References
  1. Carlos, L.D. and Palacio, F. Thermometry at the Nanoscale: Techniques and Selected Applications . The Royal Society of Chemistry; 2016.
  2. Okabe, K., Sakaguchi, R., Beini, S. and Kiyonaka, S. Intracellular thermometry with fluorescent sensors for thermal biology.Pflugers Arch – Eur. J. Physiol. 2018; 470: 717–731.
  3. Buxbaum, E. Fundamentals of Protein Structure and Function . Springer; 2015.
  4. Onuchic, J. N., Socci, N. D., Luthey-Schulten, Z., Wolynes, P. G. Protein folding funnels: the nature of the transition state ensemble.Fold. Des. 1996; 1: 441–450.
  5. Fang, Y. Gibbs free energy formula for protein folding. inThermodynamics - fundamentals and its application in science(ed. Morales-Rodriguez, R.) 47–82. IntechOpen; 2012.
  6. Chiti, F. and Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006; 75: 333–66.
  7. Toyabe, S. and Sano, M. Nonequilibrium Fluctuations in Biological Strands, Machines, and Cells. J. Phys. Soc. Jpn. 2015; 84: 102001.
  8. van den Heuvel, M.G.L. and Dekker, C. Motor Proteins at Work for Nanotechnology. Science 2007; 317: 333–336.
  9. Gura, M., Golcuka, M., Yilmaza, S.Z and Taka, E. Thermodynamic first law efficiency of membrane proteins. J. Biomol. Struct. Dyn.2020; 38: 439–449.
  10. Li, Z. and Scheraga, H.A. Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc. Natl. Acad. Sci. USA 1987; 84: 6611–6615.
  11. West, D.K., Olmsted, P.D. and Paci, E. Free energy for protein folding from nonequilibrium simulations using the Jarzynski equality. J. Chem. Phys. 2006; 125: 204910.
  12. Bartlett, A. I. and Radford, S. E. An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms. Nat. Struct. Mol. Biol. 2009; 16: 582–588.
  13. Nettels, D., Hoffmann, A. and Schuler, B. Unfolded protein and peptide dynamics investigated with single-molecule FRET and correlation spectroscopy from picoseconds to seconds. J. Phys. Chem. B2008; 112: 6137–6146.
  14. Ritort, F. Single-molecule experiments in biological physics: methods and applications. J. Phys.: Condens. Matter 2006; 18: R531.
  15. Toyabe, S. and Muneyuki, E. Experimental thermodynamics of single molecular motor. Biophysics 2013; 9: 91–98.
  16. Himmelstoß, S.F. and Hirsch, T. A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging. Methods Appl. Fluoresc. 2019; 7: 022002.
  17. Pickel, A.D., Teitelboim, A., Chan, E.M. et al. Apparent self-heating of individual upconverting nanoparticle thermometers. Nat. Commun. 2018; 9: 4907.
  18. Lee, C., Xu, E.Z., Liu, Y. et al. Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature 2021; 589: 230–235.
  19. Medintz, I. L., Konnert, J. H., Clapp, A. R., Stanish, I., Twigg, M. E., Mattoussi, H., Mauro, J. M., Deschamps, J. R. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. Proc. Natl. Acad. Sci. USA 2004; 101: 9612-9617.
  20. Aubin-Tam, M.E. and Hamad-Schifferli, K. Structure and function of nanoparticle–protein conjugates. Biomed. Mater. 2008; 3: 034001.
  21. Brites, C.D.S., Balabhadra, S. and Carlos L.D. Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry.Adv. Optical Mater. 2019; 7: 1801239.