Diversity of EU habitat types is correlated with geography more than climate and human pressure
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Abstract:
Aims: Habitat richness, i.e. the diversity of ecosystem types, is a complex, spatially explicit aspect of biodiversity, which is affected by bioclimatic, geographic and anthropogenic variables. The distribution of habitat types is a key component for understanding broad-scale biodiversity and for developing conservation strategies. To test which factors are related with habitat richness we used EU habitat distribution data to answer the following questions: i) how do bioclimatic, geographic, and anthropogenic variables affect habitat richness? ii) which category is the most important? iii) how do interactions among these variables influence habitat richness and which combinations produce the strongest interactions?
Study area: European Union (excluding Greece) plus the United Kingdom.
Methods: We used the distribution maps of 233 terrestrial habitat types defined by the European Environmental Agency, to calculate habitat richness for the EU 10 km x 10 km grid map. We then investigated how environmental variables affect habitat richness, using generalized linear models, generalized additive models and boosted regression trees.
Results: The main factors associated with habitat richness were geographic variables, with negative relationships observed for both latitude and longitude, and a positive relationship for terrain ruggedness. Bioclimatic variables played a secondary role, with habitat richness increasing slightly with annual mean temperature and overall annual precipitation. An interaction between anthropogenic variables was important: the combination of increased landscape fragmentation and increased population density strongly decreased habitat richness.
Main conclusions: This is the first attempt to disentangle spatial patterns of habitat richness at the continental scale, as a key tool for protecting biodiversity. The diversity of European habitats is correlated with geography more than climate and human pressure, reflecting a major component of biogeographical patterns similar to the drivers observed at the species level. The interaction between anthropogenic variables highlights the need for coordinated, continental-scale management plans for biodiversity conservation.
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Introduction
The need to preserve dynamic ecosystems under changing climates and increasing anthropogenic pressure challenge traditional conservation approaches that are based on the current distribution of species. An application-oriented way forward may lie in protecting those landscape elements that support the coexistence of many species. Indeed, the habitat approach for conservation has been recently highlighted by the IUCN as a necessary step for conservation. Under this view, habitat diversity is a complex, spatially explicit measure of biodiversity (Bunce et al. 2013), which has proven to be a prominent driver for species diversity of a variety of taxa at the landscape scale (Kerr and Packer 1997, Keppel et al. 2016, Alsterberg et al. 2017, Dianzinga et al. 2020, Gibb et al. 2020).
According to the EU Habitats Directive (Council Directive 92/43/EEC), the term “habitat” refers to an environmental unit defined by specific abiotic and biotic factors. Although alternative definitions exist (e.g., Yapp 1922, Hall et al. 1997, Davies et al. 2004, Mitchell 2005, Kearney 2006, Drakou et al. 2011), this formulation provides a pragmatic operational tool for characterising landscape elements of conservation priority.
It needs to be pointed out that the term “habitat” in the context of the EU Habitats Directive has a particular meaning, which deviates from the autecological species-related “habitat” in ecology. As an “environmental unit” that includes species assemblages and site conditions the political term “habitat” is closer to the concept of ecosystems (sensu Keith et. al 2013), even if some units are rather defined by mere plant communities (reflected in phytosociological terminology) (e.g., 6190 “Rupicolous pannonic grasslands (Stipo-Festucetalia pallentis)”) and others are classified based on abiotic site conditions (e.g., 8240 “Limestone pavements”, 8320 “Fields of lava and natural excavations”), places (e.g., 8310 “Caves not open to the public”) or geographical units (e.g., 1150 “Coastal lagoons”, 1620 “Boreal Baltic islets and small islands”). Some units are characterized by vegetation structures (e.g., 5400 “Phrygana”), others by typical species (e.g., 6160 “Oro-Iberian Festuca indigesta grasslands”).
Fluxes of energy and matter, and the processes that are forming an ecosystem, are not considered, even if these might be quite important (e.g., carbon sequestration, evapotranspiration). The concept is more focused on ecological compartments with a main emphasis on vegetation. Being aware of this inconsistency, the advantage is the fact that the habitat types are providing a standardized, and legally established tool for monitoring and assessment of complex units, which is crucial for nature conservation.
Habitat diversity can be measured as the number of different habitats in a given area (Triantis et al. 2006, Hortal et al. 2009) - herein referred to as “habitat richness”. Habitat richness can be monitored in situ or by remote sensing techniques (Tuanmu and Jetz 2015, Radeloff et al. 2019, Jung et al. 2020). Moreover, the accessibility of habitat distribution data is steadily growing, often provided in the form of maps, which may sometimes be proxies for - and the only available information on - the distribution of specific groups (e.g., plants and invertebrates).
Habitat richness reflects environmental conditions and can be used as an explanatory variable for modelling the distributions and abundances of species or communities (Heidrich et al. 2020, Leclère et al. 2020). Many studies have been focusing on the factors regulating the spatial variation in species richness (e.g., Rosenzweig 1995, Gaston 2000, Brown and Lomolino 2005, Field et al. 2009, Quintero and Jetz 2018, Howard et al. 2020). Species richness is typically correlated with variables such as climate (Thuiller et al. 2005, Gao and Liu 2018), latitude (Gaston 2000, Hillebrand 2004, Gaston 2007), topographic heterogeneity (Hortal et al. 2009), and anthropogenic pressure (Malavasi et al. 2016, Liu et al. 2018). Contextually, the Habitat Amount Hypothesis (Fahrig 2013) predicts that species richness in equal-sized sample sites should increase with the total amount of habitat. Similarly, the number of species inhabiting a region can be explained by the number of vegetation types as a surrogate of habitat diversity (Jimènez-Alfaro et al. 2016). However, the relative importance of habitat amount and its spatial configuration (e.g., fragmentation, connectivity or perimeter/area ratio) on biodiversity patterns is still subject of debate (Fahrig 2021, Saura 2021a, b).
Despite the importance of habitat richness and the large amount of spatial data available for many terrestrial habitats, there is a knowledge gap on the mechanisms that determine the spatial patterns of habitat richness, especially at continental scales. To our knowledge, no research has yet been done on the underlying factors associated with habitat richness at continental level. In Europe, biodiversity conservation policy focuses on habitat protection (e.g., Council Directive 92/43/EEC), and achieving measurable improvements of the conservation status of Natura 2000 habitats is one of the main targets of the 2030 Biodiversity Strategy. As one deliverable for improved biodiversity monitoring, every EU member country is obliged to provide 10 km-resolution habitat maps on a regular basis (every six years – art. 17 Habitat Directive). Thus, disentangling the role of environmental factors determining habitat richness is a key challenge both for basic understanding of biodiversity distribution and for guiding conservation strategies (Mücher et al. 2009, Zhang et al. 2020).
To investigate how habitat richness is correlated with environmental factors across the EU, we used habitat distribution data from the 3rd report of the EU Habitats Directive (EEA 2020a). Specifically, we seek to answer the following questions: i) how do bioclimatic, geographic, and anthropogenic variables affect habitat richness? ii) which category is the most important? iii) how do interactions among these variables influence habitat richness and which combinations produce the strongest interactions?

Material and methods
Habitat richness
We used habitat distribution maps of 233 terrestrial habitats from the EU 2007-2012 reporting period, obtained from the European Environment Agency (EEA 2020a). We calculated EU habitat richness (which we shortened to ‘habitat richness’) by summing-up each habitat map in the standard grid (10 km x 10 km) provided by the EEA for habitat monitoring (EEA 2013). All the EU countries that contributed to the 3rd report were included, except for Greece due to lack of habitat reporting there.
Despite being composed of equal-area cells (i.e., 10 km x 10 km), the EEA grid has many cells located in coastal areas, often reducing the terrestrial surface within the cell. It has been widely reported that both species richness and habitat richness increase as a function of area (Rosenzweig 1995, Lomolino 2000, Triantis et al. 2012). Because of the effect of area on habitat richness, we applied a modified log–log power function (Arrhenius 1921, Triantis et al. 2012) to normalize habitat richness values based on within-cell land area. This involved adding one to habitat richness in order to have a normalized value of 0 when no habitat was present (instead of having minus infinite) and the absolute value of the denominator in order not to have inconsistent values when area was between 0 km2 and 1 km2.
                                               (1) 

Relations with species richness
Species richness data were obtained from the distributions of species reported in the Annexes of the Birds Directive (Council Directive 2009/147/EC; Annex I to V) and the Habitats Directive (Council Directive 92/43/EEC; Annex II, IV and V) reported by EU member states for 2007–2012 (EEA 2020a, EEA 2020b). Further details can be found in Hoffmann et al. (2018). To test the assumption that habitat richness is a proxy of biodiversity conservation status, we calculated Pearson’s r correlation coefficient (Pearson 1931) to assess the correlation between habitat richness and species richness.
Environmental variables
We investigated the relationship between habitat richness and three groups of environmental variables: bioclimatic, geographic and anthropogenic. Multicollinearity among variables was assessed through Pearson's r. Within variable pairs holding Pearson's r > 0.7 (see Figure S1), the one judged to have less ecological importance was discarded from model building (Elith et al. 2006, Dormann et al. 2013).
We extracted the 19 bioclimatic variables from WorldClim (Fick and Hijmans 2017) at 10 km x 10 km resolution. Through variable selection (see Brandt et al. 2017), we ensured balanced representation of temperature and precipitation (both mean and seasonal variation - see table 1 for a summary of the explanatory variables).
Geographic variables, such as latitude and longitude, strongly affect species and habitat richness at different spatial scales (Drakou et al. 2011). Moreover, northing and easting (i.e. latitude and longitude, respectively, as geographic Cartesian coordinates) may be used to account for spatial autocorrelation. For these reasons, we included these two factors as explanatory variables in all the models. In order to capture geographic heterogeneity (Dufour et al 2006), we included the terrain ruggedness index (TRI - Riley et al 1999). TRI is defined as the mean of the absolute differences in elevation changes (Riley et al. 1999) and it is highly positively related to elevation (Amatulli et al. 2018). To obtain the Europe-wide TRI we used a freely available, 20 m resolution digital elevation model (DEM) for the EU (EU - DEM 2021). We resampled the DEM to 200 m2 pixel size using the arithmetic mean for aggregation. Then, for each 10 km x 10 km grid cell we summed all the 2500 values obtained for TRI to obtain the topographic heterogeneity within each cell.
Anthropogenic factors and their interaction with bioclimatic and geographic variables strongly affect animal and plant biodiversity at global terrestrial scale (Mantyka-Pringle et al. 2012, 2013). Three ‘anthropogenic’ variables were considered: landscape fragmentation, population density and total street length (Table 1). Landscape fragmentation was extracted from EEA (EEA 2011), and it was calculated based on the Effective Mesh Density, which is a measure of the degree to which movement between different parts of the landscape is interrupted by a Fragmentation Geometry (FG) (Jaeger 2000). The more FG fragments the landscape, the higher the effective mesh density and hence the fragmentation (Jaeger 2000, Moser et al. 2005, EEA 2011, Schmiedel and Culmsee 2016). Population density was also extracted from EEA (EEA 2009). Both landscape fragmentation and population density were upscaled from 1 km2 to 100 km2 resolution, aggregating cells by median values due to their skewed distributions. Data on street length were extracted from GLOBIO (Meijer et al. 2018). Total street length was calculated by combining the length of all street types within each cell (highways, primary, secondary, tertiary and local roads).
Model setting
We used Generalized Linear Models (GLMs), Generalized Additive Models (GAMs) and Generalized Boosted Models (GBMs) to investigate how habitat richness responds to the selected climatic, geographic and anthropogenic variables at the EU scale.
To identify the interactions to be included in the models, we ran all the possible combinations of variable pairs using the glmulti function from the glmulti package (Calcagno and de Mazancourt 2010). To assess the best settings for the GBM models, all the possible combinations of three different number of trees (10000, 15000, 20000), four interaction depths (3, 5, 7, 9), three shrinkages (0.01, 0.1, 0.5) and three bag fractions (0.65, 0.8, 1) were employed. We selected the combination with the lowest root mean square error (RMSE).
To filter out spatial dependence, autocovariate models were run (Harisena 2021). These models are usually based on autocovariate estimation directly on the response variable. Crase et al. (2012) developed a related procedure, in which autocovariates are quantified from the model residuals, rather than the raw data. This leads to an autocovariate that captures only the variance not explained by explanatory variables (Fletcher and Fortin 2018). Moreover, models including autocovariates typically provide unbiased estimates of fixed effects, as demonstrated by Bardos et al. (2015). To fit autocovariate models, we calculated autocovariates on the model residuals and then we used these covariates in a new model. These autocovariates were calculated using the autocov_dist function in the spdep package (Bivand and Wong 2018).
Variable importance for GLMs and GAMs was calculated excluding explanatory variables one by one from the models. Then, the contribution of each variable was assessed using the difference in deviance (D2) between the model with and without that variable (Barbosa et al. 2013).
To produce response curves, we used the modified inflated response curve (Zurell et al. 2012) for abundance models. Interaction curves were produced by setting the explanatory variables to their mean values (see the functions in supplementary material). Data processing was performed with R 3.6.3 (R Core Team 2020), using the following packages: glmmulit (Calcagno and de Mazancourt 2010), gbm3 (Hickey et al. 2016), ggplot2 (Wickham 2016), ggeffect (Lüdecke 2018), plot3D (Soetaert 2019), tidyverse (Wickham et al. 2019), dplyr (Wickham et al. 2020), lhs (Carnell 2020), patchwork (Pedersen 2020), mgcv (Wood 2020) and GGally (Schloerke et al. 2021).

Results
Among the member countries of the European Union (excluding Greece) plus the United Kingdom, habitat richness (or habitat type richness; see Methods) per 10 km x 10 km cell (N = 43926 cells in total) ranged from 0 to 43 (Figure 1a). While normalized habitat richness (i.e., habitat richness corrected for actual cell area) ranged from 0 to 1.5 (Figure 1b).
Both maps show a heterogeneous distribution of habitat richness, peaking along the main mountain chains of Southern Europe and Central Europe as well as the Baltic area (Figure. 1). Moreover, the habitat richness was positively correlated (r = 0.34, p < 0.001) with the reported richness of the Annex species of the Birds and Habitats Directives (see Figure S2).
Geographic variables showed similar effects across the different models, having the greatest cumulative contribution (Figure 2). Northing and Easting were the most important variables, with about 25% of relative influence each. Terrain ruggedness index (TRI), with about 20% of relative influence, was the third most important variable affecting habitat richness.
Climatic variables had widely different relative influence, with annual mean temperature having far more influence (ca. 15%) than the other three climatic variables taken together (annual temperature range, total annual precipitation and precipitation seasonality; Figure 2). Finally, anthropogenic variables had only a minor contribution (ca 5%) (Figure 2).
Effects of environmental variables on habitat richness
Both mean annual temperature and annual precipitation had a positive effect on normalized habitat richness, which also increased linearly with TRI (Figure 3). Habitat richness diminished towards eastern regions of the EU, while latitude showed an initial negative effect on habitat richness, it then slightly increased. The interactions between geographical and bioclimatic variables have shown a strong impact on habitat richness (Figure 4). The highest values of habitat richness were observed at low latitudes, where annual precipitation was moderately high. The positive trends observed for mean annual temperature and mean annual precipitation were considerably stronger in more rugged cells (higher TRI in Figure 4). Other interactions among bioclimatic variables did not show any remarkable trend. The landscape fragmentation index on its own showed a positive effect on habitat richness. In contrast, population density index did not reveal any clear pattern (Figure 3), though interestingly its effect was strongly negative at high fragmentation values (Figure 4).
Model performance
Three different models were used to investigate how environmental variables shape habitat richness: generalized linear models (GLMs), generalized additive models (GAMs) and boosted regression trees (BRTs). The explained deviance of the GLMs without autocovariate was 0.22, whereas after accounting for spatial autocorrelation the explained deviance reached 0.59 (Table 2). The root mean square error (RMSE) indicated large differences among the explained deviance by the GLM and GAM on one side and the BRT on the other side, with the former models showing 0.27 and 0.26 respectively and the latter 0.85. By adding the autocovariates to the models, GLM and GAM showed substantial improvements (reducing to 0.197 in each case), whereas the BRT did not.

Discussion
Our analysis shows that the relationship between habitat richness and species richness is, in general, positive and monotonic. Indeed, it is widely reported that a high number of habitats support a high number of species (Hortal et al 2009). This confirms that habitat diversity at continental scales can be used as a proxy for species richness and is thus a useful tool to assess the status of biodiversity conservation (Kallimanis et al. 2008, Pyšek et al. 2002, Saura 2021a). Geographic variables resulted to be the most relevant environmental variables to shape habitat richness, while the effect of bioclimatic and anthropogenic variables was less evident but still significant in affecting the distribution of habitat richness.
Geographic variables
Geographic variables showed the strongest association with habitat richness. We found that a major predictor of large-scale habitat richness was latitude, which is considered a proxy for other environmental variables (e.g., solar radiation and productivity; Archibald et al. 2010, Qian and Ricklefs 2011). This variable is widely used as a predictor of species richness and diversity (Hillebrand 2004, Gaston 2007). In particular, our findings support the general tendency of biodiversity to decrease from lower to higher latitudes (MacArthur 1984, Stevens 1989, Fine 2015). At smaller scales (i.e., national), Drakou et al. (2011) report both for latitude and longitude a positive relationship with habitat richness. In our case, a weak decrease of habitat richness was observed for longitude, probably due to lower habitat richness of the eastern countries, due to continentality and likely as a result of varying completeness in reporting for some SE European countries.
Habitat richness was also positively correlated with topographic complexity. The importance of environmental heterogeneity in controlling biodiversity is widely recognized in ecological theory (Huston 1994, Marini et al. 2011, Stein et al. 2014, Hjort et al. 2015). TRI can be considered one of the main factors contributing to explain habitat and species richness (Tews et al. 2004, Stein et al. 2014, López-González et al. 2015) and its effect is expected to increase with spatial grain (Stein et al. 2014). Indeed, topographically complex areas offer a larger number and more different local conditions than topographically simple areas, leading to a higher number of habitat types packed into the same area (Stein et al. 2014). TRI contributes to species richness not only by providing an abundance of niches in space but also offering relatively stable niches in time (Thuiller et al. 2006, Davies et al. 2007, Irl et al. 2015). Several studies showed an increase of species richness in relation to the increase of surface complexity (Cramer and Verboom 2017, Farwell et al. 2021) and highly heterogeneous areas should support more species than areas of lower heterogeneity (Rosenzweig 1995, Kallimanis et al. 2008, Hortal et al. 2009).
Climate variable
Temperature and precipitation variables were the second most important group in explaining habitat richness in the EU. It is widely reported that climatic variables are considered as main drivers of broad-scale patterns in species richness (Thuiller et al 2004, Grytnes and McCain 2007, Xu et al 2014, Vetaas et al. 2019). We observed a positive association of habitat richness with annual precipitation as reported also for aquatic, coastal and forest EU habitats (Drakou et al 2011). Precipitation is very unevenly distributed across time (among and within years) and space in the EU (Rajah et al 2014, Zolina 2012). Due to climate changes, an increase in precipitation variability is expected in the near future, this phenomenon could negatively affect both species and habitat (Pearson and Carroll 1998, Adler and Levine 2007). Moreover, not only precipitation but other factors such as potential evapotranspiration (Adhikari et al 2019) or soil water availability (Daws et al. 2002, Vetaas & Ferrer-Castan 2008) should be considered to better predict species and habitat distribution.
Among climate variables, mean annual temperature was the most strongly associated with habitat richness. Positive correlation among plant species richness and temperature is widely reported (Gottfried et al. 2012, Diogo et al. 2020). However, the relationship may be reversed when water availability is limited (Pausas and Austin 2001). Annual temperature range has a slight positive effect on habitat richness with a final slight decrease, highlighting the secondary role of temperature range in shaping species and habitat distribution (Austin and Niel 2011). Interactions among climatic variables did not produce any strong effects as compared to the single bioclimatic variables. Instead, the interactions of mean annual temperature and mean annual precipitation with TRI suggest a positive effect on habitat richness of environmental heterogeneity with the increase in temperature and precipitation.
Anthropogenic variables
Population density is considered one of the main proxies defining human pressure on nature (Sanderson et al. 2002, Venter et al. 2016). Among the anthropogenic variables considered, the landscape fragmentation index showed the most strong association with habitat richness, as already found by other authors (e.g., Jaeger et al 2000). This anthropogenic factor breaks ecological interrelations between the habitat patches and decreases their ability to provide various ecosystem services (Jaeger et al 2000). 
The decrease of habitat richness along with increasing human pressure was not as strong as expected. Indeed, environmental factors are typically more important for explaining species richness than human impacts (Howard et al. 2020). Moreover, the weaker influence of anthropogenic variables was probably due to the coarse resolution used in this study (Niemiec et al. 2018, Curtis et al. 2018, Woodbridge et al. 2020). 
On the other hand, the synergistic interaction between fragmentation and population density had a strongly negative influence on habitat richness, also affecting habitat conservation (Ewers and Didham 2006). The finding suggests that the interaction of anthropogenic variables (Newbold et al. 2015) could be of greater importance than climate interactions (Lehsten et al. 2015, Holman et al. 2017). Thus, land use modification in the near future should be planned in order to decrease landscape fragmentation and increase habitat connectivity.

Conclusions and implications for conservation planning
The evalution of the variables associated with habitat richness here performed for the first time at the European continental scale revealed that geographical and climatic variables are more influential than anthropogenic variables for explaining habitat richness distribution. Despite minor in absolute terms, human activities were also found relevant in controlling the distribution of habitat richness, since we showed that the interaction among anthropogenic variables had a strong negative effect on habitat richness. Thus, for environmental management it is important to consider the cumulative effect of interactions between natural and anthropogenic variables. Indeed, increasing human populations, long-term land cover changes and pressures from invasive alien species have all been linked to habitat transformation (Banks-Leite et al. 2020) and biodiversity loss (Cardillo et al. 2004, Davies et al. 2006, Pacifici et al. 2017, Campagnaro et al. 2018, Chase et al. 2020, Leclère et al. 2020). Moreover, landscape transformation and habitat degradation outside protected areas may contribute to landscape fragmentation leading to isolated “islands” with low connectivity (Keeley et al. 2018, Chase et al. 2020). The present study highlights how biodiversity policies of the EU, such as Habitats Directive, have a central role not only in biodiversity conservation (Gameiro et al. 2020) but also providing continental scale data which are fundamental to investigate biodiversity patterns, as already demonstrated by Hoffmann et al. (2018) in relation to the European protected area network. This finding has important implications for conservation planning. Knowing the inherent vulnerability of some habitats could aid decisions regarding European conservation priorities and could form the basis for a biodiversity conservation roadmap (Arlidge et al. 2018).

Data Accessibility Statement
Upon acceptance the authors will archive all the data used for the analysis in Zenodo. References to the public dataset used will be provided.
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Figure 1. Maps of habitat richness obtained by overlapping habitat distribution maps with the standard grid of 10 km x 10 km cells provided by the European Environmental Agency (EEA) for habitat monitoring. Greece was excluded due to the lack of habitat reporting (no delivery of Article 17 data in 2013). Panel a shows the habitat richness. Panel b shows normalized habitat richness.
Figure 2. Boxplots showing percentages of relative influence and cumulative contribution of single and grouped explanatory variables in accounting for habitat richness. The contributions of variables were estimated across the GLM, GAM and BRT models. Panel a: the relative influence of each explanatory variable. Panel b: the cumulative contribution for each group of the explanatory variables selected. Geographic variables: NORTH = northing, EAST = easting, TRI = terrain ruggedness index. Bioclimatic variables BIO_1 = mean annual temperature, BIO_7 = temperature annual range, BIO_12 = total annual precipitation, BIO_15 = precipitation seasonality. Anthropogenic variables: FRAG_IND = landscape fragmentation index, POP_DENS = human population density.
Figure 3. Relationships between explanatory variables and normalized habitat richness. The density of (10 km x 10 km) grid cells is indicated by hexagonal binning using the viridis colour scale (varying from high density in yellow to low density in violet). Grey lines represent the 100 inflated response curves averaged across the three models used: generalized linear models (GLMs), generalized additive models (GAMs) and boosted regression trees (BRTs). Red lines are the median value, violet lines are the mean value of the inflated response curves. Geographic variables: NORTH = northing, EAST = easting, TRI = terrain ruggedness index. Bioclimatic variables: BIO_1 = mean annual temperature, BIO_7 = temperature annual range, BIO_12 = total annual precipitation, BIO_15 = precipitation seasonality. Anthropogenic variables: FRAG_IND = landscape fragmentation index, POP_DENS = human population density.
Figure 4. Surface plots show the interactions among the explanatory variables, x- and y-axis represent pairs of explanatory variables and z-axis is the magnitude of the interaction on the response variable. Only interactions above the given threshold (|z| = 0.3) are displayed. Geographic variables: TRI = terrain ruggedness index, NORTH = northing and EAST = easting. Bioclimatic variables: BIO_1 = mean annual temperature, BIO_7 = temperature annual range, BIO_12 = total annual precipitation, BIO_15= precipitation seasonality. Anthropogenic explanatory variables: FRAG_IND = landscape fragmentation index, POP_DENS = human population density.[image: ]
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Table 1. Summary of explanatory and response variables. In bold variables selected for model building.
Table 2. Explained deviance (D2) and root mean square error (RMSE) of the models with and without autocovariate (‘RAC’).

	Group
	Acronym
	Description
	Type
	Data source

	Bioclimatic
	BIO_1
	
Mean Annual Temperature
	  Numeric
	

(     (Fick and Hijman 2017)

	Bioclimatic
	BIO_4
	Temperature Seasonality
	  Numeric
	

	Bioclimatic
	BIO_7
	Temperature Annual Range
	  Numeric
	

	Bioclimatic
	BIO_12
	Annual Precipitation
	  Numeric
	

	Bioclimatic
	BIO_15
	Precipitation Seasonality
	  Numeric
	

	Bioclimatic
	BIO_17
	Precipitation of Driest Quarter
	  Numeric
	

	Anthropogenic
	FRAG_IND
	  Landscape Fragmentation Indicator
	Raster
	(EEA 2011 and 
Jaeger 2000)


	Anthropogenic
	      STREET_LENGTH
	Total street length
	   Shapefile
	(Meijer et al. 2018)


	Anthropogenic
	POP_DENS
	Population density
	Raster
	(EEA 2009 and 
Gallego 2010)

	Geographic
	TRI
	Terrain Ruggedness Index
	Derived 
from DEM
	(EU-DEM 2021)

	Geographic
	NORTH
	Northing
	
	/

	Geographic
	EAST
	Easting
	
	/

	Response
	HAB_RICH
	Habitat richness
	Count
	/

	Response
	       NORM_HAB_RICH
        
	Habitat richness normalized
	  Variables
	/






	Model
	D2
	RMSE

	GLM
	0.23
	0.27

	GLM with RAC
	0.59
	0.20

	GAM
	0.27
	0.26

	GAM with RAC
	0.59
	0.20

	GBM
	NA
	0.85

	GBM with RAC
	NA
	0.85




Supplementary material
Figure S1. Correlation plot shows the correlation coefficients among all the explanatory variables.
Figure S2. Logarithmic-scale correlation (log-log) plot shows the positive correlation between Habitat Richness and the reported richness of the Annex species of the Birds and Habitats Directives.
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