References
Abramson, B. W., Kachel, B., Kramer, D. M., & Ducat, D. C. (2016). Increased photochemical efficiency in cyanobacteria via an engineered sucrose sink. Plant and Cell Physiology57 (12), 2451-2460
Albers, S. C., & Peebles, C. A. (2017). Evaluating Light‐Induced Promoters for the Control of Heterologous Gene Expression in Synechocystis sp. PCC 6803. Biotechnology progress , 33 (1), 45-53.
Almeida, D. V., Martens, S. B. B., Lanes, C. F. C., &Marins, L. F. (2017). Improved genetic transformation of Synechococcus elongatus PCC 7942 using linear DNA fragments in association with a DNase inhibitor. Biotechnology Research and Innovation1 (1), 123-128.
Andersson, C. R. (2000). Application of bioluminescence to the study of circadian rhythms in cyanobacteria. Methods Enzymol.305 , 527-542.
Atsumi, S. Higashide, W., & Liao, J. C. (2009). Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nature biotechnology27 (12)1177.
Atsumi, S., Wu, T. Y., Eckl, E. M., Hawkins, S. D., Buelter, T., & Liao, J. C. (2010).Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Applied microbiology and biotechnology85 (3), 651-657.
Barkley, S. J., Desai, S. B., & Poulter, C. D. (2004). Type II isopentenyl diphosphate isomerase from Synechocystis sp. strain PCC 6803. Journal of bacteriology186 (23), 8156-8158.
Behle, A., Saake, P., Germann, A. T., Dienst, D., &Axmann, I. M. (2020). Comparative dose–response analysis of inducible promoters in Cyanobacteria. ACS synthetic biology9 (4), 843-855.
Bentley, F. K., &Melis, A. (2012). Diffusion‐based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two‐phase photobioreactors by photosynthetic microorganisms. Biotechnology and bioengineering109 (1), 100-109.
Bentley, F. K., Zurbriggen, A., &Melis, A. (2014). Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Molecular plant7 (1), 71-86.
Brosius J., Erfle M., and Storella J. (1984). Spacing of the -10 and -35 regions in the tac promoter. Journal of Biological Chemistry.260(6), 3539-3541.
Camsund, D., Heidorn, T., & Lindblad, P. (2014). Design and analysis of LacI-repressed promoters and DNA-looping in a cyanobacterium.Journal of biological engineering , 8 (1), 4.
Chandrasekhar, K., Lee, Y. J., & Lee, D. W. (2015). Biohydrogen production: strategies to improve process efficiency through microbial routes. International journal of molecular sciences16 (4), 8266-8293.
Chaves, J. E., &Melis, A. (2018). Engineering isoprene synthesis in cyanobacteria. FEBS letters592 (12), 2059-2069.
Chemla, Y., Friedman, M., Heltberg, M., Bakhrat, A., Nagar, E., Schwarz, R., … & Alfonta, L. (2017). Expanding the genetic code of a photoautotrophic organism. Biochemistry56 (16), 2161-2165.
Chen, Y., Taton, A., Go, M., London, R. E., Pieper, L. M., Golden, S. S., & Golden, J. W. (2016). Self-replicating shuttle vectors based on pANS, a small endogenous plasmid of the unicellular cyanobacterium Synechococcus elongatus PCC 7942. Microbiology (United Kingdom)162 (12), 2029-2041.
Chi, X., Zhang, S., Sun, H., Qiao, C., Luan, G., & Lu, X. (2019). Adopting a theophylline-responsive riboswitch for flexible regulation and understanding of glycogen metabolism in Synechococcus elongatus PCC7942. Frontiers in Microbiology , 10 , 551.
Choi, S. Y., & Woo, H. M. (2020). CRISPRi-dCas12a: A dCas12a-mediated CRISPR interference for repression of multiple genes and metabolic engineering in cyanobacteria. ACS synthetic biology9 (9), 2351-2361.
Choi, S. Y., Wang, J. Y., Kwak, H. S., Lee, S. M., Um, Y., Kim, Y., … & Woo, H. M. (2017). Improvement of squalene production from CO2 in Synechococcus elongatus PCC 7942 by metabolic engineering and scalable production in a photobioreactor. ACS Synthetic Biology6 (7), 1289-1295.
Choi, Y. N., Shin, Y. R., Park, J. M., & Lee, J. W. (2021). Cell-Free Transcription-Coupled CRISPR/Cas12a Assay for Prototyping Cyanobacterial Promoters. ACS Synthetic Biology .
Chuck, C. J., & Donnelly, J. (2014). The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene. Applied Energy118 , 83-91.
Cohen, S. E., Erb, M. L., Selimkhanov, J., Dong, G., Hasty, J., Pogliano, J., & Golden, S. S. (2014). Dynamic localization of the cyanobacterial circadian clock proteins. Current Biology24 (16), 1836-1844.
Desmarais, J. J., Flamholz, A. I., Blikstad, C., Dugan, E. J., Laughlin, T. G., Oltrogge, L. M., … & Savage, D. F. (2019). DABs are inorganic carbon pumps found throughout prokaryotic phyla. Nature microbiology4 (12), 2204-2215.
Diao, J., Song, X., Zhang, L., Cui, J., Chen, L., & Zhang, W. (2020). Tailoring cyanobacteria as a new platform for highly efficient synthesis of astaxanthin. Metabolic Engineering61 , 275-287.
Domin, G., Findeiß, S., Wachsmuth, M., Will, S., Stadler, P. F., &Mörl, M. (2016). Applicability of a computational design approach for synthetic riboswitches. Nucleic acids research , 45 (7), 4108-4119.
Engler, C., Youles, M., Gruetzner, R., Ehnert, T. M., Werner, S., Jones, J. D., … &Marillonnet, S. (2014). A golden gate modular cloning toolbox for plants. ACS synthetic biology3 (11), 839-843.
Englund, E., Andersen-Ranberg, J., Miao, R., Hamberger, B., & Lindberg, P. (2015). Metabolic engineering of Synechocystis sp. PCC 6803 for production of the plant diterpenoidmanoyl oxide. ACS synthetic biology4 (12), 1270-1278.
Englund, E., Liang, F., & Lindberg, P. (2016). Evaluation of promoters and ribosome binding sites for biotechnological applications in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Scientific reports , 6 , 36640.
Englund, E., Pattanaik, B., Ubhayasekera, S. J. K., Stensjö, K., Bergquist, J., & Lindberg, P. (2014). Production of squalene in Synechocystis sp. PCC 6803. PloS one9 (3), e90270.
Eungrasamee, K., Incharoensakdi, A., Lindblad, P., &Jantaro, S. (2020). Synechocystis sp. PCC 6803 overexpressing genes involved in CBB cycle and free fatty acid cycling enhances the significant levels of intracellular lipids and secreted free fatty acids. Scientific reports10 (1), 1-13.
Eungrasamee, K., Miao, R., Incharoensakdi, A., Lindblad, P., &Jantaro, S. (2019). Improved lipid production via fatty acid biosynthesis and free fatty acid recycling in engineered Synechocystis sp. PCC 6803. Biotechnology for biofuels12 (1), 8.
Fleming, K. E., & O’Shea, E. K. (2018). An RpaA-dependent sigma factor cascade sets the timing of circadian transcriptional rhythms in Synechococcuselongatus. Cell reports25 (11), 2937-2945.
Flores, F. G. (2008). The cyanobacteria: molecular biology, genomics, and evolution . Horizon Scientific Press.
Formighieri, C., & Melis, A. (2015). A phycocyanin· phellandrene synthase fusion enhances recombinant protein expression and β-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria). Metabolic engineering32 , 116-124.
Gao, X., Gao, F., Liu, D., Zhang, H., Nie, X., & Yang, C. (2016). Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO 2. Energy & environmental science9 (4), 1400-1411.
Griese, M., Lange, C., &Soppa, J. (2011). Ploidy in cyanobacteria. FEMS microbiology letters323 (2), 124-131.
Halfmann, C., Gu, L., Gibbons, W., & Zhou, R. (2014). Genetically engineering cyanobacteria to convert CO2, water, and light into the long-chain hydrocarbon farnesene. Applied microbiology and biotechnology98 (23), 9869-9877.
Heidorn, T., Camsund, D., Huang, H. H., Lindberg, P., Oliveira, P., Stensjö, K., & Lindblad, P. (2011). Synthetic biology in cyanobacteria: engineering and analyzing novel functions. In Methods in enzymology  (Vol. 497, pp. 539-579). Academic Press.
Helliwell, K. E., Lawrence, A. D., Holzer, A., Kudahl, U. J., Sasso, S., Kräutler, B., … & Smith, A. G. (2016). Cyanobacteria and eukaryotic algae use different chemical variants of vitamin B12. Current Biology26 (8), 999-1008.
Henkin, T. M. (2008). Riboswitch RNAs: using RNA to sense cellular metabolism. Genes & development , 22 (24), 3383-3390.
Higo, A., Isu, A., Fukaya, Y., Ehira, S., & Hisabori, T. (2017). Application of CRISPR interference for metabolic engineering of the heterocyst-forming multicellular cyanobacterium Anabaena sp. PCC 7120. Plant and Cell Physiology59 (1), 119-127.
Huang, H. H., & Lindblad, P. (2013). Wide-dynamic-range promoters engineered for cyanobacteria. Journal of biological engineering ,7 (1), 10.
Huang, H. H., Camsund, D., Lindblad, P., &Heidorn, T. (2010). Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic acids research , 38 (8), 2577-2593.
Ivleva, N. B., Bramlett, M. R., Lindahl, P. A., & Golden, S. S. (2005). LdpA: a component of the circadian clock senses redox state of the cell. The EMBO journal24 (6), 1202-1210.
Jacobsen, J. H., &Frigaard, N. U. (2014). Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. Metabolic engineering , 21 , 60-70.
Jin, H., Wang, Y., Idoine, A., &Bhaya, D. (2018). Construction of a shuttle vector using an endogenous plasmid from the cyanobacterium Synechocystis sp. PCC6803. Frontiers in microbiology9 , 1662.
Johnsborg, O., Eldholm, V., &Håvarstein, L. S. (2007). Natural genetic transformation: prevalence, mechanisms and function. Research in microbiology158 (10), 767-778.
Kaczmarzyk, D., Cengic, I., Yao, L., & Hudson, E. P. (2018). Diversion of the long-chain acyl-ACP pool in Synechocystis to fatty alcohols through CRISPRi repression of the essential phosphate acyltransferase PlsX. Metabolic engineering45 , 59-66
Kageyama, H., Waditee-Sirisattha, R., Sirisattha, S., Tanaka, Y., Mahakhant, A., &Takabe, T. (2015).Improved alkane production in nitrogen-fixing and halotolerant cyanobacteria via abiotic stresses and genetic manipulation of alkane synthetic genes. Current microbiology71 (1), 115-120.
Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., … & Kimura, T. (1996). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA research , 3 (3),109-136.
Kelly, C. L., Taylor, G. M., Hitchcock, A., Torres-Mendez, A., & Heap, J. T. (2018). A rhamnose-inducible system for precise and temporal control of gene expression in cyanobacteria. ACS synthetic biology , 7 (4), 1056-1066.
Kierzek, A. M., Zaim, J., &Zielenkiewicz, P. (2001). The effect of transcription and translation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression. Journal of Biological Chemistry , 276 (11), 8165-8172.
Kiyota, H., Okuda, Y., Ito, M., Hirai, M. Y., &Ikeuchi, M. (2014). Engineering of cyanobacteria for the photosynthetic production of limonene from CO2. Journal of biotechnology185 , 1-7.
Knoot, C. J., Ungerer, J., Wangikar, P. P., & Pakrasi, H. B. (2018). Cyanobacteria: promising biocatalysts for sustainable chemical production. Journal of Biological Chemistry293 (14), 5044-5052
Köllner, T. G., Gershenzon, J., & Degenhardt, J. (2009). Molecular and biochemical evolution of maize terpene synthase 10, an enzyme of indirect defense. Phytochemistry70 (9), 1139-1145.
Kumar, G., Sivagurunathan, P., Pugazhendhi, A., Thi, N. B. D., Zhen, G., Chandrasekhar, K., &Kadier, A. (2017). A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options. Energy conversion and management141 , 390-402.
Kumar, R., Biswas, K., Singh, P. K., Singh, P. K., Elumalai, S., Shukla, P., & Pabbi, S. (2017). Lipid production and molecular dynamics simulation for regulation of acc D gene in cyanobacteria under different N and P regimes. Biotechnology for biofuels10 (1), 1-14.
Lan, E. I., & Liao, J. C. (2011). Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metabolic engineering13 (4), 353-363.
Lasry Testa, R., Delpino, C., Estrada, V., & Diaz, S. M. (2019). In silico strategies to couple production of bioethanol with growth in cyanobacteria. Biotechnology and bioengineering116 (8), 2061-2073.
Lee, H. J., Choi, J. I., & Woo, H. M. (2021). Biocontainment of Engineered Synechococcus elongatus PCC 7942 for Photosynthetic Production of α-Farnesene from CO2. Journal of Agricultural and Food Chemistry69 (2), 698-703.
Lee, H. J., Lee, J., Lee, S. M., Um, Y., Kim, Y., Sim, S. J., … & Woo, H. M. (2017). Direct conversion of CO2 to α-farnesene using metabolically engineered Synechococcus elongatus PCC 7942. Journal of agricultural and food chemistry65 (48), 10424-10428.
Li, H., Shen, C. R., Huang, C. H., Sung, L. Y., Wu, M. Y., & Hu, Y. C. (2016). CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metabolic engineering38 , 293-302.
Lichtenthaler, H. K. (2000). Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors.
Lin, P. C., Zhang, F., & Pakrasi, H. B. (2020). Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Scientific Reports10 (1), 1-8.
Lin, P. C., Zhang, F., & Pakrasi, H. B. (2021). Enhanced limonene production in a fast-growing cyanobacterium through combinatorial metabolic engineering. Metabolic Engineering Communications12 , e00164.
Lin, P. C., Saha, R., Zhang, F., & Pakrasi, H. B. (2017). Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocysti s sp. PCC 6803. Scientific reports7 (1), 1-10.
Lindberg, P., Park, S., &Melis, A. (2010). Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metabolic engineering12 (1), 70-79.
Liu, D., & Pakrasi, H. B. (2018). Exploring native genetic elements as plug-in tools for synthetic biology in the cyanobacterium Synechocystis sp. PCC 6803. Microbial cell factories17 (1), 48.
Liu, X., Sheng, J., & Curtiss III, R. (2011).Fatty acid production in genetically modified cyanobacteria. Proceedings of the National Academy of Sciences108 (17), 6899-6904.
Lu, J., Brigham, C. J., Gai, C. S., &Sinskey, A. J. (2012). Studies on the production of branched-chain alcohols in engineered Ralstoniaeutropha. Applied microbiology and biotechnology96 (1), 283-297
Lu, X. (2010). A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnology advances28 (6), 742-746..
Lynch, S. A., & Gallivan, J. P. (2008). A flow cytometry-based screen for synthetic riboswitches. Nucleic acids research , 37 (1), 184-192.
Ma, A. T., Schmidt, C. M., & Golden, J. W. (2014). Regulation of gene expression in diverse cyanobacterial species by using theophylline-responsive riboswitches. Appl. Environ. Microbiol.80 (21), 6704-6713.
Ma, J., Campbell, A., &Karlin, S. (2002). Correlations between Shine-Dalgarno sequences and gene features such as predicted expression levels and operon structures. Journal of bacteriology ,184 (20), 5733-5745.
Madsen, M. A., Hamilton, G., Herzyk, P., &Amtmann, A. (2020). Environmental Regulation of PndbA600, an Auto-Inducible Promoter for Two-Stage Industrial Biotechnology in Cyanobacteria. Frontiers in bioengineering and biotechnology8 .
Markley, A. L., Begemann, M. B., Clarke, R. E., Gordon, G. C., & Pfleger, B. F. (2014). Synthetic biology toolbox for controlling gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002.ACS synthetic biology, 4 (5), 595-603.
Melis, A. (2012). Photosynthesis-to-fuels: from sunlight to hydrogen, isoprene, and botryococcene production. Energy & Environmental Science5 (2), 5531-5539.
Miao, R., Liu, X., Englund, E., Lindberg, P., & Lindblad, P. (2017). Isobutanol production in Synechocystis PCC 6803 using heterologous and endogenous alcohol dehydrogenases. Metabolic engineering communications5 , 45-53.
Na, D., & Lee, D. (2010). RBS Designer: software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics26 (20), 2633-2634.
Nagarajan, A., Winter, R., Eaton-Rye, J., &Burnap, R. (2011). A synthetic DNA and fusion PCR approach to the ectopic expression of high levels of the D1 protein of photosystem II in Synechocystis sp. PCC 6803. Journal of Photochemistry and Photobiology B: Biology104 (1-2), 212-219.
Nakahira, Y., Ogawa, A., Asano, H., Oyama, T., &Tozawa, Y. (2013). Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in cyanobacterium Synechococcus elongatus PCC 7942. Plant and Cell Physiology54 (10), 1724-1735.
Ng, A. H., Berla, B. M., &Pakrasi, H. B. (2015). Fine-tuning of photoautotrophic protein production by combining promoters and neutral sites in the cyanobacterium Synechocystis sp. strain PCC 6803. Appl. Environ. Microbiol.81 (19), 6857-6863.
Ohbayashi, R., Akai, H., Yoshikawa, H., Hess, W. R., & Watanabe, S. (2016). A tightly inducible riboswitch system in Synechocystis sp. PCC 6803. The Journal of general and applied microbiology . 62, 154–159.
Oliver, J. W., Machado, I. M., Yoneda, H., &Atsumi, S. (2014). Combinatorial optimization of cyanobacterial 2, 3-butanediol production.Metabolic engineering, 22 , 76-82.
Pade, N., Erdmann, S., Enke, H., Dethloff, F., Dühring, U., Georg, J., … & Hagemann, M. (2016). Insights into isoprene production using the cyanobacterium Synechocystis sp. PCC 6803. Biotechnology for biofuels9 (1), 1-16.
Pandey, A., Srivastava, S., & Kumar, S. (2019). Isolation, screening and comprehensive characterization of candidate microalgae for biofuel feedstock production and dairy effluent treatment: a sustainable approach. Bioresource technology293 , 121998.
Pandey, A., Srivastava, S., & Kumar, S. (2020). Development and cost-benefit analysis of a novel process for biofuel production from microalgae using pre-treated high-strength fresh cheese whey wastewater. Environmental Science and Pollution Research27 (19), 23963-23980.
Parikh, M. R., Greene, D. N., Woods, K. K., & Matsumura, I. (2006). Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E. coli. Protein Engineering Design and Selection19 (3), 113-119.
Pattanaik, B., Englund, E., Nolte, N., & Lindberg, P. (2020). Introduction of a green algal squalene synthase enhances squalene accumulation in a strain of Synechocystis sp. PCC 6803. Metabolic engineering communications10 , e00125.
Pechous, S. W., & Whitaker, B. D. (2004). Cloning and functional expression of an (E, E)-α-farnesene synthase cDNA from peel tissue of apple fruit. Planta219 (1), 84-94.
Peralta‐Yahya, P. P., &Keasling, J. D. (2010). Advanced biofuel production in microbes. Biotechnology journal5 (2), 147-162.
Peralta-Yahya, P. P., Zhang, F., Del Cardayre, S. B., &Keasling, J. D. (2012). Microbial engineering for the production of advanced biofuels. Nature488 (7411), 320-328.
Peramuna, A., Morton, R., &Summers, M. L. (2015). Enhancing alkane production in cyanobacterial lipid droplets: a model platform for industrially relevant compound production. Life5 (2), 1111-1126.
Pérez, A. A., Liu, Z., Rodionov, D. A., Li, Z., & Bryant, D. A. (2016). Complementation of cobalamin auxotrophy in Synechococcus sp. strain PCC 7002 and validation of a putative cobalamin riboswitch in vivo. Journal of bacteriology198 (19), 2743-2752.
Reeve, B., Hargest, T., Gilbert, C., & Ellis, T. (2014). Predicting translation initiation rates for designing synthetic biology.Frontiers in bioengineering and biotechnology , 2 , 1.
Renninger, N. S., &Mcphee, D. J. (2008). U.S. Patent No. 7,399,323 . Washington, DC: U.S. Patent and Trademark Office.
Ruffing, A. M. (2011). Engineered cyanobacteria: teaching an old bug newtricks. Bioengineered bugs2 (3), 136-149.
Ruffing, A. M., & Jones, H. D. (2012). Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942. Biotechnology and bioengineering109 (9), 2190-2199.
Ruffing, A. M., Jensen, T. J., & Strickland, L. M. (2016). Genetic tools for advancement of Synechococcus sp. PCC 7002 as a cyanobacterial chassis. Microbial cell factories15 (1), 190.
Salis, H. M. (2011). The ribosome binding site calculator. In Methods in enzymology (Vol. 498, pp. 19-42). Academic Press.
Salis, H. M., Mirsky, E. A., & Voigt, C. A. (2009). Automated design of synthetic ribosome binding sites to control protein expression.Nature biotechnology , 27 (10), 946.
Sebesta, J., & Peebles, C. A. (2020). Improving heterologous protein expression in Synechocystis sp. PCC 6803 for alpha-bisabolene production. Metabolic engineering communications10 , e00117.
Sengupta, A., Pritam, P., Jaiswal, D., Bandyopadhyay, A., Pakrasi, H. B., & Wangikar, P. P. (2020). Photosynthetic co-production of succinate and ethylene in a fast-growing cyanobacterium, Synechococcus elongatus PCC 11801. Metabolites10 (6), 250.
Seo, S. W., Yang, J. S., Kim, I., Yang, J., Min, B. E., Kim, S., & Jung, G. Y. (2013). Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metabolic engineering , 15 , 67-74.
Shono, C., Ariyanti, D., Abe, K., Sakai, Y., Sakamoto, I., Tsukakoshi, K., … & Ikebukuro, K. (2021). A green light-regulated T7 RNA polymerase gene expression system for cyanobacteria. Marine Biotechnology23 (1), 31-38.
Singh, P., Kumar, N., Jethva, M., Yadav, S., Kumari, P., Thakur, A., & Kushwaha, H. R. (2018). Riboswitch regulation in cyanobacteria is independent of their habitat adaptations. Physiology and molecular biology of plants24 (2), 315-324.
Song, K., Tan, X., Liang, Y., & Lu, X. (2016). The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production. Applied microbiology and biotechnology100 (18), 7865-7875.
Stucken, K., Koch, R., & Dagan, T. (2013). Cyanobacterial defense mechanisms against foreign DNA transfer and their impact on genetic engineering. Biological research46 (4), 373-382.
Sun, E. I., Leyn, S. A., Kazanov, M. D., Saier, M. H., Novichkov, P. S., &Rodionov, D. A. (2013). Comparative genomics of metabolic capacities of regulons controlled by cis-regulatory RNA motifs in bacteria. BMC genomics14 (1), 597.
Taton, A., Unglaub, F., Wright, N. E., Zeng, W. Y., Paz-Yepes, J., Brahamsha, B., … & Golden, J. W. (2014). Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria. Nucleic acids research42 (17), e136-e136.
Thiel, K., Mulaku, E., Dandapani, H., Nagy, C., Aro, E. M., & Kallio, P. (2018). Translation efficiency of heterologous proteins is significantly affected by the genetic context of RBS sequences in engineered cyanobacterium Synechocystis sp. PCC 6803. Microbial cell factories , 17 (1), 34.
Tippmann, S., Ferreira, R., Siewers, V., Nielsen, J., & Chen, Y. (2017). Effects of acetoacetyl-CoA synthase expression on production of farnesene in Saccharomyces cerevisiae. Journal of industrial microbiology & biotechnology44 (6), 911-922.
Topp, S., Reynoso, C. M., Seeliger, J. C., Goldlust, I. S., Desai, S. K., Murat, D., … & Scott, J. R. (2010). Synthetic riboswitches that induce gene expression in diverse bacterial species. Appl. Environ. Microbiol. , 76 (23), 7881-7884.
Tracy, N. I., Chen, D., Crunkleton, D. W., & Price, G. L. (2009). Hydrogenated monoterpenes as diesel fuel additives. Fuel88 (11), 2238-2240.
Ungerer, J., & Pakrasi, H. B. (2016). Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Scientific reports6 , 39681.
Varman, A. M., Xiao, Y., Pakrasi, H. B., & Tang, Y. J. (2013). Metabolic engineering of Synechocystis sp. strain PCC 6803 for isobutanol production. Appl. Environ. Microbiol.79 (3), 908-914.
Vasudevan, R., Gale, G. A., Schiavon, A. A., Puzorjov, A., Malin, J., Gillespie, M. D., … & Lea-Smith, D. J. (2019). CyanoGate: A modular cloning suite for engineering cyanobacteria based on the plant MoClo syntax. Plant physiology180 (1), 39-55.
Vioque, A. (2007). Transformation of cyanobacteria. In Transgenic microalgae as green cell factories  (pp. 12-22). Springer, New York, NY.
Wada, H., & Murata, N. (1990). Temperature-induced changes in the fatty acid composition of the cyanobacterium, Synechocystis PCC6803. Plant Physiology92 (4), 1062-1069.
Wang, B., Eckert, C., Maness, P. C., & Yu, J. (2017). A genetic toolbox for modulating the expression of heterologous genes in the cyanobacterium Synechocystis sp. PCC 6803. ACS synthetic biology ,7 (1), 276-286.
Wang, C., Yoon, S. H., Jang, H. J., Chung, Y. R., Kim, J. Y., Choi, E. S., & Kim, S. W. (2011). Metabolic engineering of Escherichia coli for α-farnesene production. Metabolic engineering13 (6), 648-655.
Wang, W., Liu, X., & Lu, X. (2013). Engineering cyanobacteria to improve photosynthetic production of alka (e) nes. Biotechnology for biofuels6 (1), 69.
Wang, X., Liu, W., Xin, C., Zheng, Y., Cheng, Y., Sun, S., & Yuan, J. S. (2016). Enhanced limonene production in cyanobacteria reveals photosynthesis limitations. Proceedings of the National Academy of Sciences113 (50), 14225-14230.
Watanabe, S., Ohbayashi, R., Kanesaki, Y., Saito, N., Chibazakura, T., Soga, T., & Yoshikawa, H. (2015). Intensive DNA replication and metabolism during the lag phase in cyanobacteria. PLoS One10 (9), e0136800.
Wegelius, A., Li, X., Turco, F., &Stensjö, K. (2018). Design and characterization of a synthetic minimal promoter for heterocyst-specific expression in filamentous cyanobacteria. PloS one, 13 (9), e0203898.
Wendt, K. E., Ungerer, J., Cobb, R. E., Zhao, H., &Pakrasi, H. B. (2016). CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microbial cell factories15 (1), 115.
Werner, A., Oliver, K., Miller, A. D., Sebesta, J., & Peebles, C. A. (2018). Discovery and characterization of Synechocystis sp. PCC 6803 light-entrained promoters in diurnal light: dark cycles. Algal research , 30, 121-127.
Woo, H. M. (2017). Solar-to-chemical and solar-to-fuel production from CO2 by metabolically engineered microorganisms. Current opinion in biotechnology45 , 1-7.
Xia, P. F., Ling, H., Foo, J. L., & Chang, M. W. (2019). Synthetic biology toolkits for metabolic engineering of cyanobacteria. Biotechnology journal14 (6), 1800496.
Xu, W., Ma, X., & Wang, Y. (2016). Production of squalene by microbes: an update. World Journal of Microbiology and Biotechnology32 (12), 195
Xu, Y., Alvey, R. M., Byrne, P. O., Graham, J. E., Shen, G., & Bryant, D. A. (2011). Expression of genes in cyanobacteria: adaptation of endogenous plasmids as platforms for high-level gene expression in Synechococcus sp. PCC 7002. In Photosynthesis research protocols  (pp. 273-293). Humana Press, Totowa, NJ.
Yang, X., Nambou, K., Wei, L., & Hua, Q. (2016). Heterologous production of α-farnesene in metabolically engineered strains of Yarrowia lipolytica. Bioresource technology216 , 1040-1048.
Yao, L., Cengic, I., Anfelt, J., & Hudson, E. P. (2015). Multiple gene repression in cyanobacteria using CRISPRi. ACS synthetic biology5 (3), 207-212.
Yoo, T.; Chao, H.; Henning, S. Farnesene-Based Polymers and Liquid Optically Clear Adhesive Compositions Incorporating the Same.WO Patent 2017003573 A1, Jan 5, 2017.
Yu, J., Liberton, M., Cliften, P. F., Head, R. D., Jacobs, J. M., Smith, R. D., & Pakrasi, H. B. (2015). Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO 2. Scientific reports5 , 8132.
Yuan, J., Chen, X., Mishra, P., & Ching, C. B. (2017).Metabolically engineered Saccharomyces cerevisiae for enhanced isoamyl alcohol production. Applied microbiology and biotechnology101 (1), 465-474.
Zahra, Z., Choo, D. H., Lee, H., & Parveen, A. (2020). Cyanobacteria: review of current potentials and applications. Environments7 (2), 13.
Zerulla, K., Ludt, K., &Soppa, J. (2016). The ploidy level of Synechocystis sp. PCC 6803 is highly variable and is influenced by growth phase and by chemical and physical external parameters. Microbiology162 (5), 730-739.
Zhang, Y., &Gladyshev, V. N. (2008). Molybdoproteomes and evolution of molybdenum utilization. Journal of molecular biology379 (4), 881-899.
Zhou, J., Yang, F., Zhang, F., Meng, H., Zhang, Y., & Li, Y. (2021). Impairing photorespiration increases photosynthetic conversion of CO 2 to isoprene in engineered cyanobacteria. Bioresources and Bioprocessing8 (1), 1-13.
Zhou, J., Zhang, H., Meng, H., Zhu, Y., Bao, G., Zhang, Y., … & Ma, Y. (2014). Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria. Scientific reports , 4 , 4500.