typical RNA-seq experiment involves several steps to enable data analysis: trimming 
(Williams et a1 2016), alignment (mapping) (Borozan et al. 2013; Yang et al. 2015), read counting, data 
normalization and analysis (Lin et al. 2015; Li et al. 2017). 
 
As much of the developmental work in RNA-seq analyses derives from the human genome, sequence reads 
are aligned to a reference genome, and the number of reads mapping to that feature are proportional to the 
length and abundance of the feature — with the ‘gene’ feature being a surrogate for all the transcripts 
transcribed from that gene. 
 
Little work has been done on error correction of RNA-seq data for the discovery of stably-expressed 
transcripts/genes and differentially expressed genes in plants, particularly complex polyploids though there 
are some whole genome analyses (Park et al 2019; Gupta et al 2012). However, most of the developmental 
work in this area has been performed on human data, particularly comparing cancer and normal tissue 
datasets. Typical normalization methods for RNA-seq data typically allow for either intersample 
comparisons (for differentially expressed genes) or intrasample comparison (for discovery and/or validation 
of gene signatures) (Smid et al. 2018). 
 
For other organisms, where no genome is available a transcriptome assembly may be substituted for the 
complete genome. Where both the genome and transcriptome are incomplete reads may be mapped g to a 
subset that only includes the transcripts/genes of interest (Peri et al 2020). However, as depth of RNA-seq 
data can vary, normalization has to be performed to correct for differences between sequencing runs (e.g. 
library size and relative abundances) prior to any downstream analyses. 
 
The most commonly used RNA-seq normalization methods are TMM, as implemented in edgeR (Robinson 
et al. 2008) and RLE, implemented in DESeq2 (Anders and Huber 2010; Love et al. 2014). However, neither 
of these methods employ any gene length normalization (their aim being to identify differentially-expressed 
genes between samples and thus they assume that the gene length is constant across samples. TPM 
(Transcripts Per kilobase Million) normalization (Li et al. 2008) extends the previously used RPKM  (Reads 
Per Kilobase per Million reads) for single-end sequencing protocols (Mortazavi et al 2008) and its paired-end 
counterpart, FPKM (Fragments Per Kilobase per Million reads) (Trapnell et al. 2008), as both  RPKM and 
FPKM  proved to be inadequate and biased  (Bullard et a1. 2010; Olshack et al, 2009; Wagner et al 2012). 
TPM employs a simple normalization scheme, where the raw read counts of each gene are divided by the 
gene length in kb and the total sum of all RPK is considered the library size of that sample. Thus TPM can be 
used for fully-elucidated genomes and for partial transcriptomes.  Finally, the library size is divided by a 
million, and that number is employed as the scaling factor to scale each genes’ RPK value. 
 
Under ideal conditions, a normalization methodology should account for all the major sources of error in a 
sample and should yield a dataset on which both between-sample and within-sample analyses can be 
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performed. Smid et al. (2018) aimed to do this in their implementation of GeTMM (Gene length corrected 
trimmed mean of M-values) which combines gene-length correction with the normalization procedure TMM. 
GeTMM performs similarly TPM in intersample analyses but has clear advantages in intrasample 
comparisons (Smid et al. 2018). 
 
Recent studies have shown that, in plants, gene expression is highly tissue specific and often varies with 
tissue age and the physiological status of the plant and the exact experimental conditions and, to date, there 
has not been any clear report of universal reference genes (Kozera and Rapacz 2013; Joseph et al 2018; 
Hong et al. 2008; Gutierrez et al. 2010). Coupled with recent findings that commonly-employed 
housekeeping genes may be far more variable in their expression than previously realized. Historically, 
selection of reference genes for qPCR studies has typically been arbitrary, with genes such as  25S and 18S 
rRNAs, GAPDH, and Actin commonly being selected without experimental validation (this being true for 
both plant and animal studies). In concert, these genes were often employed with the assumption that they 
are stably expressed across tissues. However, we now know that in many instances these commonly used 
RGs exhibit tissue and treatment specific variability (Chari et al., 2010; De Jonge et al., 2007). A previous 
preliminary study on a number of human cell lines and tumour versus matched normal tissue samples 
demonstrated that inappropriate choice of RGs may lead to errors when interpreting experiments involving 
quantification of gene expression (Janssens et al. 2004). 
 
In an attempt to correct for over-expressed genes with variable expression edgeR employs the Trimmed 
Means of M-values (TMM) (Robinson and Olshack 2010) in which highly expressed genes and those that 
have a large variation of expression are excluded, whereupon a weighted average of the subset of genes is 
used to calculate a normalization factor. In the edgeR implementation precision (inverse of variance) weights 
are used to account for the fact that log fold changes from genes with higher read counts have lower variance 
on the logarithm scale. This typically excludes very highly expressed transcripts such as 25S and 18S 
ribosomal RNAs along with other very highly expressed transcripts from the initial transcript pool. 
 
Many normalization methodologies assume that, depending on whether genes or transcripts are the base unit, 
that the length of this base unit is the same between samples. In diploids, this can be assumed to be correct at 
the gene level. However in organisms with high ploidy allelic variants of genes make this unlikely. If t he 
experiment is being performed at the transcript level, due to alternate transcripts (particularly tissue specific 
alternate transcripts) the assumption does not hold at all. Thus corrections for transcript/gene lengths are 
required. 
 
Panicum virgatum (switchgrass) is a tall, upright, bunchgrass that is a feature of North American prairies. 
Panicum virgatum is seen as potentially being an important bioenergy crop. It is an outcropping species that 
is an hybrid of two ancestral species (Lovell et al. 2021). Tetraploid P. virgatum plants have variously 
hybridized to generate disparate octoploid forms (Triplett et al 2012). 
 
We extend the GeTMM implementation by removing over and under-expressed transcripts with edgeR and 
develop a novel PERL implementation to apply effective transcript length (including alternate transcript 
variants), GC skew and library lengths as additional normalization variables and apply this to public leaf 
RNA-seq datasets in Panicum virgatum cultivars. Being highly polyploid and with a newly available high 
quality genome sequence (Lovell et al 2021) and numerous high depth RNA-seq datasets available, many 
with multiple replicates Panicum virgatum makes an excellent reference test species for the software. 
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Materials and Methods 
 
 
Identification of Switchgrass Datasets 
 
Analyses on algorithm efficiency were performed using the tetraploid Panicum virgatum AP13 v5.1 (Lovell 
et al. 2021) genome as a reference. All transcripts (not just primary transcripts) were exported from 
Phytozome v 13 (Goodstein et al. 2012). Two datasets with three replicates apiece were employed for the 
analyses of differential expression. These were Panicum virgatum cv Alamo leaf day 9: SRA accessions 
SRR12851488; SRR12851477; SRR12851469 and Panicum virgatum cv Alamo leaf 5 months: SRA 
accessions SRR6485351; SRR6485352; SRR6485353 (Chen et al 2020). 
 
Read Pre-processing and Mapping 
 
Prior to mapping, the reads to the reference transcripts polyA tails were manually clipped from transcripts 
(where they occurred). 
 
The 9-day leaf was employed as control and the 5-month leaf samples were the test samples. For the SRA 
datasets, following Corchete et al. (2020) adapter removal only was performed with Trimmomatic 0.39 
(LEADING:4 TRAILING:4 SLIDINGWINDOW:4:20MINLEN:50) (Bolger et al. 2014). However, instead 
of directly performing quality trimming with Trimmomatic reads were next error corrected with the error 
correction pipeline of SPAdes v 3.15.1 (Prjibelski et al. 2020). For paired end data, subsequent to SPAdes 
error correction the paired end data only was passed to Trimmomatic for quality trimming. For single end 
data all error corrected reads were employed as input for Trimmomatic. 
 
Trimmed and error corrected reads were mapped to individual transcript sequences padded with Ns using 
HISAT2 v2.2.2.1 (Kim et al. 2019) mapped reads were enumerated with HTSeq v 0.12.4 (Anders et al. 2015) 
using a custom  the Union approach. HISAT2’s native SAM output format was piped to SAMtools (Danecek 
et al. 2021) and output in BAM format. Mapped reads were analyzed for completeness of the transcript and 
the presence of missing exons, before being employed as input to our novel normalization algorithm. 
 
Data Export 
 
Based on transcript sequences and read mappings, the following data were collected for input into the GeGC-
TMM methodology: read lengths and insert sizes from the bam mapping file using samtools and picard tools; 
transcript sequence length and GC content using Emboss infoseq and geecee (Rice et al. 2000); count of 
mapped reads using Samtools. 
 
Algorithm Implementation 
 
GeGC-TMM methodology for normalizing RNA-seq data 
 
Transcripts were trimmed of adapter sequences and low-quality sequence regions using Trimmomatic (ref). 
Trimmed sequences were error corrected using the error correction portion of the SPAdes (ref) assembler 
pipeline. 
 
 
GC content is another major factor that requires normalization. Risso et al. (2011) demonstrated that full 
quantile normalization is the most appropriate approach. For this methodology genes are stratified according 
to GC-content, with the normalized expression measures defined as: 
 
!! = !! − $(!!: '" ∈ )(') + $(!#… . !!))         1 
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where k(j) denotes the GC-content stratum to which gene j belongs and T denotes the upper-quantile for 
control genes. The quantiles of the read count distributions are then matched between GC-bins, by sorting 
counts within bins and then taking the median of quantiles across bins. 
 
Prior to GeTMM normalization, GC normalization was performed in the Bioconductor R package EDASeq 
package (Risso et al. 2011) using the withinLaneNormalization and betweenLaneNormalization methods for 
inter-sample and intra-sample normalization, respectively. 
 
Outputs from EDASeq were input into the GeGC-TMM application, which is described below: 
 
For normalization, the overall methodology is based on the work of Smid et al. (2018) for data normalization 
and the work of Corchete et al. (2020) for the stability ranking of genes. Below is a full mathematical 
treatment: 
 
Define .$% as the observed count of mapped raw reads for gene g in library k. /$% is the true and unknown 
expression level (total number of transcripts) and 0$ is the length of gene g and 1% is the total number of 
reads in library k. 
 
For sequencing data, the gene-wise log-fold changes are defied as: 

 
2$ = log&(

'!" ("⁄
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the corresponding absolute expression levels are: 
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M and A values are employed to trim those genes/transcripts with too high (high expression and high 
variance) and too low (incomplete coverage). In our implementation we trimmed 
2$%
,  (sample k relative to sample r (where r is the reference set) for gene g) by 20% and the absolute 

expression, Ag, by 5%. 
 
Thus, the final set of genes G* is a subset of the initial set G (ie 9 ∈ 9). The above is implemented in the 
edgeR package (Robinson and Oshlack 2010) and this was employed for the initial stages of analysis. 
 
The normalization factor for a sample k relative to a sample r is obtained as: 
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And: 
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There is an additional implicit trimming here as .$% and .$, must be greater than 0. 
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For GeTMM normalization, mapped read data are first converted to RPK (reads per kilobase) and are scaled 
with the TMM scale factor, as defined above. 
 
Converting raw read counts to RPK is as simple as dividing a gene (or transcript’s) raw read mapping count 
by the gene length in kilobases. 
 
;567 =

'!"
8!(%9:)

           7 

 
However, rather than the full length of the gene (or transcript of interest) it is better to use lg̃, the Effective 

Length of the feature of interest which is defined thus: 

<=$ = <; − /<8= + 0           8 
li is the length of the feature of interest, μFLD is the mean of the fragment length distribution, as determined 
from the mapped reads and ℒ is the sequence bias (if the mapping technique provides it). If ℒ is not 
provided, it is typically set to 1. For species without a reference genome and only an incomplete 
transcriptome 
 
 
RPK scale factor is given as: 
 

>?@ABC<DE;(>?@>) =
∑ $*+,×&-./'(122"

($))4!
#@5         9 

 
Where n is the total number of genes in G** (G** being the set of all genes after edgeR and GeTMM 
trimming). 
 
The normalized read count for gene g thus becomes: 
 
;F =

$*+,
5676

            10 
 
Where g̃ represents the GeTMM normalized gene count. 
 
 
Identification of Stably-expressed Genes 
 

Corchete et al (2020) in their analysis of best in breed methodologies for RNA-seq based procedures for gene 
expression quantitative analyses advocated the use of coefficient of variance for ranking gene expression 
stability. 
 
By their definition, 
 
GHI =

(A=
BCD($)            11 

 
Where med(g) is the median value for gene ‘g’ and MAD is the median absolute deviation as given by: 
 
26J = KLM(|O; −KLM(O)|)         12 
 
Where X is the xth gene and ‘i’ is the i’th sample and, in terms of algorithmic implementation: 
 
|O; −KLM(O)| = P(O; −KLM(O))&        13 
 
By calculating the CoV for each gene, the genes can be ranked in order of stability. 
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The full methodology and implementation methodology with how to run the code is given in the code itself 
(open source) and the accompanying documentation. 
 
 
Differential Expression Analysis 
 

After running the RNA-seq mapped data through the GeGC-TMM application fold change was estimated 
from the edgeR (Robinson et al. 2010) regression model fit. To compare the cumulative effects of the 
different normalization protocols each method was applied in sequence and compared with the results of the 
full pipeline. 
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Results 
 
As the implementation of the GC-GeTMM is step-wise output from the individual steps can be exported for 
analysis. The RNA-seq data for nine day old and five month old plants were normalized independently. Each 
dataset had three replicates. Normally the normalized replicates would be averaged prior to determination of 
the coefficient of variation. 
 
In this case, all datapoints were size sorted and the log2 of the length was determined. Fold change was 
determined with edgeR and log2 of fold change was plotted against log2 of transcript length (Figure 1). For 
each transcript length the mean fold change was plotted in red. 
 
Each step in the normalization process (GC, TMM, GeTMM) yields improvements in the data quality as the 
midline curve (red in Figure 1) tends towards the X-axis. 
 
Subsequent to normalization, the replicates were merged and CoV values were determined (Table 1). 
 
Figure 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Analysis of the effects of different normalization methodologies on the quality of differential expression studies for Panicum 
virgatum 9 day old and 5 month old leaves. Top left: comparison of fold change against transcript length for the original data. Top 
right: effect of GC normalization on data quality. Bottom left: effect of TMM normalization on the GC normalized data. Bottom 
right: effect of combining GC normalization with GeTMM normalization. 
 

CoVs were determined for all the transcripts at  the genome (apart from those transcripts that failed TMM 
analyses as being too highly and unstably expressed). Focussing at the transcript level also allows 
differentially expressed and orthologous transcripts from the two founding genomes of P. virgatum to be 
analyzed. The results of the analysis are presented in Table 1. 
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Table 1 
 

Panicum Gene ID Description CoV 

Pavir.7KG325700.1 PROLYL 4-HYDROXYLASE ALPHA SUBUNIT 0.05619045672458 

Pavir.5NG379000.1 Ca2+-dependent phospholipid-binding protein 0.104374467 

Pavir.6KG285300.1 
4-coumarate--CoA ligase / 4-coumaryl-CoA 

synthetase 0.107080581736534 
Pavir.2KG453700.1 translation initiation factor 1 (EIF1, SUI1) 0.112553429 
Pavir.1NG433900.1 AP-2 complex subunit mu-1 (AP2M1) 0.119966947 
Pavir.3NG140751.1 actin-related protein 1 0.122978337 
Pavir.5KG391700.1 WD40 repeat-containing protein 0.12303473 
Pavir.5KG148400.1 RNA polymerase II transcription mediators 0.125587916269135 
Pavir.9KG227366.1 TIP41-like family protein 0.128201355417764 
Pavir.2NG416900.1 CDK9 kinase-activating protein cyclin T 0.131326736530266 
Pavir.1KG485600.5 Endomembrane protein 70 protein family 0.133528993616846 
Pavir.9KG031100.1 DELLA protein (DELLA8) 0.133608997 

Pavir.1NG511300.1 

SERINE INCORPORATOR // SERINC-DOMAIN 
CONTAINING SERINE AND SPHINGOLIPID 

BIOSYNTHESIS PROTEIN 0.134423823005138 
Pavir.2NG432600.1 Uncharacterized conserved protein 0.134894278622994 
Pavir.4KG408400.1 rab geranylgeranyl transferase like protein 0.135144550730235 
Pavir.5NG560301.1 SCY1-like protein 1 (SCYL1) 0.135881204515391 
Pavir.1KG194700.1 Protein phosphatase 2A-2 0.136308640241443 

Pavir.9KG032081.1 
Cytochrome P450 CYP4/CYP19/CYP26 

subfamilie 0.136568020956609 

Pavir.5NG626600.1 
Splicing factor U2AF, large subunit (RRM 

superfamily 0.137697229433054 
Pavir.1KG097800.1 Uncharacterized conserved protein 0.139371804123243 
Pavir.2NG477100.1 Serine/threonine protein kinase 0.140096820985049 

Pavir.1NG540200.1 
Kelch motif (Kelch_1) DCD (Development and 

Cell Death) domain protein 0.141345511421789 
Pavir.6KG381900.1 ARM repeat superfamily protein 0.141650316655419 

Pavir.5NG159400.3 
m3G-cap-specific nuclear import receptor 

(Snurportin1 0.141921598182036 
Pavir.5KG143700.1 Scd6-like Sm domain (LSM14) 0.142188152694473 
Pavir.9NG382200.2 Pavir.9NG382200.2 0.142536947561398 
Pavir.3KG496500.2 TBP-associated factor 8 0.143578790730331 
Pavir.9KG020200.1 CDK inhibitor P21 binding protein 0.143948580886646 

Pavir.9NG181500.1 elongation factor 1 alpha-like protein (HBS1) 0.145170087677981 

Pavir.4KG212500.3 
mediator of RNA polymerase II transcription 

subunit 6 (MED6) 0.146550633770169 

Pavir.2KG279800.1 Putative u4/u6 small nuclear ribonucleoprotein 0.147489049610693 
Pavir.5KG4375

00.1 Vacuolar sorting protein VPS36 0.147708960475672 
Pavir.5KG548300.1 AAA-type Paste family protein 0.148404758593064 

Pavir.2KG218200.1 
mRNA cleavage and polyadenylation factor I/II 

complex, subunit Pcf11 0.148506533385334 

Pavir.1KG100300.1 
WI/SNF-related matrix-associated actin-dependent 

regulator of chrommatin 0.148535647781652 
Pavir.7KG338200.1 Trypsin-like peptidase domain (Trypsin_2) 0.144855315650112 

Pavir.1NG562600.1 
GLUTATHIONE REDUCTASE, 

MITOCHONDRIAL 0.148836769 

Pavir.9KG458870.1 
TRANSMEMBRANE PROTEIN ADIPOCYTE-

ASSOCIATED 1 0.149615523807001 
Pavir.4KG109292.1 AAA-type ATPase family protein 0.14991651892742 

 

Results of CoV analysis for the Panicum virgatum transcriptomes. Only those stably-expressed transcripts between 
the two tissues of interest with a CoV better than 15% are shown. 
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Discussion 
 

The quest for stably expressed genes in multiple tissues and developmental stages is essential for the 
normalization of gene expression analyses by qRT-PCR and microarray studies. qRT-PCR is currently 
accepted as the gold standard for expression analyses, but is generally expensive and time-consuming. 
Microarray analyses are very high throughput but can suffer from issues of sensitivity. RNA-seq can afford a 
middle way. Many datasets are readily available from NCBI’s sequence read archive (SRA) and individual 
RNA-seq datasets can be generated for a few thousand dollars. 
 
RNA-seq allows rapid mapping of reads to transcripts and the quick ranking of stable transcripts. Thus the 
GCGe-TMM application was developed to extend the Ge-TMM to correct GC bias along with transcript 
length bias. The application presented in this paper can simultaneously error correct RNA-seq data for import 
into other applications for differential expression analysis as well as ranking transcripts in terms of covariant 
of expression. 
 
Figure 1 demonstrates that the three steps of normalization employed (GC bias, TMM and length bias) all 
significantly improve the error profile of the data, making it suitable for further analyses. For whole genome 
analyconses (Table 1) a conservative cutoff of 15% was chosen (typical cutoffs range between  30 and 40% 
(refs). As the methodology for TMM excludes highly-expressed transcripts but unstably expressed 
transcripts. This excludes some of the common highly-expressed transcripts (25S rRNA, 16S rRNA, 
GAPDH, TATA binding protein (Thellin et al 1999; Vandesompele et al 2002). 
  
 Improved normalization leads to improved and more reliable differential expression analyses. 
 
 
 
Conclusion 
 

The GCGeTMM methodology presented in this paper affords improvements over the Ge-TMM 
implementation, particularly for monocot plants, with their generally higher GC content (Li and Du 
2014). 
 
The software described herein enables the simultaneous identification of stably expressed 
genes/transcripts and the identification of differentially-expressed transcripts at a whole genome 
and a gene/transcript level. It is applicable to species with complete genomes, but can also be used 
for those species without a genome (but with a transcriptome) as such it can be employed for 
orphan and under-funded species as it relies on transcript rather than gene level analyses. It can also 
be employed for subsets of transcripts (particularly for the analysis of stably expressed transcripts. 
 
As such, the application presents a major step forwards for the analysis of stably expressed genes 
and differentially expressed genes in RNA-seq based gene expression analysis for plants, polyploids 
and those species with only partial or unsequenced genomes. 
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