References
- Carlos, L.D. and Palacio, F. Thermometry at the Nanoscale:
Techniques and Selected Applications . The Royal Society of Chemistry;
2016.
- Okabe, K., Sakaguchi, R., Beini, S. and Kiyonaka, S. Intracellular
thermometry with fluorescent sensors for thermal biology.Pflugers Arch – Eur. J. Physiol. 2018; 470: 717–731.
- Buxbaum, E. Fundamentals of Protein Structure and Function .
Springer; 2015.
- Onuchic, J. N., Socci, N. D., Luthey-Schulten, Z., Wolynes, P. G.
Protein folding funnels: the nature of the transition state ensemble.Fold. Des. 1996; 1: 441–450.
- Fang, Y. Gibbs free energy formula for protein folding. inThermodynamics - fundamentals and its application in science(ed. Morales-Rodriguez, R.) 47–82. IntechOpen; 2012.
- Chiti, F. and Dobson, C.M. Protein misfolding, functional amyloid, and
human disease. Annu. Rev. Biochem. 2006; 75: 333–66.
- Toyabe, S. and Sano, M. Nonequilibrium Fluctuations in Biological
Strands, Machines, and Cells. J. Phys. Soc. Jpn. 2015; 84:
102001.
- van den Heuvel, M.G.L. and Dekker, C. Motor Proteins at Work for
Nanotechnology. Science 2007; 317: 333–336.
- Gura, M., Golcuka, M., Yilmaza, S.Z and Taka, E. Thermodynamic first
law efficiency of membrane proteins. J. Biomol. Struct. Dyn.2020; 38: 439–449.
- Li, Z. and Scheraga, H.A. Monte Carlo-minimization approach to the
multiple-minima problem in protein folding. Proc. Natl. Acad.
Sci. USA 1987; 84: 6611–6615.
- West, D.K., Olmsted, P.D. and Paci, E. Free energy for protein folding
from nonequilibrium simulations using the Jarzynski equality. J.
Chem. Phys. 2006; 125: 204910.
- Bartlett, A. I. and Radford, S. E. An expanding arsenal of
experimental methods yields an explosion of insights into protein
folding mechanisms. Nat. Struct. Mol. Biol. 2009; 16: 582–588.
- Nettels, D., Hoffmann, A. and Schuler, B. Unfolded protein and peptide
dynamics investigated with single-molecule FRET and correlation
spectroscopy from picoseconds to seconds. J. Phys. Chem. B2008; 112: 6137–6146.
- Ritort, F. Single-molecule experiments in biological physics: methods
and applications. J. Phys.: Condens. Matter 2006; 18: R531.
- Toyabe, S. and Muneyuki, E. Experimental thermodynamics of single
molecular motor. Biophysics 2013; 9: 91–98.
- Himmelstoß, S.F. and Hirsch, T. A critical comparison of lanthanide
based upconversion nanoparticles to fluorescent proteins,
semiconductor quantum dots, and carbon dots for use in optical sensing
and imaging. Methods Appl. Fluoresc. 2019; 7: 022002.
- Pickel, A.D., Teitelboim, A., Chan, E.M. et al. Apparent self-heating
of individual upconverting nanoparticle thermometers. Nat.
Commun. 2018; 9: 4907.
- Lee, C., Xu, E.Z., Liu, Y. et al. Giant nonlinear optical responses
from photon-avalanching nanoparticles. Nature 2021; 589:
230–235.
- Medintz, I. L., Konnert, J. H., Clapp, A. R., Stanish, I., Twigg, M.
E., Mattoussi, H., Mauro, J. M., Deschamps, J. R. A fluorescence
resonance energy transfer-derived structure of a quantum dot-protein
bioconjugate nanoassembly. Proc. Natl. Acad. Sci. USA 2004;
101: 9612-9617.
- Aubin-Tam, M.E. and Hamad-Schifferli, K. Structure and function of
nanoparticle–protein conjugates. Biomed. Mater. 2008; 3:
034001.
- Brites, C.D.S., Balabhadra, S. and Carlos L.D. Lanthanide-based
thermometers: at the cutting-edge of luminescence thermometry.Adv. Optical Mater. 2019; 7: 1801239.