References
Abramson, B. W., Kachel, B., Kramer, D. M., & Ducat, D. C. (2016).
Increased photochemical efficiency in cyanobacteria via an engineered
sucrose sink. Plant and Cell Physiology , 57 (12), 2451-2460
Albers, S. C., & Peebles, C. A. (2017). Evaluating Light‐Induced
Promoters for the Control of Heterologous Gene Expression in
Synechocystis sp. PCC 6803. Biotechnology progress , 33 (1),
45-53.
Almeida, D. V., Martens, S. B. B., Lanes, C. F. C., &Marins, L. F.
(2017). Improved genetic transformation of Synechococcus elongatus PCC
7942 using linear DNA fragments in association with a DNase
inhibitor. Biotechnology Research and Innovation , 1 (1),
123-128.
Andersson, C. R. (2000). Application of bioluminescence to the study of
circadian rhythms in cyanobacteria. Methods Enzymol. , 305 ,
527-542.
Atsumi, S. Higashide, W., & Liao, J. C. (2009). Direct photosynthetic
recycling of carbon dioxide to isobutyraldehyde. Nature
biotechnology , 27 (12)1177.
Atsumi, S., Wu, T. Y., Eckl, E. M., Hawkins, S. D., Buelter, T., &
Liao, J. C. (2010).Engineering the isobutanol biosynthetic pathway in
Escherichia coli by comparison of three aldehyde reductase/alcohol
dehydrogenase genes. Applied microbiology and
biotechnology , 85 (3), 651-657.
Barkley, S. J., Desai, S. B., & Poulter, C. D. (2004). Type II
isopentenyl diphosphate isomerase from Synechocystis sp. strain PCC
6803. Journal of bacteriology , 186 (23), 8156-8158.
Behle, A., Saake, P., Germann, A. T., Dienst, D., &Axmann, I. M.
(2020). Comparative dose–response analysis of inducible promoters in
Cyanobacteria. ACS synthetic biology , 9 (4), 843-855.
Bentley, F. K., &Melis, A. (2012). Diffusion‐based process for carbon
dioxide uptake and isoprene emission in gaseous/aqueous two‐phase
photobioreactors by photosynthetic microorganisms. Biotechnology
and bioengineering , 109 (1), 100-109.
Bentley, F. K., Zurbriggen, A., &Melis, A. (2014). Heterologous
expression of the mevalonic acid pathway in cyanobacteria enhances
endogenous carbon partitioning to isoprene. Molecular
plant , 7 (1), 71-86.
Brosius J., Erfle M., and Storella J. (1984). Spacing of the -10 and -35
regions in the tac promoter. Journal of Biological Chemistry.260(6), 3539-3541.
Camsund, D., Heidorn, T., & Lindblad, P. (2014). Design and analysis of
LacI-repressed promoters and DNA-looping in a cyanobacterium.Journal of biological engineering , 8 (1), 4.
Chandrasekhar, K., Lee, Y. J., & Lee, D. W. (2015). Biohydrogen
production: strategies to improve process efficiency through microbial
routes. International journal of molecular
sciences , 16 (4), 8266-8293.
Chaves, J. E., &Melis, A. (2018). Engineering isoprene synthesis in
cyanobacteria. FEBS letters , 592 (12), 2059-2069.
Chemla, Y., Friedman, M., Heltberg, M., Bakhrat, A., Nagar, E., Schwarz,
R., … & Alfonta, L. (2017). Expanding the genetic code of a
photoautotrophic organism. Biochemistry , 56 (16),
2161-2165.
Chen, Y., Taton, A., Go, M., London, R. E., Pieper, L. M., Golden, S.
S., & Golden, J. W. (2016). Self-replicating shuttle vectors based on
pANS, a small endogenous plasmid of the unicellular cyanobacterium
Synechococcus elongatus PCC 7942. Microbiology (United
Kingdom) , 162 (12), 2029-2041.
Chi, X., Zhang, S., Sun, H., Qiao, C., Luan, G., & Lu, X. (2019).
Adopting a theophylline-responsive riboswitch for flexible regulation
and understanding of glycogen metabolism in Synechococcus elongatus
PCC7942. Frontiers in Microbiology , 10 , 551.
Choi, S. Y., & Woo, H. M. (2020). CRISPRi-dCas12a: A dCas12a-mediated
CRISPR interference for repression of multiple genes and metabolic
engineering in cyanobacteria. ACS synthetic biology , 9 (9),
2351-2361.
Choi, S. Y., Wang, J. Y., Kwak, H. S., Lee, S. M., Um, Y., Kim, Y., …
& Woo, H. M. (2017). Improvement of squalene production from CO2 in
Synechococcus elongatus PCC 7942 by metabolic engineering and scalable
production in a photobioreactor. ACS Synthetic
Biology , 6 (7), 1289-1295.
Choi, Y. N., Shin, Y. R., Park, J. M., & Lee, J. W. (2021). Cell-Free
Transcription-Coupled CRISPR/Cas12a Assay for Prototyping Cyanobacterial
Promoters. ACS Synthetic Biology .
Chuck, C. J., & Donnelly, J. (2014). The compatibility of potential
bioderived fuels with Jet A-1 aviation kerosene. Applied
Energy , 118 , 83-91.
Cohen, S. E., Erb, M. L., Selimkhanov, J., Dong, G., Hasty, J.,
Pogliano, J., & Golden, S. S. (2014). Dynamic localization of the
cyanobacterial circadian clock proteins. Current
Biology , 24 (16), 1836-1844.
Desmarais, J. J., Flamholz, A. I., Blikstad, C., Dugan, E. J., Laughlin,
T. G., Oltrogge, L. M., … & Savage, D. F. (2019). DABs are inorganic
carbon pumps found throughout prokaryotic phyla. Nature
microbiology , 4 (12), 2204-2215.
Diao, J., Song, X., Zhang, L., Cui, J., Chen, L., & Zhang, W. (2020).
Tailoring cyanobacteria as a new platform for highly efficient synthesis
of astaxanthin. Metabolic Engineering , 61 , 275-287.
Domin, G., Findeiß, S., Wachsmuth, M., Will, S., Stadler, P. F., &Mörl,
M. (2016). Applicability of a computational design approach for
synthetic riboswitches. Nucleic acids research , 45 (7),
4108-4119.
Engler, C., Youles, M., Gruetzner, R., Ehnert, T. M., Werner, S., Jones,
J. D., … &Marillonnet, S. (2014). A golden gate modular cloning
toolbox for plants. ACS synthetic biology , 3 (11), 839-843.
Englund, E., Andersen-Ranberg, J., Miao, R., Hamberger, B., & Lindberg,
P. (2015). Metabolic engineering of Synechocystis sp. PCC 6803 for
production of the plant diterpenoidmanoyl oxide. ACS synthetic
biology , 4 (12), 1270-1278.
Englund, E., Liang, F., & Lindberg, P. (2016). Evaluation of promoters
and ribosome binding sites for biotechnological applications in the
unicellular cyanobacterium Synechocystis sp. PCC 6803. Scientific
reports , 6 , 36640.
Englund, E., Pattanaik, B., Ubhayasekera, S. J. K., Stensjö, K.,
Bergquist, J., & Lindberg, P. (2014). Production of squalene in
Synechocystis sp. PCC 6803. PloS one , 9 (3), e90270.
Eungrasamee, K., Incharoensakdi, A., Lindblad, P., &Jantaro, S. (2020).
Synechocystis sp. PCC 6803 overexpressing genes involved in CBB cycle
and free fatty acid cycling enhances the significant levels of
intracellular lipids and secreted free fatty acids. Scientific
reports , 10 (1), 1-13.
Eungrasamee, K., Miao, R., Incharoensakdi, A., Lindblad, P., &Jantaro,
S. (2019). Improved lipid production via fatty acid biosynthesis and
free fatty acid recycling in engineered Synechocystis sp. PCC
6803. Biotechnology for biofuels , 12 (1), 8.
Fleming, K. E., & O’Shea, E. K. (2018). An RpaA-dependent sigma factor
cascade sets the timing of circadian transcriptional rhythms in
Synechococcuselongatus. Cell reports , 25 (11), 2937-2945.
Flores, F. G. (2008). The cyanobacteria: molecular biology,
genomics, and evolution . Horizon Scientific Press.
Formighieri, C., & Melis, A. (2015). A phycocyanin· phellandrene
synthase fusion enhances recombinant protein expression and
β-phellandrene (monoterpene) hydrocarbons production in Synechocystis
(cyanobacteria). Metabolic engineering , 32 , 116-124.
Gao, X., Gao, F., Liu, D., Zhang, H., Nie, X., & Yang, C. (2016).
Engineering the methylerythritol phosphate pathway in cyanobacteria for
photosynthetic isoprene production from CO 2. Energy &
environmental science , 9 (4), 1400-1411.
Griese, M., Lange, C., &Soppa, J. (2011). Ploidy in
cyanobacteria. FEMS microbiology letters , 323 (2), 124-131.
Halfmann, C., Gu, L., Gibbons, W., & Zhou, R. (2014). Genetically
engineering cyanobacteria to convert CO2, water, and light into the
long-chain hydrocarbon farnesene. Applied microbiology and
biotechnology , 98 (23), 9869-9877.
Heidorn, T., Camsund, D., Huang, H. H., Lindberg, P., Oliveira, P.,
Stensjö, K., & Lindblad, P. (2011). Synthetic biology in cyanobacteria:
engineering and analyzing novel functions. In Methods in
enzymology (Vol. 497, pp. 539-579). Academic Press.
Helliwell, K. E., Lawrence, A. D., Holzer, A., Kudahl, U. J., Sasso, S.,
Kräutler, B., … & Smith, A. G. (2016). Cyanobacteria and eukaryotic
algae use different chemical variants of vitamin B12. Current
Biology , 26 (8), 999-1008.
Henkin, T. M. (2008). Riboswitch RNAs: using RNA to sense cellular
metabolism. Genes & development , 22 (24), 3383-3390.
Higo, A., Isu, A., Fukaya, Y., Ehira, S., & Hisabori, T. (2017).
Application of CRISPR interference for metabolic engineering of the
heterocyst-forming multicellular cyanobacterium Anabaena sp. PCC
7120. Plant and Cell Physiology , 59 (1), 119-127.
Huang, H. H., & Lindblad, P. (2013). Wide-dynamic-range promoters
engineered for cyanobacteria. Journal of biological engineering ,7 (1), 10.
Huang, H. H., Camsund, D., Lindblad, P., &Heidorn, T. (2010). Design
and characterization of molecular tools for a synthetic biology approach
towards developing cyanobacterial biotechnology. Nucleic acids
research , 38 (8), 2577-2593.
Ivleva, N. B., Bramlett, M. R., Lindahl, P. A., & Golden, S. S. (2005).
LdpA: a component of the circadian clock senses redox state of the
cell. The EMBO journal , 24 (6), 1202-1210.
Jacobsen, J. H., &Frigaard, N. U. (2014). Engineering of photosynthetic
mannitol biosynthesis from CO2 in a cyanobacterium. Metabolic
engineering , 21 , 60-70.
Jin, H., Wang, Y., Idoine, A., &Bhaya, D. (2018). Construction of a
shuttle vector using an endogenous plasmid from the cyanobacterium
Synechocystis sp. PCC6803. Frontiers in microbiology , 9 ,
1662.
Johnsborg, O., Eldholm, V., &Håvarstein, L. S. (2007). Natural genetic
transformation: prevalence, mechanisms and function. Research in
microbiology , 158 (10), 767-778.
Kaczmarzyk, D., Cengic, I., Yao, L., & Hudson, E. P. (2018). Diversion
of the long-chain acyl-ACP pool in Synechocystis to fatty alcohols
through CRISPRi repression of the essential phosphate acyltransferase
PlsX. Metabolic engineering , 45 , 59-66
Kageyama, H., Waditee-Sirisattha, R., Sirisattha, S., Tanaka, Y.,
Mahakhant, A., &Takabe, T. (2015).Improved alkane production in
nitrogen-fixing and halotolerant cyanobacteria via abiotic stresses and
genetic manipulation of alkane synthetic genes. Current
microbiology , 71 (1), 115-120.
Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y.,
… & Kimura, T. (1996). Sequence analysis of the genome of the
unicellular cyanobacterium Synechocystis sp. strain PCC6803. II.
Sequence determination of the entire genome and assignment of potential
protein-coding regions. DNA research , 3 (3),109-136.
Kelly, C. L., Taylor, G. M., Hitchcock, A., Torres-Mendez, A., & Heap,
J. T. (2018). A rhamnose-inducible system for precise and temporal
control of gene expression in cyanobacteria. ACS synthetic
biology , 7 (4), 1056-1066.
Kierzek, A. M., Zaim, J., &Zielenkiewicz, P. (2001). The effect of
transcription and translation initiation frequencies on the stochastic
fluctuations in prokaryotic gene expression. Journal of Biological
Chemistry , 276 (11), 8165-8172.
Kiyota, H., Okuda, Y., Ito, M., Hirai, M. Y., &Ikeuchi, M. (2014).
Engineering of cyanobacteria for the photosynthetic production of
limonene from CO2. Journal of biotechnology , 185 , 1-7.
Knoot, C. J., Ungerer, J., Wangikar, P. P., & Pakrasi, H. B. (2018).
Cyanobacteria: promising biocatalysts for sustainable chemical
production. Journal of Biological Chemistry , 293 (14),
5044-5052
Köllner, T. G., Gershenzon, J., & Degenhardt, J. (2009). Molecular and
biochemical evolution of maize terpene synthase 10, an enzyme of
indirect defense. Phytochemistry , 70 (9), 1139-1145.
Kumar, G., Sivagurunathan, P., Pugazhendhi, A., Thi, N. B. D., Zhen, G.,
Chandrasekhar, K., &Kadier, A. (2017). A comprehensive overview on
light independent fermentative hydrogen production from wastewater
feedstock and possible integrative options. Energy conversion and
management , 141 , 390-402.
Kumar, R., Biswas, K., Singh, P. K., Singh, P. K., Elumalai, S., Shukla,
P., & Pabbi, S. (2017). Lipid production and molecular dynamics
simulation for regulation of acc D gene in cyanobacteria under different
N and P regimes. Biotechnology for biofuels , 10 (1), 1-14.
Lan, E. I., & Liao, J. C. (2011). Metabolic engineering of
cyanobacteria for 1-butanol production from carbon
dioxide. Metabolic engineering , 13 (4), 353-363.
Lasry Testa, R., Delpino, C., Estrada, V., & Diaz, S. M. (2019). In
silico strategies to couple production of bioethanol with growth in
cyanobacteria. Biotechnology and bioengineering , 116 (8),
2061-2073.
Lee, H. J., Choi, J. I., & Woo, H. M. (2021). Biocontainment of
Engineered Synechococcus elongatus PCC 7942 for Photosynthetic
Production of α-Farnesene from CO2. Journal of Agricultural and
Food Chemistry , 69 (2), 698-703.
Lee, H. J., Lee, J., Lee, S. M., Um, Y., Kim, Y., Sim, S. J., … &
Woo, H. M. (2017). Direct conversion of CO2 to α-farnesene using
metabolically engineered Synechococcus elongatus PCC 7942. Journal
of agricultural and food chemistry , 65 (48), 10424-10428.
Li, H., Shen, C. R., Huang, C. H., Sung, L. Y., Wu, M. Y., & Hu, Y. C.
(2016). CRISPR-Cas9 for the genome engineering of cyanobacteria and
succinate production. Metabolic engineering , 38 , 293-302.
Lichtenthaler, H. K. (2000). Non-mevalonate isoprenoid biosynthesis:
enzymes, genes and inhibitors.
Lin, P. C., Zhang, F., & Pakrasi, H. B. (2020). Enhanced production of
sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX
2973. Scientific Reports , 10 (1), 1-8.
Lin, P. C., Zhang, F., & Pakrasi, H. B. (2021). Enhanced limonene
production in a fast-growing cyanobacterium through combinatorial
metabolic engineering. Metabolic Engineering
Communications , 12 , e00164.
Lin, P. C., Saha, R., Zhang, F., & Pakrasi, H. B. (2017). Metabolic
engineering of the pentose phosphate pathway for enhanced limonene
production in the cyanobacterium Synechocysti s sp. PCC
6803. Scientific reports , 7 (1), 1-10.
Lindberg, P., Park, S., &Melis, A. (2010). Engineering a platform for
photosynthetic isoprene production in cyanobacteria, using Synechocystis
as the model organism. Metabolic engineering , 12 (1),
70-79.
Liu, D., & Pakrasi, H. B. (2018). Exploring native genetic elements as
plug-in tools for synthetic biology in the cyanobacterium Synechocystis
sp. PCC 6803. Microbial cell factories , 17 (1), 48.
Liu, X., Sheng, J., & Curtiss III, R. (2011).Fatty acid production in
genetically modified cyanobacteria. Proceedings of the National
Academy of Sciences , 108 (17), 6899-6904.
Lu, J., Brigham, C. J., Gai, C. S., &Sinskey, A. J. (2012). Studies on
the production of branched-chain alcohols in engineered
Ralstoniaeutropha. Applied microbiology and
biotechnology , 96 (1), 283-297
Lu, X. (2010). A perspective: photosynthetic production of fatty
acid-based biofuels in genetically engineered
cyanobacteria. Biotechnology advances , 28 (6), 742-746..
Lynch, S. A., & Gallivan, J. P. (2008). A flow cytometry-based screen
for synthetic riboswitches. Nucleic acids research , 37 (1),
184-192.
Ma, A. T., Schmidt, C. M., & Golden, J. W. (2014). Regulation of gene
expression in diverse cyanobacterial species by using
theophylline-responsive riboswitches. Appl. Environ.
Microbiol. , 80 (21), 6704-6713.
Ma, J., Campbell, A., &Karlin, S. (2002). Correlations between
Shine-Dalgarno sequences and gene features such as predicted expression
levels and operon structures. Journal of bacteriology ,184 (20), 5733-5745.
Madsen, M. A., Hamilton, G., Herzyk, P., &Amtmann, A. (2020).
Environmental Regulation of PndbA600, an Auto-Inducible Promoter for
Two-Stage Industrial Biotechnology in Cyanobacteria. Frontiers in
bioengineering and biotechnology , 8 .
Markley, A. L., Begemann, M. B., Clarke, R. E., Gordon, G. C., &
Pfleger, B. F. (2014). Synthetic biology toolbox for controlling gene
expression in the cyanobacterium Synechococcus sp. strain PCC 7002.ACS synthetic biology, 4 (5), 595-603.
Melis, A. (2012). Photosynthesis-to-fuels: from sunlight to hydrogen,
isoprene, and botryococcene production. Energy & Environmental
Science , 5 (2), 5531-5539.
Miao, R., Liu, X., Englund, E., Lindberg, P., & Lindblad, P. (2017).
Isobutanol production in Synechocystis PCC 6803 using heterologous and
endogenous alcohol dehydrogenases. Metabolic engineering
communications , 5 , 45-53.
Na, D., & Lee, D. (2010). RBS Designer: software for designing
synthetic ribosome binding sites that yields a desired level of protein
expression. Bioinformatics , 26 (20), 2633-2634.
Nagarajan, A., Winter, R., Eaton-Rye, J., &Burnap, R. (2011). A
synthetic DNA and fusion PCR approach to the ectopic expression of high
levels of the D1 protein of photosystem II in Synechocystis sp. PCC
6803. Journal of Photochemistry and Photobiology B:
Biology , 104 (1-2), 212-219.
Nakahira, Y., Ogawa, A., Asano, H., Oyama, T., &Tozawa, Y. (2013).
Theophylline-dependent riboswitch as a novel genetic tool for strict
regulation of protein expression in cyanobacterium Synechococcus
elongatus PCC 7942. Plant and Cell Physiology , 54 (10),
1724-1735.
Ng, A. H., Berla, B. M., &Pakrasi, H. B. (2015). Fine-tuning of
photoautotrophic protein production by combining promoters and neutral
sites in the cyanobacterium Synechocystis sp. strain PCC
6803. Appl. Environ. Microbiol. , 81 (19), 6857-6863.
Ohbayashi, R., Akai, H., Yoshikawa, H., Hess, W. R., & Watanabe, S.
(2016). A tightly inducible riboswitch system in Synechocystis sp. PCC
6803. The Journal of general and applied microbiology . 62,
154–159.
Oliver, J. W., Machado, I. M., Yoneda, H., &Atsumi, S. (2014).
Combinatorial optimization of cyanobacterial 2, 3-butanediol production.Metabolic engineering, 22 , 76-82.
Pade, N., Erdmann, S., Enke, H., Dethloff, F., Dühring, U., Georg, J.,
… & Hagemann, M. (2016). Insights into isoprene production using the
cyanobacterium Synechocystis sp. PCC 6803. Biotechnology for
biofuels , 9 (1), 1-16.
Pandey, A., Srivastava, S., & Kumar, S. (2019). Isolation, screening
and comprehensive characterization of candidate microalgae for biofuel
feedstock production and dairy effluent treatment: a sustainable
approach. Bioresource technology , 293 , 121998.
Pandey, A., Srivastava, S., & Kumar, S. (2020). Development and
cost-benefit analysis of a novel process for biofuel production from
microalgae using pre-treated high-strength fresh cheese whey
wastewater. Environmental Science and Pollution
Research , 27 (19), 23963-23980.
Parikh, M. R., Greene, D. N., Woods, K. K., & Matsumura, I. (2006).
Directed evolution of RuBisCO hypermorphs through genetic selection in
engineered E. coli. Protein Engineering Design and
Selection , 19 (3), 113-119.
Pattanaik, B., Englund, E., Nolte, N., & Lindberg, P. (2020).
Introduction of a green algal squalene synthase enhances squalene
accumulation in a strain of Synechocystis sp. PCC 6803. Metabolic
engineering communications , 10 , e00125.
Pechous, S. W., & Whitaker, B. D. (2004). Cloning and functional
expression of an (E, E)-α-farnesene synthase cDNA from peel tissue of
apple fruit. Planta , 219 (1), 84-94.
Peralta‐Yahya, P. P., &Keasling, J. D. (2010). Advanced biofuel
production in microbes. Biotechnology journal , 5 (2),
147-162.
Peralta-Yahya, P. P., Zhang, F., Del Cardayre, S. B., &Keasling, J. D.
(2012). Microbial engineering for the production of advanced
biofuels. Nature , 488 (7411), 320-328.
Peramuna, A., Morton, R., &Summers, M. L. (2015). Enhancing alkane
production in cyanobacterial lipid droplets: a model platform for
industrially relevant compound production. Life , 5 (2),
1111-1126.
Pérez, A. A., Liu, Z., Rodionov, D. A., Li, Z., & Bryant, D. A. (2016).
Complementation of cobalamin auxotrophy in Synechococcus sp. strain PCC
7002 and validation of a putative cobalamin riboswitch in
vivo. Journal of bacteriology , 198 (19), 2743-2752.
Reeve, B., Hargest, T., Gilbert, C., & Ellis, T. (2014). Predicting
translation initiation rates for designing synthetic biology.Frontiers in bioengineering and biotechnology , 2 , 1.
Renninger, N. S., &Mcphee, D. J. (2008). U.S. Patent No.
7,399,323 . Washington, DC: U.S. Patent and Trademark Office.
Ruffing, A. M. (2011). Engineered cyanobacteria: teaching an old bug
newtricks. Bioengineered bugs , 2 (3), 136-149.
Ruffing, A. M., & Jones, H. D. (2012). Physiological effects of free
fatty acid production in genetically engineered Synechococcus elongatus
PCC 7942. Biotechnology and bioengineering , 109 (9),
2190-2199.
Ruffing, A. M., Jensen, T. J., & Strickland, L. M. (2016). Genetic
tools for advancement of Synechococcus sp. PCC 7002 as a cyanobacterial
chassis. Microbial cell factories , 15 (1), 190.
Salis, H. M. (2011). The ribosome binding site calculator.
In Methods in enzymology (Vol. 498, pp. 19-42). Academic Press.
Salis, H. M., Mirsky, E. A., & Voigt, C. A. (2009). Automated design of
synthetic ribosome binding sites to control protein expression.Nature biotechnology , 27 (10), 946.
Sebesta, J., & Peebles, C. A. (2020). Improving heterologous protein
expression in Synechocystis sp. PCC 6803 for alpha-bisabolene
production. Metabolic engineering communications , 10 ,
e00117.
Sengupta, A., Pritam, P., Jaiswal, D., Bandyopadhyay, A., Pakrasi, H.
B., & Wangikar, P. P. (2020). Photosynthetic co-production of succinate
and ethylene in a fast-growing cyanobacterium, Synechococcus elongatus
PCC 11801. Metabolites , 10 (6), 250.
Seo, S. W., Yang, J. S., Kim, I., Yang, J., Min, B. E., Kim, S., &
Jung, G. Y. (2013). Predictive design of mRNA translation initiation
region to control prokaryotic translation efficiency. Metabolic
engineering , 15 , 67-74.
Shono, C., Ariyanti, D., Abe, K., Sakai, Y., Sakamoto, I., Tsukakoshi,
K., … & Ikebukuro, K. (2021). A green light-regulated T7 RNA
polymerase gene expression system for cyanobacteria. Marine
Biotechnology , 23 (1), 31-38.
Singh, P., Kumar, N., Jethva, M., Yadav, S., Kumari, P., Thakur, A., &
Kushwaha, H. R. (2018). Riboswitch regulation in cyanobacteria is
independent of their habitat adaptations. Physiology and molecular
biology of plants , 24 (2), 315-324.
Song, K., Tan, X., Liang, Y., & Lu, X. (2016). The potential of
Synechococcus elongatus UTEX 2973 for sugar feedstock
production. Applied microbiology and
biotechnology , 100 (18), 7865-7875.
Stucken, K., Koch, R., & Dagan, T. (2013). Cyanobacterial defense
mechanisms against foreign DNA transfer and their impact on genetic
engineering. Biological research , 46 (4), 373-382.
Sun, E. I., Leyn, S. A., Kazanov, M. D., Saier, M. H., Novichkov, P. S.,
&Rodionov, D. A. (2013). Comparative genomics of metabolic capacities
of regulons controlled by cis-regulatory RNA motifs in
bacteria. BMC genomics , 14 (1), 597.
Taton, A., Unglaub, F., Wright, N. E., Zeng, W. Y., Paz-Yepes, J.,
Brahamsha, B., … & Golden, J. W. (2014). Broad-host-range vector
system for synthetic biology and biotechnology in
cyanobacteria. Nucleic acids research , 42 (17), e136-e136.
Thiel, K., Mulaku, E., Dandapani, H., Nagy, C., Aro, E. M., & Kallio,
P. (2018). Translation efficiency of heterologous proteins is
significantly affected by the genetic context of RBS sequences in
engineered cyanobacterium Synechocystis sp. PCC 6803. Microbial
cell factories , 17 (1), 34.
Tippmann, S., Ferreira, R., Siewers, V., Nielsen, J., & Chen, Y.
(2017). Effects of acetoacetyl-CoA synthase expression on production of
farnesene in Saccharomyces cerevisiae. Journal of industrial
microbiology & biotechnology , 44 (6), 911-922.
Topp, S., Reynoso, C. M., Seeliger, J. C., Goldlust, I. S., Desai, S.
K., Murat, D., … & Scott, J. R. (2010). Synthetic riboswitches that
induce gene expression in diverse bacterial species. Appl.
Environ. Microbiol. , 76 (23), 7881-7884.
Tracy, N. I., Chen, D., Crunkleton, D. W., & Price, G. L. (2009).
Hydrogenated monoterpenes as diesel fuel
additives. Fuel , 88 (11), 2238-2240.
Ungerer, J., & Pakrasi, H. B. (2016). Cpf1 is a versatile tool for
CRISPR genome editing across diverse species of
cyanobacteria. Scientific reports , 6 , 39681.
Varman, A. M., Xiao, Y., Pakrasi, H. B., & Tang, Y. J. (2013).
Metabolic engineering of Synechocystis sp. strain PCC 6803 for
isobutanol production. Appl. Environ. Microbiol. , 79 (3),
908-914.
Vasudevan, R., Gale, G. A., Schiavon, A. A., Puzorjov, A., Malin, J.,
Gillespie, M. D., … & Lea-Smith, D. J. (2019). CyanoGate: A modular
cloning suite for engineering cyanobacteria based on the plant MoClo
syntax. Plant physiology , 180 (1), 39-55.
Vioque, A. (2007). Transformation of cyanobacteria. In Transgenic
microalgae as green cell factories (pp. 12-22). Springer, New York, NY.
Wada, H., & Murata, N. (1990). Temperature-induced changes in the fatty
acid composition of the cyanobacterium, Synechocystis
PCC6803. Plant Physiology , 92 (4), 1062-1069.
Wang, B., Eckert, C., Maness, P. C., & Yu, J. (2017). A genetic toolbox
for modulating the expression of heterologous genes in the
cyanobacterium Synechocystis sp. PCC 6803. ACS synthetic biology ,7 (1), 276-286.
Wang, C., Yoon, S. H., Jang, H. J., Chung, Y. R., Kim, J. Y., Choi, E.
S., & Kim, S. W. (2011). Metabolic engineering of Escherichia coli for
α-farnesene production. Metabolic engineering , 13 (6),
648-655.
Wang, W., Liu, X., & Lu, X. (2013). Engineering cyanobacteria to
improve photosynthetic production of alka (e) nes. Biotechnology
for biofuels , 6 (1), 69.
Wang, X., Liu, W., Xin, C., Zheng, Y., Cheng, Y., Sun, S., & Yuan, J.
S. (2016). Enhanced limonene production in cyanobacteria reveals
photosynthesis limitations. Proceedings of the National Academy of
Sciences , 113 (50), 14225-14230.
Watanabe, S., Ohbayashi, R., Kanesaki, Y., Saito, N., Chibazakura, T.,
Soga, T., & Yoshikawa, H. (2015). Intensive DNA replication and
metabolism during the lag phase in cyanobacteria. PLoS
One , 10 (9), e0136800.
Wegelius, A., Li, X., Turco, F., &Stensjö, K. (2018). Design and
characterization of a synthetic minimal promoter for heterocyst-specific
expression in filamentous cyanobacteria. PloS one, 13 (9),
e0203898.
Wendt, K. E., Ungerer, J., Cobb, R. E., Zhao, H., &Pakrasi, H. B.
(2016). CRISPR/Cas9 mediated targeted mutagenesis of the fast growing
cyanobacterium Synechococcus elongatus UTEX 2973. Microbial cell
factories , 15 (1), 115.
Werner, A., Oliver, K., Miller, A. D., Sebesta, J., & Peebles, C. A.
(2018). Discovery and characterization of Synechocystis sp. PCC 6803
light-entrained promoters in diurnal light: dark cycles. Algal
research , 30, 121-127.
Woo, H. M. (2017). Solar-to-chemical and solar-to-fuel production from
CO2 by metabolically engineered microorganisms. Current opinion in
biotechnology , 45 , 1-7.
Xia, P. F., Ling, H., Foo, J. L., & Chang, M. W. (2019). Synthetic
biology toolkits for metabolic engineering of
cyanobacteria. Biotechnology journal , 14 (6), 1800496.
Xu, W., Ma, X., & Wang, Y. (2016). Production of squalene by microbes:
an update. World Journal of Microbiology and
Biotechnology , 32 (12), 195
Xu, Y., Alvey, R. M., Byrne, P. O., Graham, J. E., Shen, G., & Bryant,
D. A. (2011). Expression of genes in cyanobacteria: adaptation of
endogenous plasmids as platforms for high-level gene expression in
Synechococcus sp. PCC 7002. In Photosynthesis research
protocols (pp. 273-293). Humana Press, Totowa, NJ.
Yang, X., Nambou, K., Wei, L., & Hua, Q. (2016). Heterologous
production of α-farnesene in metabolically engineered strains of
Yarrowia lipolytica. Bioresource technology , 216 ,
1040-1048.
Yao, L., Cengic, I., Anfelt, J., & Hudson, E. P. (2015). Multiple gene
repression in cyanobacteria using CRISPRi. ACS synthetic
biology , 5 (3), 207-212.
Yoo, T.; Chao, H.; Henning, S. Farnesene-Based Polymers and Liquid
Optically Clear Adhesive Compositions Incorporating the Same.WO Patent
2017003573 A1, Jan 5, 2017.
Yu, J., Liberton, M., Cliften, P. F., Head, R. D., Jacobs, J. M., Smith,
R. D., & Pakrasi, H. B. (2015). Synechococcus elongatus UTEX 2973, a
fast growing cyanobacterial chassis for biosynthesis using light and CO
2. Scientific reports , 5 , 8132.
Yuan, J., Chen, X., Mishra, P., & Ching, C. B. (2017).Metabolically
engineered Saccharomyces cerevisiae for enhanced isoamyl alcohol
production. Applied microbiology and
biotechnology , 101 (1), 465-474.
Zahra, Z., Choo, D. H., Lee, H., & Parveen, A. (2020). Cyanobacteria:
review of current potentials and
applications. Environments , 7 (2), 13.
Zerulla, K., Ludt, K., &Soppa, J. (2016). The ploidy level of
Synechocystis sp. PCC 6803 is highly variable and is influenced by
growth phase and by chemical and physical external
parameters. Microbiology , 162 (5), 730-739.
Zhang, Y., &Gladyshev, V. N. (2008). Molybdoproteomes and evolution of
molybdenum utilization. Journal of molecular
biology , 379 (4), 881-899.
Zhou, J., Yang, F., Zhang, F., Meng, H., Zhang, Y., & Li, Y. (2021).
Impairing photorespiration increases photosynthetic conversion of CO 2
to isoprene in engineered cyanobacteria. Bioresources and
Bioprocessing , 8 (1), 1-13.
Zhou, J., Zhang, H., Meng, H., Zhu, Y., Bao, G., Zhang, Y., … & Ma,
Y. (2014). Discovery of a super-strong promoter enables efficient
production of heterologous proteins in cyanobacteria. Scientific
reports , 4 , 4500.